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ABSTRACT & 4;1}. f.“

The present paper is mnwntd mth )
a polynomial set associated, with gmr
ralised heat polynomialy- du do Do
Haimo [ 1966).. Assmlﬂﬁqd. ncmj%l
set has been subjectad: to: her <&y
investigations and several prupartima
such as explicit form, finite. wmm? Bl
tion formula, generating finctions ddd’
bilateral generating functions,: have
been established. The paper has beén
concluded by giving some series refa-
tions for generalised heat polynomials
in terms of circular, hyperbolic and
hypergeometric functions. The cor- -
responding results for the ordinary
heat polynomials of even order defined’
by P.C. Rosenbloom and D.V.Widdar
(1959) and the Hermite polynomials of
even order are rendered Iﬁtuitwn-,

KEYWORDS: heat polynomials, bil:tnral
generating functions, associated paly-
nomial set, series relations..

INTRODUCTION

In 1961, Carlitz [1,2.3] introduced
some polynomials related to the ultras-.
pherical polynomials. Since then seve-
ral workers have defined such types of
associated plynomials. For instance, -
Srivastava [10] and Singh [11] studiéd
polynomials related to the Laguerre
and generalised Laguerre polynomials,
respectively, while Joshi and Singhal
[7] defined some palynomials associa-
ted with the generalised Hermite pol
nomials due to Gould and Hopper [5,{
Karande and Thakare [8] introduced
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DHGEHEMLEZED HEAT POLYNOMIALS - S.N. SINGH AND L.S. SINGH

the polynomials related to the
Konhauser polynomials Y _ X(x;k].
_Recantly ; inghal-Soni [12].and .
‘SeivastavazSingh :([14] studied the poly-
nomials: associated with Sriveslava-
- Singhal-polynomials G_ = (x.r.8.k).
21, We-d ine .and study here a poly-
fibmial® set assbciated with genera-

lised heat polynomials due to Haimol6].

ASSOCIATED POLYNOMIAL SET

Fnllowlng5ﬂarliu [1,2.3], we introduce the associated polynomials
Mg 0 (x.,t) by means of

n .
(x.t]
Z.,!“z,ﬂ. (x. P g, v+l =0, n21 Ll
nnd'- ry ."- "
LT e th= E '
Mo, 1“‘#"}_ = P ' vy 2

*hmﬁ.ﬂ,‘ﬂ En't];is.th; g"r"erzliséd heat pnlynumial set [6]
given  explicitly by,
n

Era ot =iog -2 Jastes)  tedhk g, -
i, e s e o Nes [ Taed 6 k)

We state the obvious connnection:
(- i
e
4t
which follows readily from definitions. More precisely, it may be
noted that’ :
Pn_nix;tl =V, x.th

=iy A _
F:n',ii 'I?ftl =-thtll. 0 by ' oo (8)

the ordinary heat polynomial of even order [9] and that

; o i B 2 i f
o 01 = (-1 20 et L, (:. ) Hypn k%_}
{he Hermite polypomial of even order [4].

-\-1. iT fl'll.;.gnnergal_ised_; I'l;-nl;;.-pqutmmlll--l’n D {%,t} is a polynomial of
degree 2n in x and n.in 1. where 1) is"a fixed positive number. For
. @il ;values of its variables, the generalised hest polynomial is readily
shown, to satisfy the generalised heat eguation. :
AT = D (s
Xt L (x,t)
; a3t ] (5]

where &xfix'} = fU(X) + 2111 f(X), P .a fixed positive number.
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For 0 £ x €e8, -o0< t <oa, 7 ¢ .lt‘ Haime [6] derived the fol- "
lowing generating function for the generalised heat polynomials: %
Py i PO '_ﬁ -
& A%, (x.t) = Vs g 2 | T
= e " x,t] = 1 expl x"z — !
=0l Ty -8z t 1-4zt _ g
it follows from (2.1} and (2.2) that '
-] 5 S s
1> i S M (xup (x.1) ;'
n=o ‘"EMN g L5V N4, Y+e : ¥ 3
-] M [ ] 2 ] - J
= w,.t] z P {x.t} 2 .
£=zg il %o e ni =
Therefore, in view of the generating refation (6], we obtain i o 4 ‘g’!
aa : " ! o 4
> m p (Xt ( C J = (1-uzy) O “exp - x%
& b ——r— 3
£= o s : -tz | - SR

which reduces to the elegant form

o

z M ‘ﬂ(:.tlu‘ = (144zy) TP “axp t- x’uls -
Ay b -
L= o by
with u = =z
1-4zt v = o i
From (7] we obtain ; S B '
o=t £z k T
2= Wgtxtie® = ; o (-1° “’*“k.(_:} x22 b
L=o &Y =0 ko I ) R il A
AT )

which simplifies to yield the explicit EXPEBESION. . .50y, aioia L. iR e

bt g a0k x28 . g

v =T g
21 k=o k! (&=t :

> EhEdiaEs A%
From (6], we notice that ] fignan skl

e :
£ (g f“*‘**kﬂ)u(—t‘:ﬁ—jx;‘ . . =
p“ o [x.t) =Z Pt T R w w2 il wit, ol 4“’.-’IF'” (EJ
- k=0 k! (£- k) et

: e LA azn
From (B} and (3], we readily obtain ' _ ' . S A j:,";
£ P A -

M. (x.t) =f -1 o £
L7 (T) o aigs jlmatl R
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‘Mext, consider the product

[~ =]

od
2 M, gl thu” ;_u My (y-tIu®

n=o

= (1 + bl L35 Hexp(-xzui (1+8tu) '“'”“axp[-vzu}

= (1 + ttu) Ve Nexp (- 6+ v )
-

= i

= E Mn;:"" oo+ i[x,‘t]u -

n=a

where x2 = ¥+ w._.r2

which simplifies to
-

g Moo g, p (M g Ly 00 = W gy urilx-th ...n:ﬂj.
OF that when X = y. X% = %2, s
"

n s

Z mn_ﬁ.,p[x.u ML‘ “['x,tl =M, e+ i[“‘” . T12d

Again, from {7] we notice that,

-t
E (x. tiuf = (1+but) el “{iﬂutl -lf'.prnxp['xzu!

L.y
£=0
o)
E xﬂu"z :
Z=0 2f it )
- .. -if_q,i e '..!_’
2> S My gxetl (PO T
=0 =G

and, therefore. we obtain 2 finite sum formula

L€ Y i gtxt) | (13)
_{!.t‘l "';;2-5 i' .‘-"j ’, # . e : 3

OTHER GEMERATING FUNCTIONS
We recall

ﬁ M (x.tu™ = (14 dut)
n=o LEd

(-4 -1 (wut)

MJ—:#

i “nxp (-x2ul

Prucuding from the left side, we have
oo w (-11% u"R(-v1¥ nt

2 My pbet) ) =D S M, x-t)
n=o n=o k=o k! [n-kl!

A
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Kintk)! M

n
z"“ S u v Mkmixft} .
n=o ko k! n!
=2 o2 +k k
" ‘2' {“n ) Mok, p (X thv u", vl (1)
3 n=o0 k=o
while the right side becomes :
-(2+ §) R : K o el
{1+5ut) expl-x UIp;Z M p (%, i v fiii: Etﬁi
=n ' '
From (14) and (15) , we are led to the following generating relation:
n+k no_ =(P+ §) i
< { % ) Mn+k"pf1.tlu {1+t ) . expl(-x uij"ﬂ{x"i-:ﬂutl iy {-T'E.!‘El

The result (18] is analogous to a property possessed by almost all
the classical orthogonal polynomials. In view of (16), it is clear that the
palynomials M, ,ﬂlx,tl belong to the class of functions mﬂm; K is an

arbitrary complex number| considered by Srivastavd and Latoje :
[13. eq. (105),p.318]. who obtained bilateral generating relations for this ' =&

class of functions. Therefore, from equation ( 105) through. (108) of Srivastava 2,
and Lavoie (op. cit., 318-319) with =5 3 i ; o

= [I-rl-nl

K 'ﬁ(.ﬂ T FLa ; Ty " "r_t-.'_.'
(Blx )V =4,
Bi(x.tl = [(1+gut) b “exp { —xEu],

and

) 1
M o{x,t) = Mk:ﬂ x, 1 i

1+ ; _ T
we are led to a class of bilateral generating relations for -y o e
M-Gu?'{x'tl: o e g
Let

-
i n
ﬂqux.t.yi -_z_o “‘5,n""5+ qn’,y[x.t:ly

‘ ﬂs-n # "j ng 'D...

where q is a positive intsger and % is an arbitrary non-negative integer.
Then :

m
i Mot g.p Ot) RY cls) u
n=o

=(1+yyy) TV 3} {-x2ui .t ' cialad
ut} exp {-x“u ﬁq_ﬁx S s, (17)
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where
q [nigl
B < 0 B Vg &, :
n-ek
k=0

1 i
joik

Another generating relation for F'ﬂ v{x,tl
From (6), we have

i (Ve + 3] [utz}"[xzzlk
Fall I'-“rl {x. t} ‘
n=o -V =n nT k!
n ik
2 z [ Bl ﬁ} (v+ k + zln kl“tl xz :n
n=o kK=o n! ke s bt
whlr.h immediately yields, {xz]k
5 o n "L,
P tut) = (an)® ﬂwnu}Zt | e
Now, it is fairly easy to observe 1hat
22 p__(x.t) 2"
E uiidh 8 1 wEal s iy ale T 20T
= nt [(D+nt TERICERL = =

We shall exploit it 1o obtain four series relations for the above said
polynomials.

GERIES RELATIONS )

o

n :
-;_ P [x,th(-2"] 2 =}
n.V = cosltz F -[xzzT

The main results to be proved are — _1

n=o (20! (W+ i), 03

i, v+ 1/2, V+ 312

2 2 _..l
: R T Rk
1xziiﬁtitl '[ih_*) Wb ST
i P+ 3 ﬂFa .
3, p+3/2 ¥+ 502 %
i A 2

A

e 21)
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and e
<2 P (x. ) =22 - / R
zz_znﬂ,‘p‘ it = sinitz  ,F, kx?zj
-l Xz
n%o (Zn+1)! l:'.t.l"l'ifZ]'z“
3 U+ 12, ?+ 312
& 2 2
- xzz\
g
2
+ _2x"costitz . F, 3 P+ 3{2. ¥+ 5)2

e hi22)

Proof: To prove (21) and (22) we begin with {20) as
-oa, Zn :
A 5, P {I;tl: 2I'I + 1
2 z“.«-‘u " Pln + ‘L..uil.th’
< (2t [tw+2n+4) < (2n+ 1)t (Pe2n + 302)
oo 2_2m
= @itz Z Ix"z)
{2m)! r{‘IH 2m + %)
m=o0
= (x2z)?™ * 1
2>
m=0 (Zm + 1)1 I_HJ'* Zm + 3f2)
]
= M2 1 Z l'.xz;]zm
v+ meo  (2m)t (V+il,
T 2
+ 1 E [xzz_] m + 1
Y+ 3/2)
[tv+ 3/2) m=o (2m + 1)t i
2 xzz 2
[(¥+ 1) v+ 1/2, Y+ 312
i, 5 3
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xzz
m
-u+ 142, v+ 32

i l'ﬂ*ﬂ E 3 J

+ == o 3
Ttv+3r2) 3. V+3(2, V4512
' 2 E 2 .. fz3)

i :
iz - cos 7 + isinz, we have

' ;':hinaging 1z' into zi and using e
= 2.2 - _2n
E Pzn'q’,l‘x,t][-z ! . =iz E = "ﬂix.t] 1=z
v e lanlt FH-"' In + 1) e ot HE ﬁ’m 2n + 302} )
.—; I-:'
- _lcostitz + isindiz] 0F3
FHH il a2 1:+ 3!2-
B2
..-1
2
v ALX of3 ..
[(oe o | 3 o3e 230 =

Equating real and imaginary parts. wWe get {21] and (221
{211 and 1(22), we arrive at

Now if we replace z by Zi In

n
. P (x.t)z .
in. vV = gos h (4tz] ﬂF3 ol _ 2\
i (D2, DH 32,
# z ¥

.I -l: 1
:xzsmhj btz oF (—1-;‘-3‘]1
v+ 3 o3
Ij; 1'; 3fj2 512 . (25]
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and y
- n
Panar,p %212~
% = inh(4tz|4F
’Z rent D+ 372),  Shtlols
n=a :

+ xxzcnsh (4tz) =

(v+ )

In view af the relationship (4), it is fairly easy to obtain known WI&a s
relations for even and odd generalised Laguerre pulynmﬁats glven ear'lier

by Monacha [Mat. Vesnik 11(26) (1974], 43-u7] -
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ABSTRACT

The problem of combined heat and mass
transfer in natural convection flow of
an incompressible, rarefield, viscoelas-
tic fluid along infinite wertical parnus
plate with constant heat source under
transverse magnetic field is considered.
The perturbation technique is used to
solve thesdifferential equations. The
formula for stress, rate of heat and
mass transfer are obtained in the slip
flow regime

HWEI}ELATURE
®', vy co-ordinate system
u', v' velocities in x1 and ¥y
directions
Bo . external magnetic field
¢ ¢, ¢ species concentration, in
: the boundary layer. at
the plate and away from
the plate
i
C Specific heat at constant
P pressure -
p . . chemical Molecular diffu-
sivity
9 accelaration due to gravity
h, velocity slip' parameter
hy temp. Jump coefficient
h‘:l Concentration jump co-effi-
- ‘cient .
[ thermal. conductivity
Ku ‘ mlastic constant
M ] magnetic field parameter
P | pressure
Pr Prandt! Number
q rate of heat transfer

9, rate of mass transfer
Ec Schmidt number
t time

TI Tl TF -
, Ty, Tootemp. of the fluid in
the boundary layer, at the
plate and away from the
piate.

Tm mean shear stress (non-
dimensional}

V. suction velocity

W fregquency

A coefficient of volume
expansion due to thermal
diffusion: GEbt E 0

A coefficient of volume expan- '
sion due to mass diffusion

G a content

1

P density of the fluid

o aiect_riqai conductiity

v viscosity of the fluid

W kinematic viscosity

ol heat source parameter
(dimensionless form). -

T NTRC}DUCTI O

Because of the recent advent of super-
conic air planes, rockets and missiles
which can operate at high altitudes,”
considerable research has been under
taken on fluid flow and heat transfer

at high Mach numbers and in some cases
with rarefied gases. Some interesting
findings have bean made, but these
fields are still in the process of explora-
tion and clarification. o'

The phenemenon of viscous incom=
pressible gases when their density-is
slightly reduced due 1o low absolute
pressure or an increase in temperature
is called rare-fraction of the medium
and hence ‘there. is accordingly same .
departure from continum gas dynamics.
Mo slip boundary conditions fail to des-
cribe such a flow and slip flow boun-
dary conditions are suggested {Schaat

3z ' | JOURMAL OF THE UNIVERSITY OF SCIENCE AND TECHHOLOGY, VOL.9 HO.1 FEBAUARY, 1389
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and Chambre, 1961). The first effects
of gas rarefraction has been ohserved
as ‘a velocity slip and temperature jump
at the plate and the flow regime is then
called slip flow.

Inman [1965) investigated that in
the case of an electrically conducting,
visco-incompressible rarefied gas flow-
ing between two stationary non-conduc-
ting walls, the velocity profiles, skin
friction and rate of mass flow are affec-
ted by gas rarefraction. He conjectured
that velocity gradient of the upper wall
was unaffectad by rarefraction of the
medium. Some important contributions in
this aspect have been given by street
{1960 and Redely (1964],

The vertical natural convection fiow
resuiting from these combined buoyancy
mechanism have been studied in the past.
n a series of papers Oldroyd (1958]
proposed and studied, a set of consti-
tutive equations for elastico-viscous
fluids. Reviin and Ericksen (1956) for-
mulated the nature of the boundary
layer flow of visco-elastic fluids.

The survey of literature reveals
that the combined effects of buoyancy _
forces from the thermal and mass diffu-
slon on free convective hest snd mass
transfer for visco-elastic fluid in slip
flow regime in presence of constant heat
source have not been studied.

In the study, attention is directed
to free convection flow of an incompres-
sible rarefied visco-elastic fluid past an
infinite vertical porous plate with con-

CONTINUITY EQUATION

o
v v

Momentum equations
g { %1. VI§:‘-+IJ

stant heat source in presence of uniform
transverse magnetic field ugdar the com-
bined buoyancy force effacts of thermal
and mass diffusion. . Al e g

The equaticns and boundary condi-
tions used are limited to processes which
cccur at low concentration différence
since the boundary conditions at the sur-
face are assumed unaffected by inter-
facial velocities. Species thermal diffu-
sion and species diffusion -of thermal
energy. some time important in gases
are also neglected in the analysis.

MATHEMATICAL FORMULATION AND
SOLUTION : :

The partial differential equation thar
represents the free convective flow of
#n incompressibie, rarefied, visco-
elastic fluid causes by the combined
buoyancy effect of thermal and cHemi~
cal species concentration disparity in
the presence of uniform transverse
magnetic field and constant heat source
{absorption type) are written below in*
terms of fluid velocity u', v' along . "
x'-axis and y'-axis. All the fluid pro-
perties are considersd constant except
that the infiuence of density variation
with temperature and concentration are
considered only in the body force tem-
perature., Tha equations are simplified
by usual Boussinesq approximation and
by the assumption that concentration
of single diffusing species are small
compared with other concentrations.

.1

= Pgp (T-Tiog) +Pg B (c - cigg)
jy; -gB; u' - K-;trh’u' v, A%

+
‘q’nhy‘: I_h\"" 2y’
-3 .:Q.”_' hf_vl & hvl aq"ul (21
a?l E-Y' 2 av+ L av-; o
Plavt + v 3w ) = - 3p' + 2 30 - ko[ Maws
(m- 3y ) B ey By O
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-3 3V h?uu +  ara
I

Energy ugyaﬂ?n

; Z
fo(am + v A1) = K 21T +q
B t hv‘J oy"?
Mass diffusion equation
'{E-*V'}E = 0 ¥e¢
ko -t‘:h_'-l EI-Y' ﬁw,,r" ?

The bah'nd.ary conditions are

'l.i-l = L.! Eu'_ TJW = L_z E!T', g - gy = L3 h c' sty*= 0
st By’

YA 3y’
o S 3
. -u‘ - 0. T‘-"‘T Im, c'—y clm as Y —p D

Lok [ :
Continuity equation (1] integrates to

Wi = Vg

in the 'pr,'t'-.a-g'nf. investigation. we consider heat generation of the type

Q' =Q,{Tloo.” T1), Vajravdu and Sastri {1978).

.. Now, we introduce the following non-dimensional quantities

nn ""I Vo t = Ypt u=_u K = Kt —2
Yo L9y ut
= _.ha 4'1:" ! Var HJ!

L] .E&.‘ Ttﬂ: c-lw' C'W K.
Sc =%, Gy = 'QE{T""- T } ‘2 (;2 = 'Og;ﬁ*ic;,, - el
o 5 -
Yo Vo
)R .
" P"’a! vozb:

Equationl1) to (5}, in light of aquation (7] and (8] are modified to

14+ 8u - 1y du TR (i, d2u- 3oyl - Mu
B T ‘g &

gt B At
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where =~ ='|"la‘/‘ﬁ' g EE 2 K

e | o 48 i

The modified boundary conditions are : o B ST B
e g .7 H A,
u = hy w , B8 =1+h; 9% 8y = hﬂz =0’
] =5n 2=1+h T It'fl 0
u-—>0 8;—0 8,~—>0 as ﬂ‘[-—-m . S A I..'-;.,L.l‘lzl
where ;
hy =Ly vi hy =L3 Vo...hizLal.'x’u.

i E

V) v
In order to salve the coupled non-linear simuitanecus equation (9) to (11},
we assume that in the neighbourhood of the plate

8= [ 1M+ EeWt (1 - gy (n))
“p= [1-g; (M) + Eet [1-g, 1)) e e g
u 2wy M)+ e u M) . ~ ey A

ting the term containing K and its higher order, and equating the fike power =~ 7'
of K . we get - T e R e R e

A

Equation (9) te (11) in connection with equation [13) have the form neqlec-., .+ 4,

Kug" b ug s ug - ug =Gy & - G 8, L [ T g
K U‘; +1r=K -!-:% i u'l' Fudo- | L! +Mluy =g P L L LA I
: i e T
1 + Pr f{-flar::'-l( | | "*.“E;
f;-rPr&'-[Lui! +aci==[l_3_r_uj_! + ‘ | - ...J;H?}
where prime denotes the differential with respect to 7| .
Solving equation (18] and (17)
Ao TS ey R B R G s g
: T £ e
gy =1- - ;3 % exp [ S.M 1. g5 =1 '. ‘ '_ :?l_:I.IB:‘
Thus
4 = — IzH_:: exp (-H,M) 5 W Y ...lzu-hj:
ﬂz=1+13 5 exp (5.7 ) : . " B 3 1
To solve equation (14) and (15) we. again expand ug and uyqin power r s
of K. i.e. ; )
Uy = Ugq (M) + K ug, + OIKZ) SHY
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Ug = uyy )+ K ugy * ﬂ':le ” .,,[23'

Substituting (22} and (23) in (18]} and (15). equating the coeffi-
cient different power of K and neglecting the term containing the
power K2 and its higher order and using {20] and (21), we get the
following equations

I“:"l tu'gy Mg = - 1 f‘thzupi-Hz n}
. G exp (- SN ...(20)
T+h3S, .
Ugz * gz = Mug, = - uw:“ ...(28)
uft Wy " (pe+Mugy =0 : v» A26)
£ “1.! +u' 12 " ﬂw + Mluyp = - u" " + iw “t1 ... 027)

and the curmpundmg boundary conditions are , : ( e
ugy = hy Wage Ugz = Py Wgp Uy = u'yy uyz = hy Vyp

' : ath=20 ...(28)
gy ~—a0 ugy; —l. uyy—»0. u11u;;ﬂ as n —s a0

=4

Splving echu:thn {2] 1o (27) under the boundary conditinn {28)"
and substituting it in (23} and (24) we get

' ug = By expl-Hy 7)) - By exp (=HaT]) - By exp (-ScM!

+ K [B7 exp (=H{¥1) + ByY\ - exp (=H M) - Bsi*-Hz"i’U

+ Bg exp (-5, M| .. 429)
and Uy =0 :

Mow. the shear stress at the plate in the slip flnw rugimt {in non-

l:llllg'lmlimd form is

e g
. B = H-: ‘33 + K B?] + K Eu * Hz [31 + K BEI'
+ 5': Iaz + K Bﬁ] o4 4301

The rate of heat transfer at the plate in non-dimengional form
Is

:._q*i__gil = -Hy .. A31)
- N N=o T+Hzhz :
The rate of mass diffusion In non~dimensional form is
il1' (%2 ) =- S 1 _
. 3 M=e  TFS By ~e o 82)
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RESULTS AND DISCUSSION e B e Buseisne of sl e
To study the ‘effect of constant heat source on veldcity ‘of newtonian ‘and™ ' """
non-newtonian -rarefied gas. some caiculations are-carried out. Fig.1 and Filgi? =~ °
show the velocity profiles of newtonian and non-newtonian rarefied ges agalist' - "~
y with respect to constant heat source of absorption type. From Fig.1 and
Fig.2? we achieve an important conclusion that there exists an inverse rela- =
tion between o¢ and u where o is a heat source parameter. There i§ minute
change in velocity profiles of Newtonian and non-newtonian. rarefied gas.for |

same value of of .

o
"
¥

40} 40}
0= I. a2, k20 e s Jf 1 d =2,K%|
H &3, Kap d d *#3, K=
H o*d4,k=0 O o4 K=
20| B L+%,K=0 . 20k O d=3,K21 :

—_—
Figure 1: Newtonian rarefied gas Figure 2: Non-Newtonian rarefied gas

Fig.3 and Fig.4 describe the nature of velocity profiles in case of newtonian

= non rarefied and Non-newtonian - non rarefied gas against y in sence-of - =
constant heat source. From Fig. 3 and Fig.4 it is observed that thﬁ is an

also inverse relation between~and ' u.

a0 - [0~ S RN AT
; T e
FTe] . e ; ;
7ol 1 e _
[. @32, K40 L & e kel
&0)- T a1 k0 6ok T Do »3 Kal . TeR
l] T cosd, %0 O d =4.5e
=0L- B di8, KeD 50k E o 8, Kt
I
l‘ 40 40
el Ei = Figure 4:
' gure 3= Non-Newtopian
== Newtonian 6 R
ew ik non-ramﬂtdﬁgn
0 non-rarefied gas i
o °
: 1 2 3 4. 3 & "

37 JOURNAL OF THE UNIVERSITY OF SCIENCE AWD TECHMOLOGY, WOL.9 MO.1 FERRUARY, 1989



wiD FLOW OF RAREFIED GAS - J. SINGH AND B.K. JEA

CONCLUSION

In the case of newtonian rarefied gas and non-newtonian rarefied gas the
velocity, profiles first increases then decreases but in the case of Newtonlan
ﬂﬂﬂ‘fw;lﬂd non-Newtonlan rarefied gas velocity profiles decreases con-
tiﬂm !-__}. br: ._, g 5 " ;
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APPENDIX .
H|=%1+{HM+1H‘.H2='}Pr+4HPr?+uﬂ<
i G
E'I = G1 . Bz= 2
lI1+th2! (Ha2 - Hy -1 ) (1+8S. hy! (5.2 -5, -M
8, = BilhiHa ¢ 1) # By(14S, hy) | g, = 3 Hy
’ 1+ Hy by 1-2H,
3 3
H,” B S, B
B = 7 1 Bg = A
(Hp? = Hy- M) ; (8 2-S. =M .. - el el
R ¢
By-= AHy hy + 1)Hg + Bgl1 + S hyl + By hy :
" 1.+ Hy hy
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