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ABSTRACT

The problem of combined heat and mass
transfer in natural convection flow of
an incompressible, rarefield, viscoelas-
tic fluid along infinite vertical porous
plate with constant heat source under
transverse magnetic field is considered.
The perturbation technique is used to
solve the:differential equations. The
formula for stress, rate of heat and
mass transfer are obtained in the slip
flow regime

NQM_E_?__:ICLATURE
x', y' '~ co-ordinate system
u', v'. velocities in x1 and y
directions
Bo - external magnetic field
¢!, ¢, ¢ species concentration, in
N the boundary layer, at
the plate and away from
the plate
]
C Specific heat at constant
p. N pressure =
D . . . chemical Molecular diffu-
sivity.
9 acceleration due 0 gravity
hy velocity slip’ parameter
hy temp. Jump coefficient
hy Concentration jump co-effi-
- ocient : \ ¢
k - . thermal conductivity
Ko ‘ elastic constant
M s magnetic field parameter
p'.. . o pressure -
Pr _Prandti ‘Number
qQ rate of heat transfer
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q, rate of mass transfer
Sr; Schmidt number
t' time

Tl TI T‘m i i
el temp . of the fluid in
the boundary layer, at the
plate and away from the
plate.

Tm mean shear stress {non-
dimensicnal)

Vo suction velocity

w frequency

A coefficient of volume
expansion due to thermal
diffusion: P T

A coefficient of volume expan< |
sion due to mass diffusion

G a content,

1

g density of the fluid

¢ electrical  conductiity |

No viscosity of the fluid

V kinematic viscosity

LS heat source parameter -
(dimensionless form). -

INTRODUCTION

Because of the recent advent of super-
sonic air planes, rockets and missiles
which can operate at high altitudes,” '~~~
considerable research has been under
taken on fluid flow and heat transfer
at high Mach numbers and in some gases
with rarefied gases. Some interesting
findings have been made, but these
fields are still in the process of explora®
tion and clarification. s

The phenomenon of viscous _inc.om-
pressible gases when their density-is
slightly reduced due to low absolute
pressuré or an ‘increase In temperature
is called rare-fraction of the medium
and hence there, is accordingly same .
departure from continum gas ,d.yr;am?cs.
No slip boundary conditions fail to des-
cribe such a-flow and slip flow boun-
dary conditions are suggested (Schaat

QF SCIENCE AND TECHNOLOGY, VOL.9 NO.1 FEBRURRY, 1969



MHD FLOW OF RAREFIED GAS - J. SINGH AND B.K. JHA i i e

and Chambre, 1961). The first effects -
of gas rarefraction has been observed
as ‘a velocity slip and temperature jump
at the plate and the flow regime is then
called slip flow.

Inman (1965) investigated that in
the case of an electrically conducting,
visco-incompressible rarefied gas flow-
ing between two stationary non-conduc-
ting walls, the velocity profiles, skin
friction and rate of mass flow are affec-
ted by gas rarefraction. He conjectured
that velocity gradient of the upper wall
was unaffected by rarefraction of the
medium. Some important contributions in
this aspect have been given by street
(1960) and Redely (1964).

The vertical natural convection flow
resulting from these combined buoyancy
mechanism have been studied in the past,
fn a series of papers Oldroyd (1958)
proposed and studied, a set of consti-
tutive equations for elastico-viscous
fluids. Revlin and Ericksen (1956) for-
mulated the nature of the boundary
layer flow of visco-elastic fluids.

The survey of literature reveals
that the combined effects of buoyancy
forces from the thermal and mass diffu-
sion on free convective heat and mass
transfer for visco-elastic fluid in slip
flow regime in presence of constant heat
source have not been studied.

In the study, attention is directed
to free convection flow of an incompres-
sible rarefied visco-elastic fiuid past an
infinite vertical porous plate with con-

CONTINUITY EQUATION
it
oy' ~
Momentum equations
. [ ' 1
( eﬁu'_‘f v g:_'j

“32u dvi- dvi P

= Pgp (T-Tiool +Pg B* (c' - ciog)
+ 'Yl. du' -(;B; u - Ko B2yt + Vo
o dy'?

stant heat source in presence of uniform
transverse magnetic field under the com-
bined buoyancy force effects of thermal
and mass diffusion. T

The equations and boundary condi-"
tions used are, limited to processes which
occur at low concentration différence
since the boundary conditions at the sur-
face are assumed unaffected. by. inter=- ;
facial velocities. Species thermal diffu-
sion and species diffusion -of thermal
energy, some time important in gases
are also neglected in the analysis.

MATHEMATICAL FORMULATION AND
SOLUTION S

The partial differential equation that
represents the free convective flow of
an incompressible, rarefied, visco-
elastic fluid causes by the combined .
buoyancy effect- of thermal and'‘cHemi-"
cal species concentration disparity in
the presence of uniform transverse .
magnetic field and constant heat source ..
(absorption type) are written below in<
terms of fluid velocity u’, v' ajong’ . "
x'-axis and y'-axis. All the fluid pro-
perties are considered constant except
that the influence of density variation
with temperature and conceritration are
considered only in the body force tem-
perature. The equations are simplified
by usual Boussinesq approximation ,and
by the assumption that concentration
of single diffusing species are small
compared with other concentrations.

.1}

Iy

'

dy'?

ar' 'ty py? - (2]
P' Dvl o+ vt dv ] = - ap' 4 2M N - 2Ko r,ﬁf_g‘
ot' Y W Ttoaylz LBY”B"
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: -3y _dlut+ 3% v
\ﬁy‘ 3\{'2 BYJ
Energy e,qpa_t'ic_m . _

Plf:"b-" BT 4+ IV; _Q_I_‘ = .K' sz' + Qt
' _S.tl_ byl byﬂ

Mass diffusion equation
bc' ‘1-'\',4&&! = D hzcl
o ,‘bt' ) byl 6'\;' 2
The bo_u'nd“ary conditions are
u = L1 du'. Ty = Ly AT, ¢ - c'w = b3 dc' aty= 1]
: ¢ dyY' 3 Y 3y
St =0, T'—T'oo c'sCloo 35 Y—700
Co‘l‘lt.lnﬁuﬂy equation 1 l integrates to

vl =. Vg

&

in-the -'pt_i_e'e.-én;t-,investigation. we consider heat generation of _the type

Q' =-Q,._.,(_Zl\';m‘-_1"l_. Vajravdu and Sastri (1978).

.

g Ve d Ut ni . < e ol o
.- Now, we introduce the following ‘nonfdimnsional quantities

iy A 2 v 2
‘s-.-‘ﬂ-': ‘."0_, t = “'ot’ u:-_LL, K = K+ 3
! "’ ' 4y Vo 2
-“i:ir.: o T' .I ch - 1 !
'“‘-‘».-""_""'-'2’ 2 =S S0 pr=No P,
l.f;'.i.":r:\;‘- Ly T&) c'w-. R - o K

c =N
D 3 3
vo VO
M =685 V- = Qy?
.! f’voz VOZK

Eciuat.ionl'l] to (5], in light of equation (7} and (8) are modified to

du+du - du - K (i 23 u - ul - Mu
e M at i, vV
= ~"Gy 8y~ G2 %

2
.@.?l + S¢ Oiz. _Se P2 - ]
2 m n 3t

L3)

...(4)

L A58)

..A6)
LA

e

..{9)

..(10]
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P ' fo.d -

where V) = ""10/;7 , Kk* =Ko : o ks :
The modified boundary conditions are

e e :
u = hy %’01-1+h2 %'?:_’ 8 =1+h hezan‘[:o
u—>0 8;—0 8,->0 as -0 emf ¥

where

hy=Livi hy=Llave h3=L3y,
) SV e Y -

In order to solve the coupled non-linear simuitaneous equation (9) to (11),

we assume that in the neighbourhood of the plate

Lo

o

"e,= [1-F(N)+ €eiwt 4 = fz M)] ‘
. ez - [ ' _g] {,‘1.) + &-eiwt [1 "gztnl] P L‘ i r.- -,_ a_';_-:..i . .:‘
b =a.im) + €eiwt uy (M. _ % ca twa F13)

“Equation (9) to (11) in connection with equation. (13) have the f_,ékm_;’ngq;gq;;, vty Mo
“ting the term containing K and its higher order, and egquating the ‘like’ power T

of K , we get : et = :'_-;a"-"*?-: -. T
i (T3] 1] ¥ 2 . . ”
4] + i =" o W ; o
Kug™ *ug+ up - My, =G, 8y - G, 8, _ T LEF T e
. s B : A S
Kuj +(1-Ki™ o« iw :
[

buptut - (= e Muy =0

fePrfl-fioc = -x

f;+Prﬁj-(Priw tok) = - (P
L) : '

-
£ 3
+

¥

»

—
-t
~J

—

' where prime denotes the differential with respect to 7} .

Solving equation (16) and (17)

g =1 = hz H2‘+ 1 ‘exp (= HyMm )ofp =1 0
Thus
9 = .1_.7}112_"2 exp (-H,M) Ch YE . w g B et Y B, ...-.(20‘J;::‘
"y = - :‘3 - exp (S ) . : -‘::(?11 |

g

To solve equation (14) and (15) we.again expand u, and ugin power rm . i ardd
of K, i.e.

CUg = ugy (M) + K ugy + O(K2) | T A Y
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uy = Uyg (‘ﬂ] + K uy2 + O(Kz]

Substituting (22} and (23) in (14) and (15), equating the coeffi-
cient different power of K and neglecting the term containing the

power K2 and its higher order and using (20) and (21). we get the

following equations

' ", G 5
Ugy *u'gr = Myor = - 1 expl-Hy n)
1 + Hahy
= G, exp (- S, M)
1+h35¢
i

ugz + Wz = Mugy = = M"g,

ui* vy - (e +Mluyy =0

Tlugp + u'ys - (hw + Mlugy = - u'yy +iw ujy
and the cnrresponding boundary conditions are : :
o1 = hy Uoy. U Ugz = hy u'gg ugy = By u'yy v1z = Py Wy
: at h=20
" fugy 0 ugy —0. Uy —0, uu-to as n —» 00

Solving equation (24} to (27) under the houndary cnndltion (23!
and substlwting it in (23) and (2u) we get

u, = B3 exp(- Hy7 ) - By exp (-H,M) - By exp (- 5.:‘11

+ K By exp (-H"M) + ByM - exp (- HM) - Bgl- HZVLI

+ Bg exp (=S, M)

and. -
uy =0 \

.the shear stress at the plate in the slip ﬂow reglme {in non-
di nsional form is

'T = %ul"q-
.=« Hy (Bg + K By) + K By + Hy (B1+K35l
+SC[32+KBG}

The rate of heat transfer at the plate in non-dimensional form
is

o , l_ﬂ—} = 'HZ
Lo M M= T+H2hy

The rm of mass diffusion in non-dimensional form is

Q4= ( P ] - S¢
R fis w zn “Yl,'o ¥+ SC 3
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L. A31)
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RESULTS AND DISCUSSION : b s g cwpr Sepeemwser R R0 G @
To study.the effect of constant heat source on veldcity ‘of newtonian ‘and™ ">
non-newtonian rarefied gas. some calculations are carried out. Fig.1 and*Fi.gi2 =~
show the velocity profiles of newtonian and non-newtonian rarefied gas -agaifst’ -7
y with respect to constant heat source of absorption type. From Fig.1 and b
Fig.2 we achieve an important conclusion that there exists an inverse rela~ .
tion between o¢ and u where o is a heat source parameter. There is minute
change in velocity profiles of Newtonian and non-newtonian rarefied gas.for . .

same value of e .

40}~ 40}
30k I ad=2,k:0 20 - 1 d*é‘Ktl
O <£+3,K=20 I o =3, K¢
O o«24,K:=0 m o =4, K=

- z0L B o<s5.K=0 . 20k K. =5 K=l o

Figure 1: Newtonian rarefied gas Figure 2: Non-Newtonian rarefied gas

Fig.3 and Fiq.4 describe the nature of velocit i in : tof

) y profiles in case of newtonian .
- non rarefied and Non-newtonian - non rarefied gas against y in presence-of - ' ="
constant heat source. From Fig. 3 and Fig.4 it is observed that there is an .
also inverse relation between Xand ' u. : < VR A, ]

80 - SO
80 : . o Bok 5 :
. LRSI L
700 1 70 L I
[. d12,K:0 L oasg ka0
60|- O a=2. K0 soH,~T Lo Do sdKal L
\ O o sd, ®s0 O o 24,k .
-0l N <45, K00 50 f- LW & s, Kat
v ' :
] 40 40
4 _ i
.30 . 0 Figure u: .
Figure 3: o New iy
4 Non-Newtopian
=0 Newtonian L i
o il non-rarcﬂ%d’gas
- ‘ 3 3
" non-rar gas % . -
0 K
’ 1 2 3 4. -8 (-]

—
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CONG LUSION

In the case of newtonian rarefied gas lnd non-newtonian rarefied gas the
velocity, profiles first increases then decreases but in the case of Newtonian
non-ragdﬂqd and mn-Newtonian rareﬂcd gas velocity profiles ducmm con-
tlnuoupl‘y I
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APPENDIX _
H_1=%1+{uM+1]i. H2=§Pr+q/Pr2+uo<
: G
Bl = } - G1 3 Bz: 2
l}+thzl (H22 - Hy -1 ) (1 + S, ha! (82 - S - M)
; - : 3 L
gy = BilhiH + 1) B,(14S¢ hy) By = By Hy
1'% By 1y 1-2H,
3
H,3 B . s B
= 2 1 _ c 2
Bg = | Bg = .
(Hy? = Hy= M) s : (5.7 8y =B e e
Bq-— (Hy hy + A)Hg + Bgl1+ S h,l + By hy
1.+ H1 hy _
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