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ABSTRACT

When constructing a linearized multimachine
power system model, expressions for current
components describing the interaction among
machines must be sought. Explicit expressions for
the current components can be derived in terms of
the elements of a Y-matrix which because of
saliency of machines is obtained by two successive
inverse operations. This paper presents a method
which circumvents the two inverse operations for
efficiently computing the Y-matrix which can be
very large. The method obtains the Y-matrix
initially in a partially-constructed form and then
obtains the final required form from it by just
changing its elements. The proposed method
when compared with the normal approach which
makes use of standard routine, reduces the
computation time by about half. The method
also saves computer storage space because it does
not require the extra working space which is
equivalent to a real vector of dimension 2n
necessary in the normal approach.
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INTRODUCTION

Linearized power system models  usually
formulated in state-space form are used to analyse
certain power system dynamic problems [1-6]. To
obtain a linearized model for the multimachine
power system, we need to derive expressions for
current components expressed with respect (o the
d-q reference axes of the machines as functions of
state variables. The derivation of these expressions
using equation which describes the constraint
imposed by the interconnecting network and
transformation equations constitute the main
computational task when constructing these models.
The equations for the current components can
be expressed explicitly in terms of the elements of
a Y-matrix and state variables.

Depending on the dynamic problem analyzed, a
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sychronous machine may be represented by a fifth-
[1,5], third- [2,3,5] or second-order [5,6] model.
Each order has its own Y-matrix. Whereas the
Y-matrix of the second-order model is
straight-forward to compute, those of the third -
and fifth - order models which have a common
form require significant computation when the
number of machines in the system is large. This
paper presents a method which reduces the
amount of computation for large multimachine
power systems. Examples of such systems are
the North American WSCC system and the
Northeastern and  Michigan system which,
considering major machines alone, contain 300
machines each [5].

THE Y-MATRIX

The Y-matrix of the order 2n which results
when the linearized current components are stacked
up in a vector form can be written in the form

Y = [Z+ T Yy Tol )

The matrix Z which is a function of the synchronous
machines parameters has the form

Z = Block diag(Dy ,D3 , - D) (2.2)
where
Tai X1
D; = (2.b)
X3 Tai

The matrix T which is also a block diagonal is
orthogonal. For a third-order model x; = Xy and
%, = X4 and for a fifth-order model x; = x“qand Xy
= x'g. Linearized multimachine power system
equations used for the design of Power System
Stabilizers and other dynamic studies [3,4] are given
in the appendix B with detailed information on its
Y-matrix for illustration. In this linearized model,
a synchronous machine is represented by a third -
order model but it is extended to include the
excitation system dynamics,

To avoid the two inverse operations when
computing Y [see (1)], x, can be approximated by
x, , thus neglecting transient saliency in the
third-order model and subtransient saliency in the
fifth-order model [1]. In some work [2], the
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linearized model was  derived by neglecting
transient saliency just to simplify the computation of
Y. Since Xq can be about ten times larger such a
simplifying assumption can lead to conscrvative
results when the model is used for studies.

When saliency is neglected the Y-matrix assumes
a form which can be constructed as follows:

where Y, is the real expanded form of the node
admittance matrix of the extended power system
which  results by appending the quadrature
impedance r, + jx; of each machine to its node and
eliminating all synchronous and non-synchronous
machine buses, thus lcaving only the fictitious buscs.

PROPOSED METHOD FOR COMPUTING Y
The matrix Z can be expressed in the form

n
i=1
where
Zsz Block diag(DSI,Dsz,...,DSn) (5.3)
Tai "Xy
Dg, = (5.b)
X1i  Taj

and Z,; is a matrix with the only element (2j, 2i-1)
which is not equal to zero being equal to (%35 - xg;)-
Let

By = (Zs + ToT Yy Ty )

= To! Y, Ty (6.a)
Then
n
Y = B!+ 2 Z,)! (6.)
i=1
If we let
B, = (B! + 2, (7.a)
we obtain
B, = (I + By Z,,)" B, (7.b)
Similarly
By~ (Bp™ +Zyy i)t
= B + Z,,)1 (8a)

is given by
B, =0+ B Zy)'B,  (8b)
Proceeding in this manner, we obtain Y as

Y = (I i Bn-l ZAn)-l Bn-l (9)

An example is given in appendix A to illustrate the
computation of the matrix of the form

B =(I+B,Zy"'B, (10)

An algorithm which results from the recursion
formulae for computing Y is outlined as follows:

Step 1: Construct Y = TOT Y, T = (y“)

Step 2: Correct salicncy error due to the ith
machine if not done already following these
steps:

a) Calculate a = x,, - Xi;
b) Calculate g A T 1
c) If g happens to be zero 80 to step 2 and
consider another machine
'd) Correct the elements on row 2i-1of Y
partially constructed:
Yaiag = Yaiag/ 8.=1, 2,....,.2n
¢) Correct elements on other rows:
For each k = 1.2, ..., 2n, k # 2i-1,
calculate
(1) b = ay,,
(ii) Yij = Yij - hYZi-l,i’j =12, .,2n

I

Step 3: Stop when the saliency error due to all
machines have been corrected.

EVALUATION OF PROPOSED ALGORITHM

The time required for the execution of the
proposed algorithm for large n where efficiency is
of greatest concern is determined mainly by the
computation of Y, as part of step 1 and then the
exccution of steps 2 and 3. The matrix Y, is
derived in its complex form from the matrix Yy
which is also initially obtained in its complex form.
For large n, the derivation of complex Y, from
complex Yy req}uircs 4n® real multiplications and
divisions and 4n® real additions and subtractions
when advantage is not even taken of the fact that
complex Y, is symmetric to reduce the operations
involved. 5]“he exccution of steps 2 and 3 of the
algorithm also for a large n involves similar
number of counts for each category of operations,
Thus the proposed algorithm rcquires a total of 8n®
multiplications and divisions and 8n? additions and
subtractions.

Without the proposed algorithm, the normal
procedure would be to invert two square matrices of
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the order 2n one after the other. This approach
requires 16n° counts for each category of
operations if the Gaussian elimination method (the
recommended method for matrix inversion [7]) is
used. These counts are two times those obtained
with the proposed algorithm. Thus the proposed
algorithm makes a time saving of about fifty per
cent.

The number of columns of the matrix to be
inverted using Gaussian elimination is augmented
by one to allow for extra computer storage space.
Since the proposed method obtains the final
required matrix by just changing the elements of an
initially constructed matrix of the same order in
both the computation of complex Y, and the
execution of steps 2 and 3, this extra storage space
which is equivalent to a real vector of dimension 2n
becomes unnecessary.

CONCLUSION

A method for computing Y-matrix occurring in
a linearized multimachine power system has been
proposed. This method avoids two inverse
operations which would otherwise be performed to
obtain it. The method reduces the normal
computation time by about half and has an
additional advantage of reducing the time still
further when the saliency of certain machines can
be neglected as it is in the case of fifth-order model.
The method also saves computer storage space for
not requiring the working vector of dimension 2n
used in the normal approach.

PRINCIPAL SYMBOLS

X, = machine quadrature-axis reactance

Xq = machine direct-axis transient reactance

X"y = machine direct-axis subtransient reactance

x'q = machine quadrature-axis subtransicnt
reactance

r, = armature resistance

8 = the phase angle difference of the d axis
with respect to the D-axis

n = number of synchronous machines

T = a block diagonal matrix of the order 2n
which is a function of 8’s

Yy = reduced synchronous machine node

admittance matrix with all the
non-synchronous machine nodes eliminated
in its real expanded form

A = prefix denoting a small change

V = voltage vector

V = voltage

I = current vector

I = current

w, = rated angular frequency

@ = instantancous rotor angular frequency in

p-u.
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T, = electrical torque

H = inertia constant

Egy = field voltage referred to armature circuit
vy = machine terminal voltage

D, = damping coefficient

p ' = differential operator

T4o= armature open-circuited time constant
T, = excitation system time constant

K, = excitation system gain

Subscripts

d,qM,m = machine reference d and q axes
D,O,N,n = machine reference D and Q axes
i = ith synchronous machine

o = operating point quantities

Superscripts
* = synchronous machine transient parameters
T = transposition
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APPENDIX A
We consider without loss of generality the
following example to illustrate the computation of

the expression (9):
D= [1+BCIlB (A1)
where B = (by) is 4 x 4 matrix and C = (cp)

which is also 4 x 4 matrix has ¢;; = a and all
other clements being equal to zero. In this case
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i | ] B)  Algebraic Equations
L E— 0 0 0 ATg= 1o AEGi+ [ Ego+ (gi - X' g go; 11,
abu +1
+ Loxg - ¥gplg; 1alg;
= -?_l?iz_ 1 0 0 AV - Raidly; + Xqidlg; (B.1)
abj, + 1 AVgi= - X'giAly; - Rajdly; + AR, (.2)
[I + BCJ! =
ab32
o e 0 1 0 Vdoi vqoi
Avﬁ= — AVdi + | — Ati
s Y, .
abn +1 toi toi
aby,
. il 0 0 1
abj, + 1 ‘J
which on substituting into (A.1) gives
— s
by by, bys by,
ablz+ 1 abu"' 1 ab12+ 1 abn+ 1
abyyby, abzzblz abybys bybyy
by - - byy - —— o]
ab12+ 1 ablz"" 1 abu"‘ 1 ab12+ 1
D= ab32b11 ab32b.[2 ab32b13 b32b14
3° "~ by e By e gy
abu"' 1 abu+ 1 ab12+ 1 ab12+ 1
abgyby, abyyby, aby,by; bysbyy
41 - by, - bys - 7
aby,+ 1 ab;,+ 1 abj+ 1 ab;, + 1_1
APPENDIX B

Linearized multimachine power system equations
with a synchronous machine represented by a third
order model are given below with its Y-matrix
detailed for illustration:

A) Differential Equations

pAEi = w, Ami

1
pAmi = — - DeiA“]i - ATei]

2H;

1
PAE G; ==—[- AF'y; + ABgy; - (xy; - XgpAly

Tgoi
1 Ky

PAEgg;=~— [- ABgg; + — (AVppp; - AV
Tai Tai
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C) Current Components In Matrix Form

The equation relating the current components,
state variables and the matrix Y is given in (B.3). Its
proof is also added below.

Alv = IS;Y (C§; + S\)1 AD; + YAV, (B3)
where
= T
Ay = [ALy AT AL AT, . AlgpAl ]

C = Block ding(Cl,Cz, —C)

0 X' g: - X, ;
di i
Ci = q
)‘,di " %gi 0
Sl = Block diag( S“, SIZ’ e ’SII‘I) (B-4)

& T
8 = nqoi' Igoil
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§y = Block diag(S'y1:S'y3y = Sy,)
T

Svi = [Fgei5 01

ADg =[A8 (A8, wuunemr ,AS,,IT

AV =IOAF LA o, oo BAE 1T

D) Current Components In Expanded Form
Algi= Hgoi + 251211 * (g5 XgDTge; -Fgoi)
* ¥2i.1,2i ¥ (%gj - ¥glgoi} AS;
n
| Y2 (g - Xga) Flggyl
i
+YZi_1,2j X (xqj - x,dj)lqoj} A6j

n
j=1

J

Algi= (laoi * 2izic1 X [¥g; - Xg)lgg; -E'g;]
+ ¥2i,2i X (qj - ¥'gilgoi} AS;
n
{22 [ - gl - Bgy)
i
+ yzi’Zi X (Xqi - X’dj)[qoj} A:Sj
n

+ Eyzw X AE’qi
j=1

E) Derivation Of Current Component Equation
The equation which describes the constraint
imposed by interconnecting network in linearized

form is

Aly =Yy AVy
where

Aly = [ATp 1 AT, T AL gy Al AT IT

AVN = [AVD AV QA VDAY s AV AV 1T

The relations between d-q and D-Q components of
voltages and currents are

Ty = Mgy Tl ™

. T
YMi = Vg Vil

cosé i -sind;

Ty =

siné; cosé‘i

For small variations about the operating point, we
obtain

= T
Alys; = SAs; + T, T ALy, (B.6)
= T sv.
AVygi = Sy;a6; + To, T avy, ®.7)

The matrix Sy; is defined in the same manner as
Sji in (B.4). In compounded form, (B.1), (B.2)
(B.6), (B.7) become

AV = Zy ALy + AWy, (B.8)

AVyp = Sy AD; + TT Avy (B.9)

Al = Sy ADg + T T Al (B.10)
where

TO = BlOCk diag(TOl, Toz, ....... ’TOII)
Substituting the solution of AV, of (B.8) into (B.9)
and solving for AV'y, from the resulting equation,
(B.5) and (B.10) gives

AViM = Sy ADg + [Z, + T Yyl Tg] a1y,

- Mo  ¥y1 1o 15, AD; (B.11)

The stator equations (B.1) and (B.2) though
lincarized indicate that

SVi =2y Sy + G Sy + Sy,
which when compounded gives
Sy=-Zy S+ C8i+ 8y

Substituting this into (B.11), we obtain after
simplification

AlM =[S[-Y(Cs] + Sv)] ADtS +YAV’M
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