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ABSTRACT
Ambient dose equivalent is determined at nine source-to-detector distances in a Secondary 
Standard Dosimetry Laboratory in a Cs-137 beam using a Physikalisch-Technische-Werkstaetten 
(PTW) ionisation chamber and Unidos electrometer as a measuring assembly. This work aims to 
estimate the gamma ambient dose equivalent resulting from air kerma rate distributions and 
subject the data generated to counting statistics to determine whether these data reflect proper 
instrument operation. The method of varying the source-to-detector distances was used. From the 
results, the total kinetic energy of all charged particles liberated by uncharged incident radiation 
per unit mass of material of the ionisation chamber ranged from 0.3168 ± 0.0146 µGy/s at an 
SSD of 1.0 m to 0.0151 ± 0.0007 µGy/s at 5.0 m within two standard deviations. The coefficient 
of variation among the various datasets ranged from 0.05% to 0.31%. Counting statistics of the 
generated data reflects proper measuring system operation and reliability. It is proposed that, in 
between calibrations, dosimetrists should consider relying upon counting statistics to check the 
output of their ionisation chambers for conformance to statistical laws.
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INTRODUCTION
Operational quantities in the field of health 
physics have been introduced to meet two 
o t h e r  i m p o r t a n t  n e e d s  b e s i d e s 
standardization. These needs are operational 
measurement and estimation of radiation 
risk. The ambient dose equivalent, H*(10), is 
an operational quantity for area monitoring 
of ionising radiations. The operational dose 
equivalent quantity for area monitoring has 
been defined by the International Commission 
on Radiation Units and Measurements 
(ICRU) (ICRU, 1985, 1988, 1993, 2000). The 
International Commission on Radiological 
Protection (ICRP) Publication 103 defines 
H*(10) as the dose equivalent at a point in a 
radiation field that would be produced by the 
corresponding expanded and aligned field in 
the ICRU sphere at a depth of 10 mm on the 
radius vector opposing the direction of the 
aligned field (ICRP, 2007).  The ICRU sphere is 
a sphere of tissue-equivalent material (30 cm 
in diameter, ICRU (soft) tissue with density: 1 
g/cm3, and mass composition: 76.2% oxygen, 
11.1% carbon, 10.1% hydrogen, and 2.6% 
nitrogen). H*(10), therefore, denotes a deep 
radiation dose at a depth of 10 mm below 
the skin. It is particularly used to measure 
strongly penetrating gamma rays (above 12 
keV) and neutrons (Harrison et al., 2021).

Kerma is an acronym for kinetic energy 
released per unit mass and is a measure 
of energy transferred from radiation to 
matter. Air kerma denotes the kinetic energy 
released per unit mass when a gamma beam 
is travelling through air. The basic use of air 
kerma in radiation metrology is in estimating 
ambient dose equivalent (Adjei et al., 2013; 
Azah et al., 2024). In interventional radiology, 
air kerma is used to estimate the (peak) skin 
dose to reduce the possibility of patient 
radiation burns due to high skin doses. (Balter 
et al., 2010; and Miller et al., 2010) Ambient 
dose equivalent is determined from air kerma 
and air kerma rates (Zeng et al., 2020; Mraity et 

al., 2021; Burns et al., 2006;  Bor et al., 2004).  
Various methods for determining ambient 
dose equivalent for various applications 
and scenarios exist (Sato et al., 1999; Kuć, 
2023; Leontaris et al, 2020; Casanovas et al., 
2016; Elias et al., 2020;  Poltabtim, 2023). 
Whilst NaI(TI) scintillation, and ionising 
chamber survey meters are used to measure 
gamma ray ambient dose rates on the field, 
Secondary Standard Dosimetry Laboratories 
(SSDLs) use ionisation chambers coupled 
with electrometers to determine H*(10) to 
provide traceability of field equipment to the 
international system of measurement. 

The radiation detecting and measuring 
instruments used for radiation monitoring 
function are based on the mechanisms of 
interaction of radiation with matter. These 
mechanisms include compton scattering, 
photoelectric absorption, pair production, 
coherent scattering, etc. As a result, the 
operation of a particular radiation detector, 
fundamentally, depends on the nature of the 
radiation to be detected and how it interacts 
with the material construct of the detector. 
To get a good understanding of the response 
of a specific type of detector, one must 
be familiar with the mechanism by which 
different types of radiations interact with 
and lose their energy in different matter. An 
ideal instrument for determining ambient 
dose equivalent should have an isotropic 
response because it is required to measure 
H*(10) in any radiation field that is uniformly 
distributed over its dimensions. 

Ionisation chambers, in principle, are the 
simplest of all gas-filled detectors (Knoll, 
2010 and Greening, 2017) used to determine 
H*(10). Calibration is the main means of 
ensuring that an ionisation chamber is 
functioning well and producing data that is 
traceable to a primary standard (IAEA, 2008; 
ISO, 1993; Adjei et al., 2013; Azah et al., 2024). 
It takes more than a year for a secondary 
standard to be recalibrated. The reliability 
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of the performance of ionisation chambers 
(detectors in general) in between calibrations 
is a challenge to dosimetrists. The standard 
method of checking the measurement results 
of devices for conformance to statistical laws 
(Cerqueti et al., 2021; Hibbert, 2013; and 
Leblond, 2018) can be relied upon during 
these periods.  This work aims to estimate the 
gamma ambient dose equivalent resulting 
from air kerma rate distributions at nine 
source-to-detector distances in a secondary 
standard dosimetry laboratory and subject 
the data generated to counting statistics 
to determine whether these data reflect 
proper instrument operation. The measured 
intensities of air kerma rates used in this work 
are emitted from a Ceasium-137 source. 

MATERIAL AND METHODS
A PTW vented spherical ionisation chamber, 
Ceasium-137 gamma source assembly, 
PTW UNIDOS electrometer, thermometer, 

barometer, and a CCTV camera were 
used to conduct this study. The ionisation 
chamber is designed for the measurement 
of ionising radiations for radiation protection 
purposes. It has a sensitive volume of 1 L 
with the chamber centre as the reference 
point. Its spherical construct guarantees a 
near-uniform response to radiation from all 
directions. Figure 1 shows the outline of the 
ionisation chamber. It is ideal for measuring 
the quantities of air-kerma and photon 
equivalent doses. The nominal response of 
this chamber is 40 µC/Gy with a chamber 
voltage of 400 V nominal and ± 500 V 
maximal. The energy response and leakage 
current are in the range of ≤ ± 4 % and ≤ ± 
10 fA respectively. The outer dimension of 
the chamber has a diameter of 140 mm. The 
walls of this chamber’s sensitive volume are 
made of 3 mm polyoxymethylene (POM), 
0.02 mm graphite, and 0.22 mm lacquer. This 
made the total wall area to have a density of 
453 mg/cm3.

Gas exit

Wall
HV Insulator

(± 200 - 500 V)
Earth

Gas flow Guard electrode To electrometer input
Gas

Collector
(central electrode)

Figure 1. A spherical cavity ionisation chamber.

The chamber has a wall that is considered 
sufficiently thick to ensure that all the 
electrons crossing the air cavity originate in 
the wall and not in the surrounding material. 
The central electrode is a 50 mm diameter 
graphite-coated polystyrene. The ion 
collection efficiency at a nominal voltage for ≥ 
90.0 % saturation is estimated at 420 mGy/h. 
The ionisation chamber was used together 
with PTW UNIDOS. It is a microprocessor-
control led universal  reference class 
dosemeter. It is a very sensitive measuring 

equipment and a secondary standard for 
determining very low doses and dose rates 
in radiation protection, diagnostic radiology, 
and radiotherapy. It fulfils the general 
requirements for the safety of medical 
electrical equipment according to IEC 60601-
1. As a universal reference class dosemeter, 
UNIDOS can display the measured values of 
current, charge, dose, and dose rate. 

These features: high accuracy, long-term 
stability, excellent resolution, and wide 
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dynamic measuring ranges make UNIDOS an 
ideal dosemeter for this study.

Determination of Air Kerma rates and 
ambient dose equivalent
With the aid of a laser positioning system, 
the ionisation chamber is placed at a 
source-to-detector distance of 1 m and a 
spatial height of 1 m from the floor inside 
the calibration bunker. On the control 
console desk outside of the bunker, the 
UNIDOS electrometer was set up. Without 
connecting the two measuring devices, the 
positive high voltage (HV polarity +) switch 
at the rear of the UNIDOS was selected. This 
procedure prevents an accidentally too high 
a voltage from being applied to the ionisation 
chamber. The unit is then connected to the 
mains and powered on. Using the menu 
keys, the 1 L PTW ionisation chamber and 
its corresponding calibration factor were 
selected from the UNIDOS chamber library. 
The essence of the chamber library is that, 
before any measurement that UNIDOS does, 
it adjusts to a specific ionisation chamber and 
its details stored on it. It automatically checks 
for the quantity the chamber is calibrated for 
and goes ahead to provide the calibration 
factor whilst setting the high voltage to the 
last value used with the chamber successfully. 
This is possible because the calibration factors 
of the ionisation chambers are stored on the 
UNIDOS during their calibration at the primary 
standard dosimetry laboratory. In this study, 
the highest allowed chamber voltage of 400 
V, a measuring mode of “dose” and a low 
range was selected. The set-up was allowed 
a period of 15 minutes to warm up. This is 
necessary for stabilising the offset current.  
The ionisation chamber was connected to 
the UNIDOS via an extension cable without 
switching off the latter. Since a low measuring 
range was selected, the set was again allowed 
a 15-minute waiting period for the electric 
potential to stabilise after the supply of the 

high voltage to the ionisation chamber. By 
pressing the integrating key (INT) on the front 
panel of the UNIDOS, the offset current value 
within 120 seconds was recorded. Ten offset 
current values were recorded. The ionisation 
chamber is now irradiated, and 10 charge 
measurements were made for 120 seconds 
each. The procedure is repeated at an SDD 
of 1.5 m and for seven more positions at an 
incremental distance of 0.5 m. In this work, 
the ionisation chamber-electrometer system 
was operated as an integrating-type counter 
and the effective point of measurement of 
the chamber is that which is displaced toward 
the source from the centre of the chamber.

The environmental conditions in the 
laboratory during the determination of 
the air kerma were different from those 
under which the ionisation chamber was 
calibrated in the primary standard dosimetry 
laboratory. The difference in the air densities 
could result in the variation of the number 
of ion pairs produced. The number of air 
molecules that the radiation field interacts 
with is dependent on the density of air in the 
sensitive volume of the ionisation chamber. 
Higher temperatures lower the density of 
the air in the chamber, and vice versa. The 
chamber reading therefore was corrected for 
temperature and pressure using Equation 1.

integrating-type counter and the effective point of measurement of the chamber is that which is 

displaced toward the source from the centre of the chamber. 

The environmental conditions in the laboratory during the determination of the air kerma 

were different from those under which the ionisation chamber was calibrated in the primary 

standard dosimetry laboratory. The difference in the air densities could result in the variation of 

the number of ion pairs produced. The number of air molecules that the radiation field interacts 

with is dependent on the density of air in the sensitive volume of the ionisation chamber. Higher 

temperatures lower the density of the air in the chamber, and vice versa. The chamber reading 

therefore was corrected for temperature and pressure using Equation 1. 

𝐾𝐾𝑇𝑇𝑇𝑇 = (𝑃𝑃1
𝑃𝑃2
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273.15+ 𝑇𝑇1

)                                                                          (1) 

Where 𝐾𝐾𝑇𝑇𝑇𝑇  is the temperature-pressure correction factor,  𝑃𝑃1 and 𝑇𝑇1 are the pressure (in kPa) and 

temperature (in °C) conditions, respectively, under which the chamber was calibrated in a PSDL, 

and 𝑃𝑃2 and  𝑇𝑇2 are the temperature and pressure at which the air kerma rate measurements are 

made. The air kerma rates, 𝐾̇𝐾air, at the various SDDs were determined using the Equation 2. 

𝐾̇𝐾air = Q
t  x KTP x 𝑁𝑁𝐾𝐾                                                                           (2) 

where Q is the corrected charge collected at the ionization chamber, t is the charge collecting 

interval, NK is the air kerma calibration factor of the ionisation chamber and electrometer 

determined at a Primary Standard Dosimetry Laboratory. In this work, the ionization chamber 

was operated in current mode as pulses were integrated over a fixed time of 120 seconds to give 

a continuous readout of the rate of ionization. 

The ambient dose equivalent is calculated using Equation 3  

H*(10) = h x 𝐾̇𝐾air                                                                                        (3)   

where h is the dose coefficient for caesium 137 and has the value of 1.21 Sv/Gy. 

 Eqn 1
Where KTP is the temperature-pressure 
correction factor, P1 and T1 are the pressure 
(in kPa) and temperature (in °C) conditions, 
respectively, under which the chamber was 
calibrated in a PSDL, and P2 and T2 are the 
temperature and pressure at which the air 
kerma rate measurements are made. The air 
kerma rates, Kair, at the various SDDs were 
determined using the Equation 2.
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 Eqn 3

where h is the dose coefficient for caesium 
137 and has the value of 1.21 Sv/Gy.

Counting statistics and uncertainty 
propagation
Radioactivity is a random process and 
measurements based on the observation of 
radiation emissions in nuclear disintegration 
experiments are prone to inherent statistical 
fluctuations. Additionally, data collection 
processes, ambient background radiations, 
and noise in the electronic components of 
the measuring system altogether represent 
an unavoidable source of measurement 
uncertainty. The quality control procedure 
of applying analytical methods can help to 
determine whether the internal fluctuation 
shown by multiple measurements is 
consistent with the amount of fluctuation 
expected should statistical fluctuations be 
the only source. By this path, abnormal 
amounts of fluctuation can be identified 
that could be indicative of malfunctioning of 
certain components of the counting system 

as well as indicate the repeatability of the 
measurement results.

From a generated data set of N independent 
measurements of the physical quantity xi, 
the sum, Σ, is given by the expression in 
Equation 4.
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where the term N-1 is constant known as the number of degrees of freedom. The sample variance 

is the average squared deviation from the mean. The root mean squared deviation is known as 

the standard deviation, σ, and is the square root of the variance.  Equation 8 gives a reasonable 

estimate by which a particular data point differs from the mean. 

𝜎𝜎 =  √ 1
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𝑁𝑁

𝑖𝑖=1
                                                                        (8) 

The results from counting the ionization events from a sample once can be expressed as 

                            𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑛𝑛 ±  𝜎𝜎 = 𝑛𝑛 ± √𝑛𝑛                                                  (9) 
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sample variance is the average squared 
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variance.  Equation 8 gives a reasonable 
estimate by which a particular data point 
differs from the mean.
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The uncertainty associated with the determination of the ambient dose equivalent in this study 

was estimated using methods recommended by Lewis et al (2005), IAEA (IAEA, 2008) and the 

International Standard Organization (ISO) (ISO, 1993). 
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where 𝑈𝑈𝐻𝐻∗(10) is the uncertainty of the ambient dose equivalent; 𝑈𝑈𝑄𝑄 is the uncertainty component 

of the mean reading of the ionisation chamber in establishing the air kerma free-in-air;  𝑈𝑈ℎ is the 

uncertainty of the dose conversion coefficient, and this includes calibration using the 137Cs and  

𝑈𝑈𝑁𝑁𝑁𝑁 is the uncertainty component of the standard ionisation chamber calibration (referred from 

the calibration certificate). An overall expanded uncertainty in the calibration of a survey meter 

for 95 % confidence probability is expressed as a product of the standard uncertainty and a 

coverage factor of k = 1.96 (ISO, 1993). In expressing the final measurement uncertainty, the 

value and its uncertainty were rounded off to the same precision. 
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Result and Discussion 

Eqn 15

where UH*(10) is the uncertainty of the ambient 
dose equivalent; UQ is the uncertainty 
component of the mean reading of the 
ionisation chamber in establishing the air 
kerma free-in-air; Uh is the uncertainty of 
the dose conversion coefficient, and this 
includes calibration using the 137Cs and UN K  is 
the uncertainty component of the standard 

ionisation chamber calibration (referred 
from the calibration certificate). An overall 
expanded uncertainty in the calibration 
of a survey meter for 95 % confidence 
probability is expressed as a product of the 
standard uncertainty and a coverage factor 
of k = 1.96 (ISO, 1993). In expressing the final 
measurement uncertainty, the value and its 
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uncertainty were rounded off to the same 
precision.

RESULT AND DISCUSSION
The ionisation chamber used had low offset 
(leakage) current. The largest leakage was 
0.062% of the maximum signal. The offset 
current values measured are shown in Table 
1. To prevent the production of spurious 
ionisation current because of irradiating 
the chamber’s stem, collecting electrode, 
or cable with high-energy electrons, the 
source-to-detector distance of 5 m was not 
exceeded. Beyond an SDD of 5 m, the field 
size is sufficiently large enough to irradiate 
the stem.  As a result, stem and cable effects 
were negligible. The measured charges 
accumulated by the measuring system 
during the air kerma determination were 
precise and shown in Table 2 as a function of 
distance from the radiation source. It ranged 
from a maximum of 1505.0 ± 0.7 pC/120s to 
a minimum of 72.0 ± 0.2 pC/120s. The net 
count rate is captured in Table 3 ranging from 
0.60 ± 0.07 pC/s to 12.53 ± 0.32 pC/s. The 
charge distribution relative to the various SSD 
approximated an inverse square law pattern.
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The total kinetic energy of all charged 
particles liberated by uncharged incident 
radiation per unit mass of material of the 
ionisation chamber ranged from 0.3168 ± 
0.0146 µGy/s at an SSD of 1.0 m to 0.0151 
± 0.0007 µGy/s at 5.0 m. Table 4 displays 
the environmental conditions at the time of 
charge collection. 

In Figure 2, the determined H*(10) values 
were plotted as a function of nine SSD. Table 
5 estimates the uncertainty associated with 
the determination of the ambient dose 
equivalent in this study. The air kerma rates 
determined in this study are comparable 
to those determined by Adjei et al (2013) 
and Azah et al (2024) using the same set of 
measurement assembly, confirming further 
the reliability of the secondary standard.
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The fact that radiations produce ions upon 
interactions with matter, and that these 
ions multiply in a sufficiently high electric 
field (Ouseph, 1975) is the basis of this 
study. The measuring system chosen for this 
work produced precise measurements at 
all SSDs. Since in counting experiments, the 
true value is assumed to be the arithmetic 
mean, a measure of the accuracy of the 
data generated is then the amount that 
each determined value deviates from the 
mean. From Table 1 and Table 2, the sample 
count rates are large compared to the 
background radiation (offset current). This 
condition makes the standard deviation 
of the datasets an adequate descriptor. 
The standard deviation of measurements 
made at the SSD of 1 m are the largest at 
0.32. The least sample standard deviation 
of 0.07 occurred among data generated at 
an SSD of 5.0 m. The plotted values of the 
ambient dose equivalent against SDD in 
Figure 2 generally approximates the inverse 
square law. It shows that the radiation flux 
is inversely proportional to the square of the 
distance from the point source. In radiation 
protection, the inverse square law plays a 
critical role. It determines the safe distance a 
person must keep from a source to minimize, 
as low as reasonably achievable (ALARA), 
the exposure and possibility of radiation 
damage. It is observed from Figure 2 that the 
experimentally generated data for H*(10) 
best fits the theoretical trend at an SSD of 2.0 
m and beyond. At SSD less than 2.0 m, the 
curve is not smooth and noticeably, slightly 
deviated from the trend curve. The concept 
of cross-section can offer some insights into 
this observation. 

The cross section in particle physics, as it 
relates to this study, is a measure of the 
likelihood that the flux will collide with 
particles of air in the sensitive volume of 
the ionisation chamber and has a standard 
unit of barn quantified as either 10−28 m² or 
10−24 cm².  In physical terms, cross-section 
can be viewed as a characteristic area where 
a larger area means a greater probability of 
interaction. Error due to device positioning 
in the beam could have affected the cross 
section at SSD less than 2.0 m. However, at 
SSD of 2.0 m and more, the flux completely 
engulfs the sphere of the ionisation chamber 
increasing the probability of interactions.

The coefficient of variation among the various 
datasets ranged from 0.05% to 0.31%. The 
very low values imply that relative to the 
mean, variability in the measurements is 
low and the measurements are reasonably 
consistent. With this low variability, the 
measures of central tendency can be regarded 
as a dependable guide to the representative 
performance of the measuring system. 
Table 4 displays the descriptive statistics 
of the measurement. The uncertainties 
stated in this work are within the same 
range as stated by Azah et. al. (2024) and 
Adjei et. al. (2023) who carried out some 
earlier studies using the same measurement 
system. Azah et al’s maximum uncertainty 
was ±18.1% within two standard deviations 
and Adjei et al propagated uncertainties 
between 0.5% to 17.0%. 
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Figure 2. A plot of ambient dose equivalent at selected SDD

Table 6: Descriptive statistics of sample charges collected at various SSD

Parameter Sample charges
1.0 m 1.5 m 2.0 m 2.5 m 3.0 m 3.5 m 4.0 m 4.5 m 5.0 m

 Sample 
Standard 
deviation 

0.0059 0.0021 0.0036 0.0038 0.0028 0.0052 0.0021 0.0024 0.0019

 Sample 
mean

12.53 6.41 3.16 2.43 1.79 1.33 1.05 0.72 0.60

 Standard 
deviation 
of the 
mean

0.0019 0.0007 0.0011 0.0012 0.0009 0.0016 0.0007 0.0008 0.0006

 Minimum 12.53 6.41 3.15 2.42 1.79 1.32 1.05 0.72 0.60
 Maximum 12.55 6.41 3.16 2.44 1.79 1.34 1.06 0.73 0.60
Coefficient 
of 
variation

0.05

.

0.03

.

0.11 0.16

.

0.16

.

0.39

.

0.20

.

0.33 0.31

.

CONCLUSION
The gamma ambient dose equivalent 
resulting from air kerma rate distributions 
at nine source-to-detector distances has 
been estimated in the SSDL and the results 
follow the inverse square rule. Subjecting 
the data generated to counting statistics, 
the number of measurements with a small 
error is much larger than the number of 
measurements with a relatively large error. 
This is a confirmation that the mean value 

of the measurements made at each source-
to-detector distance gets closer to the true 
value as the standard deviation decreases. 
The very low standard error of the mean, 
from Table 6, estimates that the difference 
between the sample mean value of a finite 
set of measurements at a particular SDD and 
the mean of an infinite data set measured 
at the same SDD is very small. We conclude 
that the data obtained from this study reflect 
proper measuring system operation and is 
reliable. It is proposed here that, in between 
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calibrations, dosimetrists should consider 
relying upon counting statistics to check 
the output of their ionisation chambers 
for conformance to statistical laws. It is 
recommended that in determining ambient 
dose equivalent using a variable source-to-
detector distance method, the distances 
apart should be less than 0.5 m used in 
this work. This will result in a smoother 
curve when data is plotted and reveal more 
detailed insights.
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