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ABSTRACT

T he paper reporis the design and sofiware imple-
mentation of an adaptive autopilot for a sailing yacht.
The method adopts an extended Kalman filter to es-
timate time varying system parameters. The estimator
is combined with a weighted controi minimum vari-
ance controller to ensure both efficient course keep-
ing and optimal response to course aiterations. ‘Simu-
lation results are presemted to demonstrate the perfor-
mance of the autopilat on a number of simulated
models. The results presented show that the proposed
autopilot works well for time varying system models
subjected to sea disturbances.

EEYWORDS:  Autopilot, adapfivé_ control, yacht
@mam‘cs. sea dynamics, computer simulation.

INTRODUCTION

Adqptwe contro] techniques can be divided into two
distinct algorithms, namely model reference adaptive
control (MRAS) and self tuning control (STC). In
gmen'l STCs are designed from a stochastic pomt of
view, thus they are preferable to MRAS systems in a
highly noisy environment. The landmark paper on
STCs was by Astrdm and Wittenmark [1]. Their method
combined a recursive least squares algorithm with a
minimum variance control law. However. the mininsum
variance controller of Astrtm [1] would lead to un-
botmded control for inverse unstable (non-minimum
phase) systyns. This is a severe restriction, since
such"systems often occur in sampled data systems
even when the underlying continuou: time system is
inverse stablp Astrom [2]. Clarke and Gawthrop [3],
extended the minimum variance controller by weighting
the control variable, thus making the STC more widely
applicable,

In this paper the weighted minimum variance controller
is combined with an extended Kalman Filter type algo-
rithm to design an adaptive autopilot for a sailing yacht
subjected to sea disturbances. Simulation results show

that the adaptation algond:m proposed, was able to
track both slow variation in system parameters and
also single sudden jumps in system parameters typical
oftakmgdowuthuj:bslil.mmsuls or sudden shift
in wind direction and speed.

MODELLING OF YACHT AND SEA DYNAMICS

The pioneering work on modeling ship dynsmics was
done by Bech [9], in which a nonlinear model was
derived for surface ships. For the purposes of this
research, the yacht dynamics was approximated by a
second order lincer model. From this point of view the
nonlinear underlying system may: be regarded a3 piece-
wise linear, auy changes in sct point would lead to re-
linearisation about a mew set point. This can be ac-
commodated by allowing the linearised model to be
time varying.
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The sea dynamics may be modeled by the well known
Pmon-Moskaw:tz sea spectrum which has the form
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A = Constant, p = function of significant wave height
(H,)). By skeiching the freguency response plots,
r.qmnon (3) maybe approximated by the spectrum
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E is a function of P hence a function of the significant
wave height, K is a constant. Thus using the signal
representation theorem (Box-Jenkins [4]) the sea distur-
bances was approximated by filtered white noise, where
the filter dynamics is given by equation (4b). The
descretized version of the noise filter has the general
form.

at = L+ Clz" + Czl"]

n, 1+dz'+dz? +dzdz*
The compiete model of the yacht and sea disturbances

may be represented by thie block diagram shown in fig.
1
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MINIMUM VARIANCE CONTROLLER WITH
WEIGHTED CONTROL ACTION

In reference [3], Clarke and Gawthrop proposed a
weighted control action mimimum variagce controller.
The algorithm minimizes the cost function

I= E[(PY,,-RW, 7 +(QU,)'] ©

where P, Rmdewughmgpolynomds W, is asct
'pomtdedmieﬂhea:pemhon The main sdvaa-
tages of using this generalized cost function over that
proposded in [1] are:-

i. The controller provides optimal response to set point
changes. This would allow for efficient alteration of
course by the autopilot.

ii. Control effort is penalized: This would help reduce
overall drag on the yacht since it would avoid exces-
sive radder action,

iii. By careful selection of weighting polynomials P, Q and
R, the controller can be made closed-loop stable for a
variety of open-loop unstable and non-minimum phase
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systems. Thus Clarke’s [3] algorithm may be inter -
preted in the pole placement mode.

iv. Animportantcase arising from (iif) aboveisto choose
polynomial Q so as to penalize the rate of changeof
control. This cost function was applied to ship steer-
ing by Horigome et al [6]. Such a cost function is
generally desirable as the rate of change of rudder
angle in afast flowing liquid medium affects the power
required by rudder servo and hence affects the overall
control effort.

Thus performing the factorisation (leaving out the 2!
terms)

Cr= F+Z*G (&)
A®
The optimal control law is then given by
EU, = C*W, + Gy, (10)
where
E = BF+ QC* (45))

PARAMETER ADAPTATION BY EXTENDED
KALMAN FILTERING '

Foliowing techniques developed in [5], the extended
Kalman filter can be used to estimate time-varyisg ps-

rameters of a linear systam by regarding system param-
eters as extrs state variables in a statc spaocc model

This results in & nonlinesr estimation preblem which
can be recursively re-lincarised sbout cach sampling
point.

Equation (8) can be rewritien in the state space form

Xu = AX,+ BU+ ge, (129)
y, = WX, (128)
where
Y, 0 I
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B, 1 0
n, 0 0.
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For the purpose of parameter tracking the state vector
X, may be extended with the parameter vector as.

X =10, U + g

£x(0), w(®) ) =[ t?"lpq] I-§}+[%] RRCED)

(13c)

(131)

where

The extended Kalman filter may then be implemented
as follows:

K, = P, WP, bV Y (14a)
Xip = X + KD, - B b (14b)
Py = [Py, - Kb'Py,l (14c)
Py = FR,F + gl (14d)
Xouih = AXy + BU, (14¢)

where P, = Covariance matrix

Py, = 10001

[ = unit matrix

K, = time varying Kalman gain

Fo=d [05,U))
,

A, is variable forgetting factor, Foretescue et al (7],
which keeps the covariance malrix open 1o new data,

but prevents the ‘blow up’ to the covariance matrix. A,
may be generated as follows:

g, =y, - By, (158)

N,= [+ WP, b] o (15b)
s‘ll

(15¢)

AM=1-1
N

t

T can be interpreted as the nominal memory length. In
reference [8]. Mayne et al, have shown that when the
variable forgetting factor is incorporated into the Kalman
filter. a modification fo ensure that the covariance matrix
remains bounded, is required to ensure asymptotic

convergence of estimated parameters.

The overall algorithm thus reduces to

Estimator Algorithm.
K, =P, H[1 + h’P'Mll)" (168)
€ =y - hX,, (16b)
Xy = Xy * KE, (160)
N, = [1+h"P, b z (16¢
[ - gl &0 )
By=1- L (16¢)
N,
W = [1-Ki"P,,] (16f)
lf_}_lm{WJg]OEIO (16g)
Y _
then P, =_1 W_ {16h)
9
else Py = W, (16i)
End if Pmlt = F|P4¢F: i gL:ST (16D
Controller Algorithm
C* = A*F +2'G {16k)
E = B*P + QC* (16
EU = C*W, + Cy {16m)
where

Zo. P, Xy, are supplied as data




The overall closed loop system is shown in Fig.2
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Fig. 2 The closed Loop System of Yacht and Self
Tuning Confrofier

CLOSED LOOP SIMULATION RESULTS

a, =-1.478, Sea parameter E = 0.64
a, = 0619

) b, = 0304, Z = 100
b, = 0259

1
Two series of tests were conducted on this model. For
test No. 1, the controller was set to optimise the cost
function
J| =E{(,, - w:)z +q(U, - Uat-l )
This corresponds (o the weighting polynomials

P=R=1,

Q=gq,

For the test No.2 the controller was set to optimize the

cost function
1, = E{(y,,, - W) + U, )}

This correspondence to the weighing polynomials

Q=q(l-z')

The cffect of this cost function is to penalize rate of

change of rudder mngle. This gives smoother control,
thus minimizing work done by the rudder servo and

reducing drag.
Table 1 shows the effect of variation of q, on rudder

angle and ysw angle for test ran No.1, while Table 2
shows the comesponding results for test run No. 2.

P=R=1,

Table 1: Simulation Results, Test Run No. 1

(P =Rlw- l' Q - ‘U
Qn SI sv
00 154 101 .
025 6.6 106

§?, = rudder sngle variance

§! = yaw angle variancc

Table 2: Simulation Results, Test Run No. 2
®=R=1, @¢=q(lz)

9 S §,

00 154 10.1
025 1061 9.3
0S5 8.1 200

Note variation shown in Tables | and 2 include varia-
tions in set point changes.

To demonstrate the ability of the autopilot to respond
optimally to set point changes W was arranged to
switch between 0 and 20 every 200 sample times as
shown in figs. 3 and 4.

CompmnnfTablesldeshowmnforq.=02$
cost function J' gave a much smaller S than cost
function J, forsnmlars Hom,ncmbcrudﬁy
sewoncompm.g IotsofU in the two test runs (figs
3 and 4) that J, mvuamhmﬁﬂm&olmd
hmles:dngontheynht

To test the sbility of the estimator to adapt to sudden
changes in system parameters, two arbitrary sysiems,
maodels | and 2 were simulated. The program was ar-
ranged to switch from model 1 to model 2 after a set
number of time steps. The parameters of the simulated
model were




.00
mol LM"W\ rwww‘ f"'\f'
; 2.l
0. 00 :-:_ i PP T
“‘n- \”.'“ v o v"v"
w00 - 1-“.;1 -
.00 L -5 00
=.m "W
= h
W-u - '-”,“
wow b 80,00
il ) = el
y -~ 00 -
| ek W g AN W w00 |
wmi | -10.00
Al ! _J'\_‘_‘ swo.oot s s g e
-mml ~whio CX I o B 5.0 )
20,00 - — T e
-s0.00 [ B
B T W R R PR
Tou Yaw output showing set

point following

Yaw output sho!inq set
+point following

P

Control signal showing effect of

Clossad loop control effort penalising contro) rate of change

reflecting effact of weiahting
control

Fig.3: Closedioopsimulationresulfs with Clarke's  Fig, 4; Closed loopsimulation results with Clarke’s
STC. Testno. 1 Q=025 ST.C. Testno.2 Q=026(1-z-1)




Model 1.
ey e R Bt
discrete model
8 =-1.48, & =0.62
b, = 030, b, =0.26
Model 2

Continnous model a = 0.5, b = 0.7, ¢ = 0.2 descretized
model

s, =-135, &= 0.5
b = 027, b, =02

I= E‘(’p;)z

SoP=1,R=0, Q =0, snd hence no control weighting.
This to ensure & quick recovery of course heading
from a sudden changs in system perameters. This

could simuiste a sitosfion when say the main sail is
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Fig. 5. Fortescue’s variable forgetting factor

d, = 1000
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The third simulation run was to test the ability of the

suatopilot to adapt to contmu-lly varying system pa- e |
rameters. For this investigation the following models b
was simulated ] -
a, = -1.48 Cos (0.00151) L
.o
a, = 0.62 Cos (0.0015t) 5 ==t
b, = 0.30 Cos (0.0015) mf e
b, = 0.26 Cos (0.00151) ok
e P A e
£, = 100 e
Control parameters were setat P=1, R=0, Q=0 ++4++444 Trus values of paramter
Estimated valus of paramstsr
ie.
J= E(ym‘)
The results from this simulation run are shown in Fig. “
7. Also these plots show that the controller is able to ® B
adapt to end track gradual changes in system param- . il s
eters whilst maintaining efficient course.keeping con- L
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Fig.7 Closed loop performance of adaptive
controller for a systerm with time

Control signal varying parameters




CONCLUSION

The control of sailing vessels is a challenging task
even for skilled sailors. This is mainly due to sudden
changes in wind directions, and also for the need fo go
from tack to tack. There is also, the possibility of
letting go jib and main sails to prevent capsizing. This
is thus a demonstration that an adaptive control algo-
rithm can be applied successfully to sailing yacht

dynamics.

Two fmportant cascs were investigated. Firstly, the
case of single sudden jumps in system parameters was
simulsted and successfully controfled. Secondly, the
case of continuously varying system parameiers was
simulated and successfully tracked. In ail cases very
good course keeping and servo action was observed
in the presence of significant sea disturbances.
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