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DECOMPOSITION OF INTERCONNECTED
POWER SYSTEMS FOR DYNAMIC STUDIES
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ABSTRACT

The paper presents a method for decomposing
interconnected power systems into subsystems. Each
subsystem is associated with mechanical modes
which represent intermachine oscillations within it,
The resulting decomposition is shown to give
correct grouping of generating units for the
development of dynamic equivalents for dynamic
studies. The capability of the method is illustrated
by a 10-machine 39-bus power system.
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INTRODUCTION

With the increasing interconnection of power
plants in modern large electric power systems,
power system dynamic studies by routines with
system components represented by comprehensive
models become prohibitive in terms of computation
time and storage [1,2]. To achieve réduction in
computer storage requirements and computation
times, a subsystem under study is represented in
detail and external subsystems by dynamic
equivalents [2-5]. A disadvantage in this approach is
that dynamic equivalents developed for subsystems
obtained by artificial partitioning of a power system
can produce excessive conservative results [1].
Methods for decomposing power systems into
subsystems must take into account the dynamic
interaction among the system components.
Decomposition schemes used to achieve this
partitioning are said to be natural [1,6).

Proposed in this paper, is one such natural
decomposition scheme. The model used for the
scheme is the linearized electromechanical model of
power system which has been found appropriate for

the decomposition of power system into "coherent .

areas” [6,7]. The initial system is assumed to be
decomposable into subsystems to each of which can
be assigned mechanical modes which are not excited
when the rotor speed or angle of any machine not

contained in the subsystem is subject to small and
gradual change. Using the notion of aggregation to
analyse the electromechanical model, an algorithm
which leads to such a decomposition is developed.
A certain number of corollaries are also shown to
result if the assumption is true. These corollaries
allow us to verify quantitatively the correctness of a
decomposition achieved when the nethod is applied
to a system which will in general not be known to
be decomposable a priori. It is also shbwn that
dynamic equivalents can be effectively developed for
these subsystems by using the modal reduction or
coherency-based reduction,

SYSTEM MODEL
The electromechanical model of n-machine
system is

pbiﬂwa(mi-l) (1)
2Hl,pm,+Dl(mi—l)-—-P“—Pd (2)
i=1,2,..n (3)

where P, is the mechanical input power and P
the electrical output power. In this model the
mechanical input power P, is assumed to be
constant and the electrical output power is

n
P‘i=£'fgu+zl£',5‘)basin(6,-6)) @

j=

Jui

The constants b and g are the imaginary and
real parts of the elements of Y. The off-diagonal
conductive terms of Y’ are neglected and loads are
represented by passive admittances, After linearizing
the system equations about its operating point and
neglecting the small damping coefficients D; which
have insignificant effect on the oscillatory modes of
the system equations [2,6], the model used in the
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paper is obtained in the form

pzx =Ax (5)
where: A= _Ezg”qx

and

x=[A8,A8,..,48,]7
H=diag(H H,,...H,)

K=k

ky= -E‘.,E'anwls(bd-bnj) j#i .

-

- N
kif”Eki.-'

j=1

Jri

A=(a)

The system matrix A has the following
propertics  which have some bearing on the
decomposition scheme:

(P.1) The eigenvalues of A are distinet.
proof. The matrix A is similar to the symmetric
matrix

Ame %H'mxﬂ'm (6)

(P2) One of the ecigenvalues is zero and its
associated cigenvector is
w,=[1,1,..1) (7)

proof. This follows from Aw; = 0 which is due to
the faet that

L .
Y a;=0, i=12,..n ®)
j=l

(P.3) Al the cigenvalues which are not zore daie

negative.
pmnf According 1o the theorens of Gershgorin, lor

agiven A ol A

lag-Alsfag,|+la.l+..
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for some integer k (1 < k < n ). Noting that the
off-diagonal elements of A are all positive and that

n
Ay = 'E ay
j=1
Jrk
we obtain

lag+A| < [ayl

which implies that 4 < 0. And since the eigenvalues
are distinct only one can take the value of zero.
(P.4) There exists an eigenvector matrix W of A with
inverse

V=WTH ©)
which will diggonalize the matrix A. ;
proof. The symmetric matrix A can be dlagonahzed

by a unitary matrix. Let the matrix be Q. Then from
(5) and (6), there exists an eigenvector matrix

W=H"Q (10)
which will diagonalize A. Its inverse according to
(10) is

V,Q?'Hlﬂ =W'H '; (11)

(P.5) Let
W= [w,wyw] (12)
and Y
K e

where wy is the eigenvector of A associated with.
Ay = 0. Then u

\ :
Y v=0i=2,3,. (13)
f=1 :

proof. This follows from (7) and the fact that

(wpw1)=0 i=2,3,.m (as

The 2n eigenvalues of the system are given' by
the roots of the n eigenvalues of A. It follows that
2(n-1) eigenvalues of the system are imaginary.
These modes represent low-frequency oscillations
between machines o the power system. The
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frequency is of the order of a fraction of a HZ to a
few Hz, typically 0.5 to 2 HZ [2,6].

REVIEW OF THE NOTION OF AGGREGATION

The analysis leading to the decomposition
scheme proposed in this paper is based mainly on
the concept of aggregation. We present therefore a
brief review of the concept.

Consider the following system:

px=Ax+Bu ,x(0)=x*, xeR" (16)

If it exists a reduced system

pz;Fz +Gu ,zeR™ ,m<n (173)

which is such that
z2=Cx V20 (17b)
the system (17.a) is said to be an aggregated model

of system (16). The condition (17.b) is achieved if
and only if [8] e .

FC=CA (18.a)
G=CB (18.b)
With the model used in this paper represented as in

(5) the aggregated model is

J pzz =Fz (19.a)

2(0) = Cx(0) ;Z(0) = Cx(0) (19.b)

The general form of the aggregation matrix C is
Cc=MC, (20)

where M is a nonsingular matrix. The matrix F

retains m eigenvalues of A, If the values of the -

eigenvalues to be retained are specified then rows
of C, wil consnst of the transpose of the
elgenvcctors of AT associated with them or the
appropriate rows of the inverse of the eigenvector
matrix of A [9]. The matrix M which is the
eigenvector matrix of F is chosen arbitrarily. On the
other hand if C is known, F is obtained by
postmultiplying each side of (18.2) by the
generalized or pseudo inverse of C given by

c=PCT(cPCT)™* 21

The matrix F for a given C is unique and does not
depend on the nonsingular matrix P which is
arbitrarily chosen.

With C, as a row vector given by
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H,
€ b o i=1,2,.0

&)

we obtain an aggregated model which retains the
zero eigenvalue only. This eigenvalue is said to
correspond to aggregate motion of machine angles
and speeds of the n machines in the system.

HYPOTHESES FOR DECOMPOSITION AND
THEIR CONSEQUENCES

We assume that the power system is
decomposable into subsystems and that to every
subsystem made up of m (m > 1) machines, we can
assign (m - 1) non-zero mecharical modes which
are not excited when rotor anglcs and speeds of
machines contained in other subsystems are subject
to small and gradual changcs The algon&un we, .
propose seeks each group of mechanical modes and'_"_
their corresponding set of machmes ;

Consider without loss of generality ' the
equations of an n-machine: system decomposable
into two subsystems:

8y =%, %%} (22.a)

S lratpn) @)

We partition the system equations as follows:

x| [4, Aglx,] ®:€R*
P‘f 1 _(Au u] 1 ®)
5| An A% x R
where
g+r=n : (24)

We suppose that the set d eigenvalues of this
system is

Aot A @)

where A, = 0 and assign to subsystems 1 and 2 the
lntermac.hmc modes

A= dgnd ) (262) -

A= (Apphpgiody)  @D)

and A, as the intersubsytem mode.

Let an aggregated model of the initial system
which retains all the modes A, be given as

P =F,z, z,eR 1)) |
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Its matrix of aggregation has the form

C,=M,” (28.a)

L=y (28b) |

“(Cu

where v; is the transpose of the eigenvector of AT
associated with mode A, Now the following:
statements can be made with respect to the initial
and aggregated models if our hypotheses are truc:
(Sl}.(f!hemodesAimnoHabemud»ﬁm
varigbles in the subsystem 2 are subject to change
then Cy given by (28.b) must have the fom:

n on
1 (29)
Co[Cu t O

proof This immediately 1 fol!ows from (19.b).
(S2) The matrix of aWou can be expressed also

‘as

* %
! !

100...0 -1

010..0 -1;

: G0

C,~ .0

000..01 -1

proof. Thematrntofaggregatxoncl!safullrank
matrix and therefore columns can be exchanged so -
that the first (g-1) columns form a nonsingular
matrix. If we choose Mj to be the inverse of that
matrix and note also that the algebraic sum of the
elements in each row is zero, the matrix C, is seen
to take that form.

(S.3) When the rotor variables in mbsymm 2 are
disturbed, we shall have

A3()=A3, ,i=12,..g-1 (3D

proof. Since zy is not excited, we shall have
according to (17.b) Cqxy = 0 for all t 2 0. So with
C, defined as in (30) the results follow.
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The above set of equations indicate that the
machines constituting such an identified subsystem
form a coherent group. The above coherency
criterion has been used to decompose power
systems into coherent areas so that effective
‘dynamic equivalents can be developed for the
system by coherency-based reduction [7]. In
identifying the coherent areas however the author
has to obtain a large number of simulated responses
of the rotor angles and this tends to defeat the
objective of deriving simplified models for portion
of a large interconnected power system.

(S:4) The set of modes A, are eigenvalues of Ay
proof. From

Fy[Cy:

we obtain

F,Cy=CyAy (3)

0=CyA, | (33)

Equation (32) indicates that the eigenvalues of Fy
which should be the set of modes A, are also the
eigenvalues of Ay,

We note also that rows of C44 will consist of the
transpose of eigenvectors of Ay~ associated with
these modes and that (33) is verified when
on cach column of Ay, are all equal. The elements
of this submatrix are given by

--1—5'5 bpos®,-8)  (39)
i=1,2,...9: j=q+1,g+2,..n {35)

Expressions similar to (34) called "acceleration
distances”_are used for decomposition of power
system into coherent groups [4]. The machine i’s to.
be grouped in subsystem 1 are required to have
their acceleration distances with respect to machine
j in subsystem 2 under study to be as close as
possible. The analysis presented in this paper thus
provide an alternative analytical basis for that.
methoed.

(S.5) From (29) the eigenvector matrix of AT
associated with A, is in the form !
pl} * (36)
o.

a-::

'ﬁ,

Therefore according to (9) we shall have the
eigenvectors of A corresponding to these
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eigenvalues in a similar form:

wn'“'ll"”' @7)

From the relation

s JHe

A An_ 0 0
we obtain
A4y Wz = -lAl (8)
Ay W, =0 (39)

It is proved in the appendix that (39) is also true if
(33) is verified, Equation (38) indicates that W, gre
eigenvectors of Ay, and confirms also that A, are

eigenvalues of Ay e
(S:€) Let the eigenvector matrix W; of Ay be

partitioned as

W = Wu Wu] (40.3)
1 "
‘%’n Wa
and its inverse as
) - o pl.l‘ .‘}u (40b)
! ‘)21 i,zz
where the column and row vectors
by = W"] (40.c)
ﬁ’n
"01“[921 ‘}u] (40.4)

are those associated with Xy, of Aj; which is not an
intermachine mode. Then application of the
similarity transformation

11 i’n Vi O]ixy
(=P, Py Of[%12 (41.9)
Bl o Ij*

to (23) will yield

2y A‘ 0 ‘iﬂ 2
Pia|=(0 Ay Allz,|  (41D)

1] |4, ‘iu Ay|l*2
where

x
x = ", x,€R x.eR!
12

“iu =P1i f’u}“u
“izt =4y Wl
Ay "'u‘l‘ln

jn““n‘n
According to (33) and (39) Ay, = 0 and Ay = 0.
Therefore (41b) consists of two decoupled
subsystems. The reduced system

PHy=Fyx, “2)

where

is a minimal representation for dynamic studies of
the subsystem 2. The scalar variable 2y, is the
dynamic equivalent of the subsystem 1 obtained by
the method of aggregation which is also known in
power system literature as modal technique. The .
aggregated model of subsystem 1 conserves the
cigenvalue Ag; of A which is not an intermachine
mode. The matrix Fg is obtained by properly
coupling the aggregated model with the subsystem
2.

The reduced model can also be seen as the
aggregated model of the entire initial system with
the matrix of aggregation as given below to
preserve the physical variables of the subsystem 2:

25
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*n X %

1 1 |

: Vy Vo O
0 0 I

The matrix Fy is then obtained as

Fy=CAC*® 43)

Fg retains all the eigenvalues of A except
intermachine modes A,. The above analysis indicates
that decomposition based on our assumption lends
itself also to equivalencing by the method of
aggregation,

(S.7) The vectors tyy and vy, are given by

‘¢I=[1o 1,---:_1}r 7 (44)

-

H,

T ()
£

proofs. tgy can be thus defined because the algebraic
sum of every row of [V;; Vy5] which has a rank of
(g-1) is zero. Equation (45) follows from (9) which
applies also to the submatrix A,y and the fact that
<tgy Yoy > must be unity.

The. above theoretical expressions for tg, and
vp; indicate that Ay like the zéro eigenvalue of the
complete system corresponds to aggregate motion
of machine angles and speeds in subsystem 1. We
therefore expect this value to be the most dominant,

ALGORITHMS FOR THE DECOMPOSITION
Consider without loss of generality an ideal

5-machine system decomposable  into two

subsystems: "o '

5,=(1,2,3) (49.)

S,={ 4,5) (49.b)

An-example of such a system is shown in Fig.1. The
machines in each subsystem are supposed to be
identical and their operations also identical.

o beo
L THse0

@36
_l

P, +jQ,

Pp+iQy

Fig.1 An ideal 5-machine power system

The equation of the system will be gi.en by

x, ]r.,
\xz All “.IJ xz
Yo Ay Apli%e
lx, I,’

We suppose the set of eigenvalues of this system to
be Ag={A;As,..,A5} where A; = 0 and assign to
subsystems 1 and 2 intermachine modes Al = {4,
A3} and Ay ={A4}. The eigenvalue Ag is thcn the
intersubsytem mode.

An aggregated matrix F which retains all the
intermachine modes A; and A, can be obtained
using a matrix of aggregation

n x 33 X, X

1 l 1 1 1

10 -10 0 (1)
c<o 1 -1 0 0

00 0 1-1

We can also exchange certain columns of the matrix
and obtain it in the form

T T

[

40 1 o0 o %
c=l-1 0 0 1 0
01

0 -1 o
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Lo (52.b)
=L 1]

where x, =[xy, xg ]T and X, = [x;, Xp, %4]%.

Given x,, x, and L, the subsystems can still be
determined. The machines x, {ie the machines
whose variables are x, ) shall be called "reference
machines” and the machines x, (ie the machines
whose variables are x, ) "associated machines”.

The matrix C of (51) for a real system which we
shall denote by Cy will have to be constructed
from the eigenvectors of AT associated with the
intermachine modes. Let the matrix whose rows
are these cigenvectors be [See (20)]

x, x,
o (53)
Co=[Va Vn]

Then choosing M = Vn", we obtain the true”
aggregation matrix in the form simildr to C’ of
(52:b) as

i (54)
Ce=[L, 1]
where . 3
L=V Vy,

The matrix Ly does not have the same structure as

because an intermachine mode in a subsystem is
excited to some degree by a disturbance in other
subsystems. Nevertheless, the algebraic sum of its
elements on each row according to (P.5) is -1.

The algorithm which we propose for the
grouping of the machines seeks Lq which will
minimise the function

ER=IL‘ _L‘I (55)

and its associated variables x, and Xg.

- An algorithm which seeks to decompose power
systems into subsystems by minimising this function
has been proposed by some authors [6]. Their
proposed algorithm and what this paper presents
however do not yield the same subsystems as our
numerical example indicates. The difference arises
from the fact that in their work, the decomposition
is based on the assumption that the intcrmachine
modes are the non-dominant modes and they are
supposed to be known a priori. The assumplion that

the intermachine modes are the non-dominant ones :
enabled them to use the method of time scale
scparation for analysis which led to similar error
function. As our numerical example indicates such
an assumplion can lead to artificial decomposition.

In our method the intermachine modes are not
known a priori. We therefore set out on the
assumplion that all the non-zero eigenvalues of A
are these modes and then construct Ly by stages.
Al each stage, we require that the error function
which corresponds to Ly which may be incomplete
at that stage to be as small as possible and suppose
that Ly is complete if the error at the next stage is
judged to be intolerable.

We need to know only the non-zero entries of
the matrix L, when evaluating the error function
for a given Ly, They can be obtained as follows: we
examine each row of Ly and if the largest negative
element is the jth in the row i, then the required
non-zero entry of L, is (i-j).

We shall illustrate the algorithm by a 5-machine
real system. We first construct the matrix of
aggregation Cy for the 4 negative eigenvalues which
we define as

6 0 0 0 o
A=Y Viz Vi3 vy vis

0 0 0. .0 o
Ay=lvy vy Va3 Vg Vag

(%6)

A.-l0 0 0 0o o
4 1Va1 Vaz Vay Vi Wy

As=lo 0o o o o
3
Val Vaa Va3 Ve Vs

First stage:

We obtain Ly of the order 1 x 4. Since to
minimize Ep, | Ldﬂ should be necessarily small [6],
a machine which corresponds to the largest element
on a row is taken as the associated machine of the
corresponding mode. With associated machine thus
defined, Ly” of each mode is constructed and the
onc which gives: Ly that minimizes Ep is then
declared once and for all an intermachine mode.
The designation of a machine corresponding to the
largest element on its row as an associated machine
also becomes final,

Let A5 be this mode and machine 5 its
associated machine, then we shall have

X Xox

O (57.2)

] o o v} 4]
L= x,-[L“ Ly Ly Lu]";‘;s
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where

L) =vgvis =123, (57b)

Machine 5 and Ag are then eliminated in further
search of intermachine modes by using a reduced
matrix of aggregation

Y n 45X
[ R
1 1
A=Vt V2 Vis Vie (38.2)

§ O T | 1
Cl=hy=lvy v vy Vi

A vay "‘alu "sls Via
where 3
v#l =v:—yg_v;’!vfs - (58.b)
i=1,2,3;j=12,34 (58.c)

The algebraic sum of elements on each of row of cl
like that of C? is zero.

Second stage

With the matrix C!, we determine the mode
which in combination with A5 gives an Ly of the
order 2 x 3 that minimizes Ep by trying all possible
combinations. The choice of an associated machine
is made as in the first stage. If the mode in question
is 4 and the largest element on its row corresponds
to machine 4, we shall obtain

H o5 X
| | 1
I - | 22
%L Ly Lyy|=A,
L~ 1,1 41
5Ly Ly Ly|™s
where
Ly=vylvy ,j=1,2,3 (59:b)

Ly=L-Livylvy =123 (599

The expression (59.b) similar to (57.b) appears as a
row of a partially-constructed Ly at each stage. This
cxplains the choice of an associated machine as in
the first stage.
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The reduced matrix of aggregation for further
search of intermachine modes after this stage is
given as

Xl xz XJ

o b

0 5 (60.a)
cz,lf Yin Yz Y3
e "'131 ";z "‘:3
where
vﬁ -v‘& -v;.v;j,*v;‘ (60.b)
i=1,2; j=1,2,3 (60.c)

Third stage .

Taking the newly discovered intermachine mode .
to be A, and assuming the largest element on its
row to correspond to machine 3, the Lg at this stage
will be defined as

x5 5
| |
o s, @)

2
L} =5,y Lp|~A
s, )

.*:‘I ’

where
LY eviph j=1.2 (61b)
L: “le-u' L.l.l J.v,i;‘v;_., (61.c)
i=2,3;j=1,2 (61.d)

The construction of Ly , in a general case, to be
pursued gradually as indicated up to this stage, is
stopped when the error at some stage is judged to
be no longer acceptable.

In an attempt to reduce the computation time
a second algorithm is also suggested. This algorithm
differs only in the definition of Eg. At each stage
Eg is obtain using strictly the error due to the row
similarly defined as in (57.b), (59.b) and (61.b).
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f} FIC. 2. |0-MACHINE, 39-BUS TEST SYSTEM

NUMERICAL EXAMPLE

The proposed decomposition scheme is applied
to a 10-machine, 39-bus power system of Fig?2
referred to as "New England = System® The

complete system data can be found in reference 10. inte _
The elgenvalues of the A-matrix are as follows: mntial .algon&m?, E‘E by stages as indicated in Table
A = 00000 A,=-17.5170 1. Using the simplified algorithm gives the same

: 2 results up to the sixth stage.

A,=-423079 1, =-48.1119

) Consit_icring all the negative eigenvalues as
intermachine modes, we have obtained, using the

We observe a jump :n the value of E;, after (he
A =-56,4506 A, =-65.2602 A R

s € third stage. We suppose therefore that the
A, =-69.9629 A, =-91.0559 cigenvalues g, A19 and A, are the intermachine
Ay =-95.4398 A= -98.1179 modes. The corresponding Ly is given in Table 2.

Table 1. Growth of error with stage
stage 1st 2nd 3rd 4th 5th 6th Tth 8th

mode Ag Ao Aq Ag Ag Ay A,
Eq 0.1923 | 0.2327 | 0.2835 | 1.1930 | 0.9700 | 0.9730 | 0.9984 | 0.8310

Table 2. grouping matrix Ld

Ass. Reference machines mode

m/es 6 4 9 10 5 1 2

8 -0.0049 | -0.0201 | -0.0692 | 0.0539 | 0.0033 | -0.9695 0.0064 Xy
7 -0.9079 | -0.1006 | -0.0026 | 0.0006 | 0.0236 | -0.0072 -0.0058 A
3 -0.0654 0.0000 0.0085 | 0.0399 | -0.0056 | -0.0707 -0.9067 Aq
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- The largest negative elements on rows 1, 2'and
3 are associated respectively with machines 1, 6 and
2. Thus, the subsystem which contains two or more
machines are

$; ={81}1K8, ={7,6}
Sy ={32}
To verify the correctness of the decompositon
we have obtained the following:
(1) cigenvalues of the coeffient matrix of each
subsystem (S4):
Sy :(-55.6660, -93.3179 )
§, :(-46.3737, -98.0559 )
Sy :(-43.9779, -69.9091 )

The three underlined eigenvalues which are tae

non-dominant ones are found to be very close to the

respective subsystem intermachine modes.

(2) eigenvalues of the aggregated matrix Fg which

retains only the cigenvalues of A which are not

intermachine modes (56):
{-0.0088,-17.5807,-42.3596,-48.1342,

-56.4755,-65.2558,-91.0961)

These cigenvalues are found to be very close to

those of A which are not intermachine modes.

(3) the vectors vy and tg and their ideal values for

comparison in Table 3 (87). wt b

Table 3. Verification of S7 for subsystems 1 to 3

Subsystem

Yo

ty

True

Ideal

True

Ideal

{81} | [10,05781]

(1.0, 0.5786)

(1.0, 0.9991]T

{10, 1.0

(7,6} | [10,0.7189]

[1.0, 0.7586]

[1.0, 0.9488]T

(1.0, 1.0JF

{32} | [10,08897)

[1.0, 0.9090]

[1.0, 1.0513]T

[10, 1.0]T

ssscsese

N . |
Simammasennne ALT e 5

3 4. sEc

3. 4. SEC

FiG. 3. DEVIATLON OF ROTOR ANGLES FROM PREFAULT WVALUES
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(4). The response of rotor angles in the presence of
a three phase solid short circuit at point A near

generator 9 terminal and subsystem 1, cleared after-. .

1.5 cycles by opening line 26-29 (S3):

The curves of Fig 3 represent the responses of
A8; . which are deviations of the post-fault rotor
angr:s from their prefault steady state values. The
post-fault rotor angles were obtained by solving the
nonlinear equations (1) - (3). The angle of machine
10 was used as reference thus bringing the system
order to 2n-1 [11].

We notice that 4, is an intermachine mode but
Ay which is larger is not. Considering this as an
additional intermachine mode and using the method
proposed in reference 6, we obtain a fourth
subsystem S={ 4, 5 }. The eigenvalues of its
coefficient matrix are {-39.0810, -87.7737} and the
vectors vy, tg and their respective ideal values are
given in Table 4.

Table 4 Verification of 57 for subsystems 4

Subsystem ¥y ty L
True Ideal True® Ideal

(4,5} | 101928 | 110, 09000 | o, 2115307 | (o, 10"

The departure of the subsystem intermaching
mode (taken to be - 87.7737), the true vy and t;
from their theoretical values are relatively large.
Thus, the assumption that the non-dominant
eigenvalues are the intermachine modes according
to our analysis can lead to artificial decomposition
for equivalencing using the method of aggregation
or coherency-based technique.

CONCLUSION

A method has been proposed for
decomposition of power systems into subsystem
which can be used for dynamic studies by
equivalencing technique. Certain pieces of
quantitative information have been derived to help
us to ascertain the correctness of a decomposition
achieved when the method is applied to a system
which in general may not be known to be
decomposable a priori. A numerical example has
been presented to demonstrate the capability of the
method to decompose interconnected power
‘systems.

PRINCIPAL SYMBOLS

3 = rotor angle

w, = rated angular speed

w = rotor angular speed

H = inertia constant

D = damping coefficient

p = differential operator d/dt

A = prefix denoting a small change

E’= constant voltage behind transient reactance
Y’= reduced admittance matrix at internal machine
nodes(E’) 2

n = number of power  systems synchronous
machines

I Lf = maxy |1yl
<.,.> = dot product

Subscripts of machine quantities
i = refers to ith synchronous machine
o = refers to operating point quantities
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APPENDIX
proof of equation (39):

From (9), we can write

V= W7H, (a1

where
H, =diag(H,,H,,.....H)

Now according to (28), when (33) is satisfied then

V,A,,=0 (A2)
This also implies that

V,H'K,, =0 (A3)

where Ky, is a submatrix of the symm.e-:tric matrix K
in Equ.(5). Substituting (A.1) into (A.3) yields

WK, =0

Taking transpose of each side of this equation gives

K W, =K, W, =0

and hence

Ay W, =0
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