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ABSTRACT

Torsional response of self-excited axially
compressed thin-walled box-columns is exam-
ined in this paper. Due to deficiency of Saint
Venant's theory of torsion the basic equation of
motion is derived using energy method on the
basis of Vlasov's theory which allows combined
treatment of pure and warping torsion. Investi-
gation of the obtained equation reveals that
torsional instability of the column is by diver-
gence, and shear strains have significant effect
on the modal frequencies of these columns and
therefore must not be ignored in their dynamic
analysis.
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NOTATION

S = profile cordinate

9(s) = warping strain field

o (s) == first derivative of
(s) with respectto s

W (8) = transverse strain field due
to unit rotation of cross
section

t & “time

U(x,s,t) longitudinal
displacement
function

V(x,s.t) = lransvere
displacement
function
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U (xsl), V (xs1) = first partial derivatives

of U(x,s.t) and V(x s,1)
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derivative of | ) with
respect lo t.

normal stress (kN/m?2)
shear stress [kN/m?]
moduius of elasticity
(kN/m?2]

modulus of rigidity
[kN/m2]

profile thickness {m?]
cross-sectional area

[m?]

axial ioad [kN]

depth of box structure
[m]

width of box structure
[m]

web thickness [m]
flange thickness [m]
length of column [m)
material's density
[kN/m?2]

frequency of vibration
[radian]
frequency of vibration
when strain is included
[radian]
frequency of vibration”.
when shear strainis
ignored [radian]
the critical parameter
associated with
divergence
(static instability} when
shear strain is included
critical parameter
associated with
divergence
(static instability)
when shear strain

is ignored.

critical loads
associated with
divergence for
parameters and

critical parameter associated
with flutter (dynamic instability)

when shear strain is included,
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3 critical load associated - .
ar, with flutter.

INTRODUCTION

Recent high use of thin-walled box mem-
bers as structural components inindustrial build-
ings, bridges, ships and aircraft has drawn the
attention of structural engineers to the peculiar
structural behaviour of these members.

These members as experiments portrayed,
may buckle at much smaller stress than the yieid
stress of their material due to their high slender-
ness. Furthermore, for thin-walled torsional
members, elementary theory of torsion (Saint
Venant's torsion) is found to be inadequate as
their structural behaviour differs widely from the
assumptions upon which this theory was formu-
lated. For instance, thin-walled box structures
under generalized load admit warping and dis-
tortion in their cross-sections whereas Saint
Venant's torsion assumes that plane sections
remain plane before and after deformation (1].

Viasov [2,3] was first to show that distor-
tional stresses and strain develop in these
members. He subsequently derived their differ-
ential equation of equilibrium which is similar to
that of beam on elastic foundation (BEF). Much
later, Wright et al [4] adapted Vlasov's equation
for use in predicting warping and distortional
stressgs in these members. Varbanov and
Kisliakov [5] were the first to obtain the equation
of dynamics of thin-walled box structures through
the use of D'Alembert’s principle on the basis of
Viasov'stheory. Basedontheirresult Kapitanov
[6] carried out a study of some factors affecting
modal frequencies of box structures. |n all the
studies mentioned above axial force was not
included.

This present study differs from the previous
ones in that here the contribution of axial force
will be included. The basic equation of motion
will be derived using minimum potential ene rgy
on the basis of Viasov's Theory. Effect of
distortion will be ignored.

ENERGY FORMULATION OF THE

EQUATION OR TORSIONAL VIBRA-

TION OF SINGLE-CELL BOX
STRUCTURE

Figure 1 shows an axially compressed single-
cell thin-walled box column together with the
generated internal stresses.

By disregarding distortion, the cross-sec-
tionofthe box column on torsional excitation will

warp, and rotate as a rigid body. Consequently,
the generalized strain fields associated with
these deformations are as shown in Fig.1.

o(s) is the warping strain field while Wy(s) is

the contour strain field.

9, isthe first derivative of ¢(s) with respect
to s, the profile cordinate. The longitudinal and
transverse displacement functions according to
Valsov [2] are respectively ( tis the time)

Uxst) = U(x.t). os) (1)
Vix,st) = V(xt). o(s) (2)

Using the above displacement fields and the
basic stress-strain relationships in the theory of
elasticity the expressions for normal stress and
shear stress are respectively

Oxs) = EU (xb).0(s) (3)

Txsh) = G UK. ofs) + V! (x1).0(s) ] @)
where U’ and V/ are first partial derivatives with
respect to x.

The potential energy of the torsionally ex-
cited single-cell box structure of length L is

n=12 4 ;ts;(fi 619, 22 o,e.8) p Vit dsdx
o & E G 4

where t(s) is the profile thickness.

The last component in Eq. (5)is the work done
by the axial force P. The kinetic energy of the
system is

Kow 12 [LJ [Ufints) + Vs | its) s ox (6)
‘o

where ( * ) is the derivative with respectto t.

The differential equations governing the
motion of the system are obtained by minimizing
the Langrangian T = n - K using Euler-Lar-
grange equation [7]
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Afterintroducing Egs. (5) and (6) into Egs. (7) a-
b and taking note of Egs. (1), (2), (3) and (4} the
following coupled equations describing self-
excited motion of the box are obtained.

U'x) - bUx,ty eV (x 1) - «g

cUix, 1) + biv"’{x,u- % bV x4 = o

LUy =0 (8 a



where A is the cross-sectional area, _P is
materials density,
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Fig.1

Axially Compressed Thin-walled hollow
{Box) Column.

EQUATION OF MOTION IN DIS-

PLACEMENT QUANTITY V‘(_x?'t)

If the shear strain is not neglected, the
coupled equations (8) a-bwill lead to the tollm:v-
ing equation after eliminating U(x, t) and its
derivatives using Eq. (8)b:
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If the shear strains are ignored Eq. (4) yields

o U+ W v/ (x, 1) = 0

(s) (s)

Consequently, the generalized force associ-
ated with the shear strains is also zero

(14)

dA _
jr (X t.8) Y Y (15)
(A)

Evaluating the above integral taking note of Eq.

(14) gives the following relationship between
U(x, 1) and V/(x, 1)

U 1) == %V’(x‘ 1) (16)

Differentiating Eq. (8)b with respectto X and

summing the result with Eq. (5) a leads to the
following equation

1"
?EB L, UMt - bo) Uxt) - (c - byY)x

v (x, 1) — '% U(x, t)-—'-‘g BV (x,) =0 {17)
The longitudinal displacement U(x, t) and its
derivatives are eliminatedfrom Eq. (17) by using
Eq. (16) to obtain
gV a2V 9° 32y
- L, — c, — +
he ax“"+B” ax2 ' 0P [ L
ov]+g -0 Yoo
a4
where
E ., bsB, = & — -
A2 = - 'E IW C P 2 c b + b% C
be D e - LpbsE =
C2 E%L“E—, D,= -5b;E = 0 (19
Egs. (12) and (18) can be generalized into one
single Equation as follows
4 2 2
o + B, 2y + ¢ [Ck a:+
ox4 ax 2 at2 ox
4
v
pv] + By 0 (¢
Theindex k = 1 stands forthe case when shear
strain is included and k = 2 stands for when it
is ignored.
GENERAL SOLUTION OF THE GEN-
ERALIZED EQUATION OF MOTION
By assuming the displacement function in the
form
56



Ve = Micn

E-"u\lrhc-:r@.- w is the radian frequency of vibration,
53 .20 then reduces 1o

'd‘_VL,,_ + F, e + GV, = =1
dx* dx?
k = 1,2
.where
ec -B 82E_—©8D
Ly G - A,
and e PW (24)
G

The general solution of Eq. (22) is
Vix}y =a, Coshax + a,Sinha x +2a,

Cos Bx + a,SinPx

B a1
,[v—'} —ar =1 e

and a 'L i
oonstants

(25)

where

=1, 2, 3, 4 are arbitrary

i
u

RESPONSE OF PIN-ENDED BOX
COLUMN

The end conditions in this case are as follows
Vio) = O; V7 (0) =0 V(L) = O
VU (L) = QO (23}

substitution of Eq. (25) into each of the condi-
tions in Eq. {28) generales the following homo-
geneous equations in a,

a F]
LY -1
Cesneel = Sin hut Cuos bl Sin BL
PCost L otf S L~ < CosBL B2Sinfl
(29)

For non-trivial solution the determinant of the
above 4x4 matrix will vanish thus yielding

(@' - B Sin hal » SinfL = 0 (30}

A meaningtul solution is obtained from Eq.(30)
for
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or B =r

where
pow BB n=123. (32)
n L

Taking note of Eqgs. (13}, (19), (23) and (27) Eq.
{31)b is found to be expressed as an explicit
function of O known as the frequency or charac-
teristic equation.

F(y 8- © (33)

The torsional instability of the column can be by
divergence (static instability or by flutter {(dy-
namic instability) depending on which one of
them yields the minimum buckling load.

Determination of critical loads associated with
these instabilities is well illustrated in Hyseyin's
excellent monograph[8]. The cntlcal load asso-
ciated with the onset of divergence is deter-
mined if in Eq. (33) © is equatedio zero and t
resulting equation 1(#] } = O is solved for

The value of or which P (Eq. (9) } is
minimum i.e.7}& is the critical parameter
associated with static instability, and the corre-
sponding critical load is obtained using Eq. (9).

d)
p© - GA (1~ 4{ )
£k Ker k=12 (34

For the problem at hand the value of fvt“} is
(d) 1

"VL = < 1.
El,,
1,1 b =

- () e

(when shear strains are included)
and when shear strains are neglected

—%(d) n2El B + ¢ - B
200" " Tar*

02
—g % B {58

The critical load corresponding to "'ﬁz).cr 7 is
greater than the one corresponding with 1) -
and hence the latter is of practical importance.

" The critical load associated with the onset of
flutter on the other hand is determined by solving
the foliowing equation for 7, {8]

= B (37)

This is also equivalent 10

Ji

J as
ae'o (38)
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since

o o 9w

a0 oy, ode = 0 (39)
On solving Eq. (37) or (38) the particular value of
for which P (Eq.(9))is minimum A, yields
the critical load associated with flutter instability
of the box column.

m - aag -9
Pcr,k cr.k (40)
(f)
’VL for the present problem is
cr,1
?z f"z [ 4
e 3w mfJe i fz e
Y (2] E%m ety &
{0 SR e
] > z

Fig.2. Diegrams of Generojized sirain Fialds Due to Warping and
Pure  Torslon
(s)— Warping stroins Fiald.
) First Darivative off(s) with Respsci 10 5
Yis) = Transverse sirain Field Due 1o unif Rotation
of the Cross Section.

P = $0,03435KN

Fraguescy (571
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Fig.3. Relationship of Freq
18t Mode (n=1t)

W, — Sheor stroins included [Eq+42)]

Wz — Shear strains ignored [Eql43)]

Wk

P 90,034 35kN

Fot
5

Frequency {5")

8
<)

1 1 i
o o2 0ap GEP G 8P e
Axigl Load

Fig. 4. Raelationship of Frequency versus
Axigl logd for the 2nd mods (n=2).
W, — shear siroins included I:Eq{-tzij

Wz — shear stroins ignored {:Eq :43]]
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Fig. 5. Relationship of  Freguency varsus
Axial logd for the 3rd mode {n=3)
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W, — shaor sirging ignerad eqﬂ)j
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The system does not exhibit ﬂuttewvhen the

shear strains are ignored, hence ¥ cr, 2 does
not exist. Since the value of %“ is greater
than one, Eq. (9) reveals that this can be pos-
sible only when the applied force P is negative
i.e. is in tension (compression is positive). This
shows that the box column under axial compres-
sion can only fail by divergence and not by
flutter.

The (lower) modal frequenciesof the
torsional vibrations of the box column consid-
ered here are obtained by solving the character-
istic equation (Eq. (33) yfor w, taking note of Eq.
(24) ;

(when shear strains arg included k =1)

w, =172 (\JE)[ TAT, -4 (v - 9]

(4:
(when shear strains afe'-ignored k =2)
(Elb r4 rnz GTZ
c n
w, =172 '\/_C_v‘- - ; 2 |
P n
& +1) bf
{4
where
2
T =5 i Elb + B
n Ge €
2
T1 = T + un



T2=%—+b1,t-—b—c_

The graphs of frequency - load relationship "

are ploted and shown in Figs.2, 3 and 4 for the
first three modes n =1,2, 3 0f a torsionally
excited axially loaded box column with the
following geometric and physical properties.

ht = 086mh, =03m t =t, =0.0075m

=75KN/m* G = 0.8x 107 KN/m? 9 =0.3125
(¥ = Poisson’s ratio).

DISCUSSIONS OF RESULTS
AND CONCLUSION

The torsional member considered here
though capable of exhibiting flutter can only
loose stability by divergence. The critical load

associated with the case when shear strains are )

ignored is much higher than whep they are
included. This is expected since inclusion of
shear strains reduces the torsional rigidity of the
column and hence smaller critical load. There is
awide difference between' W, and w,

This shows that shear strains have significant
effect not only the buckling loads but also on the
modal frequencies and must not be ignored in
dynamic analysis of the torsional member.
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