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ABSTRACT

Effective retrieval of information from digitisedpulse
shape data depends on a good data fitting proce-
dure. Polynomial approximation, although easy to
compute, results in curve oscillation and interpola-
tion when high order polynomials are used. In
addition, the analyticity of polynomials introduces a
major drawback of global dependence on local
properties in the interval of approximation.

The use of mathematical splines helps 1o over-
come these problems. A guartic spline of order 5
-with & knots has been used to reconstruct digitised
Cerenkov light puise shapes. The pulse shape
parameters measured are consistent with meas-
urements from other experiments.

Keywords: pulse shape, data fitting, minimization,
analyticity, spline, knots.

INTRODUCTION

The backbone of any information retriaval from
digitised pulse shape data is an effective data fitting
procedure. The fitted curve should not merely be
smooth for aesthetic satistaction but should permit
the efficient computation of the parameters of the
original pulse.

For a-given set of histogram points

XX, < ... <X <X,
corresponding to heights
h, h, . B,

where h, is the height of the histogram over the

interval[x,, x,, ]}, (Fig.1}, afitting function, g (x}, and
an appropriate data fitting procedure must be cho-
sen to satisty the least squares minimization con-

HEIGHT ——«

PHYSICS

h, L
hy
\
by -
<]
A B
X1 X3 Xy X; . ES X el
X —
Figure 1: “Area Matching” Curve Approximation
To a Histogram
dition

e 2
r n
xn.]
fo(ﬁdx—% o AX
X.
| i=1 —

POLYNOMIAL APPROXIMATION
As a first approximation, the space G, of polyno-
mials of order m may be considered, where

—30

(Cj—_:

CpriGy )

X real

n
G = { 9(x) : gix) = lZ_;, C,x,

The popularity of polynomials for approximation
stems from the ease of computation with the basic
arithmetic operations. Howaever, setious smooth-
iny p roblems are encountered with high order poly-
nomials, resulting in curve oscillation and interpota-
tion at the cost of smoothing. In addition, the
analyticity of polynomials introduces a major draw-
back of global dependence on local properties in
the interval of approximation.

Most physical quantities have functional forms
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whose behaviour in one region of the approxima-
tion interval does not necessarily reflect their be-
haviour throughout the interval. Any fitting proce-
dure to practical data must therefore be able 1o
allow for such variations in functional form.

PEARSON TYPE {ll FUNCTION
Many pulse shapes may be fitted with a unimodal
fast-rising, slow-decaying function. One class of
functions which satisty this condition, and are quick
to compute, is the Pearson type lil function, of

general form: _{an+ /B
Pt = At +‘£)‘S -] {( ! } (3)

where 8, & , and T are constants, with A as a
normalisation factor.

By combining different values of B and & ,
distributions with varying degrees of skewness and
kurtosis may be produced (Fig.2) Ausetul approxi-
mation which saves computer time is

rewa = L0+ 4)
p
0
Hence,
=

¢

where

nzs
a= 8

and A=areaofthe puise, used as a normalization
factor.

Computer simulated pulses of ditferent widths
and sizes have been fitted withthe Pearson type 1l
function. The results, summarized in Fig.3, indicate

-that Pearson functions can cope with the recon-
struction of Cerenkov light pulses of height >50mV
and medium widih (» 20ns). For narrow pulses
there is a systematic over-estimate of the pulse
width and under-estimate of the height. This might
be due to the strong effect of the exponential part ot
eqn.5, which causes the fitted shape to fall before it
has developed along the full length of the leading
edges of the pulse.

In order to cover a wide spectrum of pulse sizes
and widths expected from a large experimental
database, it is necaessary to use a fitting function
that is more flexibie than ordinary polynomials or
Pearson-type functions, such as mathematical
splines.
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Figure 2: Some of the Different Distributions Obtained by Various Combinations of ® and B
Inthe Pearson Function: P (1) = 15 o VB

127



Simulation | Pearson fit Simulation | it
Peak ht 1000mV | S73mV Peak ht 000mV | 70mV
FWHM 20.4ins 20-7ns FWHM 10-3ns {168ns
Simulation ‘Pearson fit Simulation I
Peck ht 100mVv Umv Peak ht 00mV | 73mV
FWHM 20.4ns 20.7ns FWHM 10.3ns | 16-Sns
Yy
Simulation Pearson fit Smmulation it
Peak ht 50mV Lomv Peak ht 5S0mV | 32mV
A FWHM  20.ins 20.7ns FWHM 10-3ns |16-9ns
Q!‘A
A
A
8s pR

Figure 3: Pearson Function Fits to Simulated Cerenkov Light Pulses.
—= Input Simulated Pulse & Pearson Fit

JOURNAL OF THE UNIVERSITY OF SCIENGE AND TECHNOLOGY, KUMASI, VOLUME 10 NUMBER 3, OCTOBER 1990 128




Peaarson-type functions, such as mathematical
splines.

MATHEMATICAL SPLINES

Mathematical splines are the conceptual equiva-
lent ol the long-known draughtsmen's ool consist-
ing of a strip of wood or other elastic material,
anchored in place with lead weights at given points.
The strip of wood, or “spline” is used to fair in a
smooth curve between a set of points by varying the
position of the weights and the spline. In recent
years, the traditionat spline has been replaced by
the Flexi-curve.

It the draughtsman's spiine is considered as a
thin beam, then its bending moment, M{X), and
Young's modulus, E, will satisfy the Bernoulli-Euler
Law,.

M(x) = Ei [1/R(x)] (6)

where | is the geometric moment of inertia and
R(x) is the radius of curvature of the curve assumed
by the deformed axis of the baam, i.e. the elastica.
By replacing the mechanical spline with its elas-
tica, mathemaltical splines may be formulated as
localised fils or piecewise polynomials whose seg-
menis are detined only in a limited range of the
independent variable, with the constraint that the
polynomial segments must have continuiity of func-
tion and derivative at the joints or “knots”. This
inherent property gives rise to a function that is
smooth and continuous anywhere inside the bound-
ary knots, but vanishes outside the boundaries.

For many important applications in the Pure and

Applied Sciences this mathematical model of the
draughtsman’s spline has been found to be ade-
quate and realistic, e.g9. in approximation theory,
numerical analysis, and data fitting.

Consider a set of real numbers, strictly increas- -

ing in the order
X, X, .o sy X,

We define a spline function, S(x), of degree m (or
order m + 1) with the knots

Xy Xpeons e X,

as a function defined on the entire real line
X,... ... X, and having the tollowing properties:
i) Ineach interval {(x, x, ) where
i=0 1 ... ...n
S(x} is given by some polynomial of degree m
or less.

ii) S{x} and its derivatives of order

1,2, e, m -1
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are continuous everywhere in the lmerval of ap-
proximation,

Consequently, the spline may be divided into
seclions or separate entities, provided the con-
straints of continuity of function, f(x), slope, t (x),
and curvature, 1 (x), are met for adjacent polyno-
mials, and the spline function chosen satisfies the
minimization condition in"equation(1).

For example, the Taylor series may be used as
the fitting function, but equally suitable functions
include the exponentiatfunctions, whose limit is the
Gaussian. Among the simplest spline functions is a
cubic “basic spline curve” or B-spline, [11 [2],whose
basis is the truncated power function: *

X", forx =0
o= 7
0, forx<0
Definition
Let ;
n_
Fix} = (x, - x),
n-1
x-x} ,forxz x
- (8)
0, forx, <x

Then the B-spline can be evaluated on the r knot
position, x, using equation (7}, and the divided
drfferences of F(x) in x, for any fixed x.

Let M{x,, x,)be the first divided dlﬂerence of F(x) on
x, and x,

Fix)- Fix,) . {9)

X, - X,

M(x,x,) =

The divided diference of order m is

MUX X i, X,) = MXX o X o) - M(XX (,0)

Xm -xﬂ

From which i follows that

M(x, X, x,} = M(x,, x,) - M(x, x} (11)
x, - X,
and
M(x, . x} = F(x) (12)
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The B-spline, M,,, of order n (or dagree n-1) is
then defined as;

M, {x) = M(x, %, X, ... X))

Fix)

1t o)
j=0
=0 J# 1

(13

For computational purposes, the B-spline may be
normalized by utilising the property:

_LM,, (x) dx =", (14]

ALGORITHM

Although B-splines may be evaluated directly
from the divided differences definition, Cox [3] has

pointed out that some evaluation may fail becavse
of cancellation of nearly equalterms, and proposed
a stable method based on the recurrence relation:

M, (x)= (%) M 00 + (% - X) M, o)
XX,

{15}

n

where M, is a spline of order n ending on knot x,;
M_.{x). M,_. (x}are (n-1}thdivided differance
on x; , and x, respectively

in puilse shape analysis there is a physical con-
straint of fitting a unimodal spiine with 2 fixed end
knots, because of the finite duration of a tight pulse.
A useful relationship which may be used to
simplity computation is
Wx-x ) forx, < x

M, (9 = (16)
0, otherwise

Hence, for x,, < x « x,,, all the terms in the first
divided difference column are zero except M,, i-1.
The computation is then reduced to only the terms
in the rhomboidal array in Table 1.

TABLE 1
RHOMBOIDAL ARRAY OF ELEMENTS FOR A QUARTIC SPLINE OBTAINED
BY APPLYING THE RELATION IN EQUATION (16}

1st divided 2nd divided 3rd divided 4thdivided Sthdivided
differences differences ditferences differances | ditferences
X -5
o
xi_ 4 o}
° ° /
X.
= 3 0 / H4 ’ .
o / .
H)v i-1 H5l i
X2 : My, i1 O
1 . et M 3 .1 /
xi_ 1 H2 i /
)
¢
X.
L
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FIXED OR VARIABLE KNOT POSI-

TIONS?

De Boor and Rice [4,5] and Schumaker [6.7]
have shown that approximation to data by splines
improves greatly # the knots are iree variables.

In the present work, quartic splines were com-
puted with variabie-knot positions. The knot posi-
tions ware allowed to vary between pre-set bounda-
ries, while satisfying non-linear least squares mini-
misation criteria, by the use of MINUIT [8].

By combining the Monte Carlo searching proce-
dure, SEEK,withminimisation techniques, MINUIT
incorporates the SIMPLEX method of Nelder and
Mead [9] and MIGRAD [10], to obtain optimal knot
locations which are then used for computing the

spline.
WEIGHTED SPLINES

One refinement in analysing digitised pulses, in
particulas pulses for which the presence of under-
shoot can result in inaccurate fits, is to fil'a number
of splines beginning and ending on the knots, and
take a weighted spline over the entire interval {see
Figure 4}.

For this purpose the number of knots will have to
be increased beyond the range of the data. Hence
in Figure 4 the knots 7, T, T, are incorporated
before the first knot T, of the data, while the knots
Too T.s T,sare usedafter the last knot of the data.
Only part of each B-spline whose knots go beyond
the data boundary will contribute to the final spline.
These sub-splines will have less weightingthanthe
sub-splines which span the data set.

The resultant spline (S({1) is therefora given by:
Sit)=C,M, () + C_ M, (W+.. .+C M, (1)

where {17)

MO, My (0, .. ..M, (0

are the splines beginning arkl ending on the knots,
and

¢, Copn ~ C.,

are the coefficients appropriate 1o each spline.
Hence, each sub-spline would be weighted ac-

S{t)
+«— Range of data —
,"-;v -~
/ \ / \
, A
/ 4 / \ Vo
/7 , \ \ \
’/ // y \\ \ \
// / / \ \ \
/ \
/, ‘/ / \ \ \
2 . / \ \ \
Ti-a T, Ty T Tia Tiaz Tivz T Tas  Tiss

Figure 4. Woeighted B-Splines for Non-Linear Least Squares Fit

JOLANAL OF THE UNIVERSITY OF SCIENGE AND TECHNOLOGY, KUMASI, VOLUME 10 NUMBER 3, OCTOBER 1990

131



PEAK HY FWHM
Simulation  1000mV[ Qlns
Spine: I007mV 1. 2ns

PEAK HT | FwWHM

Simulation 1000mV | 20-4ns

Spline 10B7mvV | 20.6ns
LA

PEAK HT | FWHM
Al Simulation: 100mV | 10.3ns
Al Spline : 98mv | 9-8ns

PEAK HT | FWHM
Simulation: 100mV | 20.4ns
Spline: 104mV | 21.2ns

PEAK H'[I FWHM
Simulation: S0mv [ 10.3ns
Spline: L7mV | 10-2ns

PEAK HT | FwHM
Simulation 50mV | 20-4ns
Spline: L6mv | 22-5ns

Figure 5: Quartic Spline Fits to Simulated Cerekov Light Pulses
—— Input Simulated Pulse 2\ Sptine Fits
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cording to the sections of the pulse it covers. Equa-
tien (17) may be solved by the matrix equation:

M (t) Myt) .. Mt) c, v,

ML) . M, (t) C, ) Ve 18)
ML, ) - Mt ) Crs et

ML) . M.(t,) C, V.,

or AL! x C = 3’ (19)
where

M is a function of the knot pc;sition only.

QUARTIC SPLINE FITS TO SIMU-
LATEDAND EXPERIMENTAL DATA

Figure 5 shows a set of computer simulated light
pulses which were spling-titted. A close approxima-
tion was obtained betweenthe fitted splines and the
simulated data over all pulse sizes tested. The
fitting function used was a quartic spline with 6
knots as described earlier in this work.

The experimental data were obtained from the
Cugway Extensive Air Shower Experiment [11,12].
An array of eight detectors was used to record the
shape of atmospheric Cerenkov light pulse from
extensive air showers (EAS) of primary energy 10'®
- 10" V. The light pulse was measured sequen-
tially as charge, digitised in narrow time intervals
(“slices™ at each detector. The amount of charge
in each time interval of 10ns was recorded if the
amplified signal from the detector exceeded a pre-
set discriminator threshold of 20 mv,

Information for one pulse comprised a maximum
of 7 {data) points (i.e. a maximum of 6 “siices” plus
1 discriminaitor level). The constraintof 2 end knots
ieaves 5 degrees of freedom available. A quartic
spline with n = 5 and 6 knots was chosen as an
appropnate titting function to the data.

CONCLUSION

The validity of the spline-fitting procedure is
avident in the extensive air shower (EAS) meas-
urements derived from the computed pulse shape
parameters [11]. The pulse Peak Height, Rise
Time and full width at half maximum (FWHM) are all
accurately determined from the fits.

The derived extensive air shower characteristics

reported in [11] were found to be consistent with
EAS measuremens derived from other Cerenkov
light parameters, such as the lateral distribution of
the Cerenkov light [12), and from experiments
using different techniques (e.g. [13]). In particular,
the depth of electron cascade maximum of the ex-
tensive air shower determined from the FWHM
measurements [14] helped 1o augment data on
cosmic radiation.

The results obtained in this work indicate that
spline-fitting is adequate for reconstruction of dig-
itised Cerenkov light pulses. The Peak Height,
Rise Time, and full width athalf maximum {(FWHM)
are all determined acurately from the fitting proce-
dure. Exiensive Air Shower (EAS) measurements
computed from these pulse shape parameters are
consistent with measurements trom other experi-
ments.
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