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ABSTRACT

Envelope equations have been developed to
provide a simple method for evaluating the load-
carrying capability of process components such
as found in nuclear and petro-chemical plants.
The use of the equations eliminates the, other-
wise, elaborate and time-consuming analyses
required to determine whether or not a given set
of loads could be successfully applied to a
specific structure. In particular, the equations
are suitable for the evaluation of the different
service code criteria such as those of the ASME.

The method provides conservative upper
bounds for the loads that a given structure can
carry under a specified service condition. Thus,
the equations could provide useful guidelines at
the preliminary design stage to be backed later
by more elaborate calculations for ultimata veri-
fication. Sample calculations are also presented
to verify the validity of the equations.

‘Keywords: load-carrying capability, envelope
equations, process components,
ASME service code criteria

Nomenclature

force

moment
total number of applied loads
allowable stress intensity
generalized maximum load
(force or moment)

NOZZT
oW

Greek Symbols
E = unit load (force or moment
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FRACTURE

MECHANICS

=dimensionless load, defined by eq. (5)
= dimensionless force

= dimensionless moment

= actual stress intensity

= surface

SO o

Subscripts

¢ = critical
discharge nozzle
suction nozzie
temperature
pressure

vTHR Q

INTRODUCTION

Inthe design and analysis of nuclear power
and petrochemical plant components, it is nec-
essary to determine whether certain critical
components such as pumps, valves or vessels
would meet a specified stress criterionunder the
action of a given set ¢f loads. The corollary to
this problem is the determination of the mini-
mumthickness required by such acomponent to
meet a specified stress criterionunderthe simul-
taneous action of a given set of loads.

Oftentimes, the problem cannot be satisfac-,
torily resolved by the superposition of the results
of classical engineering formulas because of
structural complexity or the combination of the
loads involved or both. In such instances, one’s
best recourse is the use of finite element com-
puter programs. The usual procedure is to
determine ‘unit load’ stresses corresponding to
each ofthe loads (forces and/or moments) inthe
given set. The results are stored on magnetic
tapes ordiscs for later retrieval. The value of the
unit load is chosen such that it leads to appre-
ciable stress in each element of the structure.
Values of the order of 10° to 10° are frequently
chosen with appropriate dimensions such as
Newton (N), pound force (ib,), m-N or in-lb,.

The next step would be to determine the
load factors for each set of loads that are to be
evaluated. These are obtained by dividing each
load in the set by the magnitude of the unit load.
The final results are obtained with the help of a
post-processor program which recalls the unit-
load stress, scales them appropriately by the
corresponding set of scale factors and ultimately
combines the stresses forthe numberof loadsin
the given set.

Experience shows that these types of post-
processor programs are rather expensive to run

27



and thus become uneconomical if several sets
ofloads are to be considered. Itis for such cases
that the envelope equations developed below
provide an inexpensive and quick means of
estimating the adequacy or otherwise of a struc-
ture to carry a given set of loads, especially at
the preliminary design stage.

A concept similar to the envelope equation
was applied by Erdogan and Sih [1] to two-
dimensional failure modes due to mechanical
fracture. The concept was later extended to
three-dimensional crack modes by Tuba and
Wilson [2]. The efforts resuited in the develop-
ment of an expression for ‘surface of critical
stress intensities’ for the three-dimensional fail-
ure mode which degenerates into a curve of
critical stress intensities for the two-dimensional
mode.

In the development of the envelope equa-
tions, however, there is no restriction on either
the number of loads or the location of applica-
tion.

Derlvation of En velope Equations

Consider a structure, siich as a pump or
vessel, with a set of N-loads acting simultane-
ously onit, These loads are inthe form of forces
and moments which are applied through nozzles,
supponrt lugs, anchor points and other similar
locations. The following two assumptions are
fundamental to the formulation of the envelope
equations:

() equilibrium of the structure is preserved
upon the application of the external loads;
and

(i) each load §, is assumed to act independ-
ently of the other (N - 1) loads.

Now consider a non-metrized, N-dimen-
sional, real space, VN, in which

l‘_z] '< i i=12.,N) (1)

suchthat§,Z V,and | isasmall quantity.

Since the space V, is real, the inequalities in

" eq. (1) can be written in the form
Zs8§<2,(1=12.,N (2

where Z, and Z, are minimum and maximum
forces in the space, respectively. Equation (2)
defines the range of variables §. The N-dimen-
sional space is further assumed to bear a one-
to-one correspondence with the N-loads acting
on the structure,

The effects of thermal and pressure stresses
could also be taken into account if they act
simultaneously with the N-loads. insuch a case,
the allowable stress intensity limit, S, forthe N-
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loads is given by
Sp= Sp-(S;+ S;) -« (3)

Now let the stress intensity at a point of
interest due o §, be G, Therefore, the maximum
independent value of the ith load, Z that the
structure can withstand and still meet the given
criterion is

S, § (4)

S,
where §, < §_

Eq. (4) is based on the proposition of linear

relationship between load and stress. The lim-

iting loads designated by the equation represent

the pure-mode critical loads. This equation can

be further rearralged in dimensionless form as
]

sl
N o —=—0 51 (5)
zZ 8

m

The surface described by the limits of eq. (5)
represents a critical surface b, A degenerate
form of o, for the three-dimensional space is
ilustrated in Fig.1.

Pt % =0

e

Fig.1: llustration of Surface of Critical
stress intensity

In general, the stress intensity at a point of
interest could reach the critical value as a result
of acombinationof N simultaneous loads acting
onthe structure; and would correspondto mixed-
mode critical loads. Such a point, p’ would lie on
the critical surface. It is obvious that

[

-]

= — =1 (6)
n, z,

The components of » €an now be designated
as fractions of the pure-mode critical values
(Fig.1.1),i.e.,
( P ) = ﬂ| (7]
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where o <7} < 1 (8)

The surface ef critical loads can be formally
represented as

QM M 2Ny My)=0 (9

For any non-critical stress intensity loading,
M <7 » and?, <7, .

Any functional relation can be chosen to
r_epresent Qc subject to numerical experimenta-
tion. For example, a polynomial could be cho-
sen such that

N

) m‘g”i = 1 (10)

i=1

where, ingeneral, n=r | -

Simplified forms of the Envelope Equation

Eq. (10) coukd be simplifiedin several ways;
one of which is to make the exponent n, a
constant n independent of load §,. the particular
value assigned to n could result from experi-
ence and/or numerical experimentation; and
could depend on the nature of the structure
being considered.

However, the simplest value that could be
assumed for such experimentationis 1 and this
would make eq. (10) take a linear, namely

N
TN o=m, +, +N, +.Yy =1 (1)

i=1

A less conservative integer value would be
2: and would result in a parabolic form of the
equation, viz.,

N
I M) =) )+ 4 (1)) 2+ ... ()?
i=1 =1 (12)

As stated above, other values could be as-
signed to n. For the present, only the torms
expressed by egs. (11) and (12) are examined.

Sampie Application of the Envelope Equa-
tions

The foregoing results are now applied to a
double volute (7 x 7 x 10m) recirculating coolant
pump which would be analyzed as a class 1
nuclear component in accordance with the
requirements of [3]. The aim is to determine the
ability of the pump design to withstand specified
service condition primary loads. The loads,
which are in forms of forces and moments, act
through the suction and discharge nozzles; and
are specified in relation to a global coordinate
system as shownin Fig.3. Eq. (1 0) can now be
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System

Fig.4:lsometric View of the Finite - Element
Model

particularized for the present configuration as
follows:

¢ 2 n n
T (A + p)s 1 (13)
i=1 j=1 _

where
i = 1,2,3 (the coordinates)
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1, for suction nozzle
i={
2, for discharge nozzle

and
1, for linear envelope

n =
{2. for parabolic envelope
In this instance, eq. (5) takes the form

§
= — —— (14)
Z, S,
which yields
§ "
a S, (15)
Model for Analysis

The pump casing is expected to be mostly
affected by the primary loads of Table 2 since
the closure region is relatively more rigid as a
result of its structural form and support. These
roads are not arbitrary; they, indeed, formed the
original design bases of the pump. Fig.2 illus-
trates the full configuration of the casing while
Fig. 3 shows the model selected for analysis.

Tabie 1 -
Expacted nozzle Ioads at diferant Ioading conditions

Loa.. Loading Condition
Design, Normal Upset Fauhed
Ei’ml"ﬂeﬂcj'
F,. 3.56 11,32 18.68
o 48.93 147 68 246.43
£, 5115 -96.08 -141.01
Mty 74.28 103.60 103.90
M21 85.35 193.32 193.31
M3 =11.91 -90.39 -158.88
Fi12 32.03 24332 454 61
F22 -51.83 -154 80 -247.32
Faz £4.96 154.35 224.19
M1z 54.47 138.42 22238
Ma2 -84 .85 -120.58 -146.30
M32 6283 29435 525.87

* Forces are in kKN: Momenls are in kN-m

The selected model includes the discharge
nozzle, the crotch region and one-half of the
suction region. Continuity with the other half is
simulated by the appropriate boundary condi-
tions. The pump casing is constructed of high
alloy steel, ASME SA-351 CF8M and the me-
chanical properties used are those specified in
(3]

A finite element form of the selected model
was constructed for computer code analyses.
Three dimensional triangular and quadrilateral
shell elements were used to describe the model
boundaries. The finite element model was
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. Tabile 2
Summary of ASME limit criteria for nozzie loads

Loading Condition Stress Limit Criteria

-
Design P.s 1.0S_

P, + P, £ 155,

Mormal and Upset (P, + P+ P, + Q) s 305

P < (125 or 5)

Erwrgency P s (185 ¢ 155)°
P, + P, s (18S, or 1.55)°

P, s 24S, or 07§, "
Faufted P, s 15(245, or 0.75)"

P+ P, s 1.5(24S_ or 0.75)""

* Use greater of limits specitied
** Use lesser of limits specilied

subjected to primary unit loads in the forms
expected during service conditions. The results:
obtained include, inter alia, stresses at three
points across (inside, middle and outside) each
element.

Envelope Equations for ASME Service
Conditions

The primary task in the present exercise is
to identify the most critical region(s) of the given
structure. While experience could be helpful in
identifying such regions, the results obtained
from the unit load calculatiocns would effectively
identify the most highly stressed regions. In
order to determine the limiting loads as ex-
pressed by eq. (15), it is necessary to know the
stressintensity S_ whose value depends on the
applicable criterion. Table 2 presents the rele-
vant criteria for the different ASME loading
conditions. The values in this table are to be
used in conjunction with eq. (3) to obtain the
applicable S,

Except for the Normal and Upset conditions
which have one stress limit criterion, other con-
ditions have two ormore criteria (Table 2). Thus,
itis conceivable that different regions (elements)
may have to be considered for the different
criteria under a given loading condition. The
most conservative set of loads emanating from
the different criteria is assumed to govem the
loading condition and would lead to a set of
limiting primary loads for each loading condition.
The application of the foregoing to the pump
casing under consideration leads to the lmiting
loads of Table 3.

Under an actual service condition, the par-
ticular set of applied loads would be expected to
be less than the limiting set of loads. Table 3

30



Tabie 3

Limiting Independent nozzie loods® that g can d at dift ioading
Load Design MNormal Loading Condition Faulted
Designation Upset Emeargency
e, 1,073.80 956.81 205.93 864.29 277.861.62
Fi 1,024.43 45728 492267 868.74 69,304.16
£, 1,091.59 986.61 3,697.57 881.64 220,373.24
M, 309.10 233.61 51,898.57 246.94 18,275,654
M, 258.24 264.75 9,673.14 202.54 57,606.42
My, 296.05 302,95 45,213.68 234.45 19,744.36
Fl, 966.15 99017 5,954.63 828.70 117.725.70
Fi 717.94 45817 1,743.74 484.41 21,231.80
Fl B51.83 447.94 1,189.32 68458 36,926.01
i, 277.42 265.10 69,712.98 214.42 16,777.97
M 237.80 238 85 40,263.33 203.60 31,828.80
M, 306.70 268.66 294,573.68 229.82 11.857.23

* Forces are in kN, Moments are in kN-m

presents the postulated set of loads that the
pump designis expected tocarry. Acomparison
of the two tables shows that every load in Table
1is less thanthe calculated limiting load of Table
3. Thus, when any set of loads in Table 1 acts
on the pump, depending on the loading condi-
tion, the region (element) which produced the
corresponding limiting loads of Table 2 would
possess a stress intensity which is less than the
critical value. The state of such an element is
represented by point

Inthe present example, the component 1‘}. is
given by

= (16)

Z,

! /Z u
where Z, and Z  are obtained from Tables 1
and 3, respectively. Eq.(16) can ncw be usedto
evaluate expression (13) for the linear (n = 1)
and parabolic ( n = 2) forms. When using the
data of Table 1 in eq. (16), the absolute value of

Table 4
Verification of the Linear form of the Envelops Equation (eq.11)
1O By Loading Condition

Design MNormal Upset Emergency Faulted

Ay 0.0033 0.0037 0.0540 0.0041 -
. 0.0478 0.1070 0.0300 0.0583 0.0038
e 0.0400 0.0518 0.0260 0.0580 0.0008
' 02403 03180 0.0020 0.3008 0.0057
1. 03331 0.3224 0.0200 0.4214 0.0034
T 0.0402 0.0353 0.0020 0.0508 0.0088
A 0.0332 0.0323 0.0409 -0.0387 0.0039
b 0.0861 0.1349 0.1354 0.1276 0.0118
Ay 0.0097 0.1897 0.1298 01241 0.0081
B 0.1983 0.2055 0.0020 0.2540 00132
j T 03967 03971 0.0030 0.4658 0.0048
g 0.2049 02339 0.0010 0.2734 0.0451
I+ En, 1.7305 20356 0.4481 21751 0.1064
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Tabie 5

of the Form of the Envelops Equstion (8q.12)
2 2 ,_ Loading Condition
oo A )
qif ij
Design MNormal Upset Emargency Faulted
2 - - =0 - ™
}\.“ 0.0029 <
2 0.0023 0.0114 0.0009 0.0032
1 5 = =3k
2 0.0022 0.0027 0.0007 0.0034 =
1
e :
By 0.0577 0.1011 = 0.0905 - -
,122‘ 0.1109 0.1039 0.0004 0.1776 "
2
2, 0.0016 0.0015 0.00268 0.0001
32 0.0011 0.0010 0.0017 0.0015 -
12 ot
_)\z‘: 0.0074 0.0182 0.0183 0.0163 0.000L .
32 0.0099 0,0360 0.0168 0.0154
32
02 0.0386 0.0422 0.0645 0.0002
12
2 0.1590 0.1577 0.2170
H 22
M2 0.0420 0.0547 0.0747 0.0020
S g 0.4327 0.5304 0.0417 0.6667 0.0024
1 L]

A comparison of the two sets of results
show that some of the elements which satisfy
the constraints of the parabolic criterion fail to
meet the linear requirements, whereas such
elements have beenfoundto satisfy the relevant
ASME requirements of Table 2. Thus, the
results show that the linear form of the envelope
equation is more conservative than the para-
bolic form.

Inthe specific case under consideration, the
parabolic form of the equation shows that the
pump design meets the ASME structural re-
quirements of [3]. Hence, it can be concluded
that the parabolic form of the envelope equation
developed can provide preliminary design guide-
lines for structures like pump casing.
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Most of the preliminary computations were
carried out when the first author was at Basic
Technology, Inc. Pittsburgh, Pa. as a consultant
engineer. i 5 -
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