Main Article Content
Filtrage des effets de texture en vue de la réalisation d’appareils de mesure sans contact
Abstract
Les surfaces usinées brutes de fraisage sont constituées de microstructures disposées aléatoirement, qui leur donnent un comportement optique plutôt ambigu. En éclairage cohérent, elles dispersent la lumière et créent des figures de Speckle (ou tavelures). Ces dernières génèrent un bruit associé au faisceau réfléchi. Elles sont une source d’erreur considérable pour les appareils de mesure dimensionnelle sans contact. Dans la présente étude, en utilisant le principe du microscope confocal, nous focalisons sur divers échantillons, pièces usinées en acier, en aluminium et en laiton un faisceau laser préalablement mis en forme. L’onde lumineuse réfléchie par la surface sous test, après avoir subi un filtrage, est détectée avec une caméra CCD, qui la transmet ensuite à un micro ordinateur, où elle subit divers traitements informatiques. En explorant une petite distance le long de l’axe optique, nous en tirons une courbe de variation d’intensité au voisinage de la mise au point. La technique de filtrage proposée, permet de supprimer la composante diffuse de l’onde réfléchie par l’échantillon, et par conséquent le Speckle. Le faisceau réfléchi modélisé est rendu pratiquement identique à celui que renvoie un miroir parfait.
Engineering surfaces are constituted by randomly disposed microstructures which give them a rather ambiguous behaviour: they cannot just totally diffuse, or perfectly reflect the light. When illuminated by coherent light, they produce speckle patterns. These patterns constitute the noise associated to the reflected beam, on which is based the processing in optical systems; it is a great error source for contactless dimension measurement equipment. By using the confocal principle we focus a previously shaped laser beam on the sample. The light reflected by the surface under test is filtered and detected by a CCD camera which transmits the signal to a computer where some processing is applied. When scanning a small distance on the optical axis, we obtain the intensity variation curve near the focus, and we did it for samples of steel, aluminium or brass, such as manufactured, in one case using a tool milling machine with one head and in the second case, with a multiple head tool. The proposed optical filtering technique, which consists in a rotating slit positioned in the focal plane of the device objective, allows the suppression of the scattered light and consequently, of the associated speckle patterns. So, the modelled beam looks practically as if reflected by a mirror, which should improve significantly the measurement precision.