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Abstract

In this study, we derived two analytical solutions to a one-dimensional Advection-Diffusion Equation (ADE). 
The ADE is solved using a constant and exponentially decaying inlet boundary condition, together with 
Dirichlet and Neumann outlet conditions. The analytic solutions are shown to be simple if a combination of 
the initial concentration and the transformed boundary condition results in a non-zero singularity pole of 
inverse Laplace transform. The differences between the two analytic solutions are elucidated. Moreover, the 
analytical solutions are compared to some observational data from the Fena River in the Ashanti region of 
Ghana where illegal mining activities (locally referred to as “galamsey”) have been reported. The analytical 
results well capture the concentration of iron at two sampling locations for both the Dirichlet and Neumann 
models but poorly predict the concentration at a third location. Some possible reasons for this discrepancy 
have been hypothesized for future investigations. 

Introduction 
Water is essential to our existence and survival and its 
importance cannot be overstated. Rivers, being the most 
significant sources of water, are the lifeblood of humans. 
Not only does a river act as a primary source of irrigation 
for the majority of agricultural communities across the 
globe, but it also supplies clean and fresh water for daily 
necessities of living.

One major issue that poses a serious threat to both 
human life and the aquatic ecosystem is water pollution.  
Water pollution occurs when hazardous substances, 
such as chemicals or microbes, infiltrate an ocean, 
lake, stream, aquifer, or a river body, deteriorating 
water quality and making it harmful to humans or the 
environment.  According to the Ghana Water Resource 
Commission, nearly 60% of water bodies in Ghana 
are polluted due to illegal mining and inappropriate 
agriculture methods (Mubarik, 2017).  The discharge of 
waste substances, which contain hazardous compounds 
such as mercury and other organic chemicals used in 
mineral ores processing in mining activities. These 
waste substances contribute heavily to water pollution 

in Ghana, posing a greater threat to aquatic life and the 
human population that relies on such resources (Duncan 
et al., 2020). According to the Ministry of Lands and 
Natural resources, Ghana risks importing water as illegal 
miners devastate the country’s rivers (Ghanaian Times, 
2022). Once river bodies become polluted it is extremely 
difficult to clean up.

The transport of pollutants in rivers has become a matter 
of concern for environmental engineers and scientists 
as well as mathematical modelers. The effective control 
of these pollutants is critical for efficient management 
of their impact on the environment (Zoppou & Knight, 
1997). The concentration of these pollutants released 
into water bodies may be described by an Advection-
Diffusion Equation (ADE), a partial differential 
equation of parabolic type. The ADE describes a physical 
phenomenon whereby contaminants or other unwanted 
substances are transported inside a physical system due 
to two processes: advection and diffusion.  The ADE 
has extensively been used to model water pollution 
phenomenon (Schaffner et al., 2009, Genuchten et al., 
2013, Manitcharoen & Pimpunchat, 2020). It also has 
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a wide range of applications in many engineering fields 
such as modeling atmospheric pollutants (Costa et al., 
2006, Moreira et al., 2006), tracer dispersion in a porous 
medium (Ogata & Banks 1961), and the intrusion of salt 
water into freshwater aquifers (Essink, 2001).

Obtaining analytic solutions to the Advection-Diffusion 
Equation is of great importance in mathematics. Analyti-
cal solutions are especially critical for validating solutions 
of the ADE obtained using numerical methods. Many an-
alytical solutions along with varying initial and bound-
ary conditions have been developed to quantitatively 
describe the one-dimensional ADE with constant coef-
ficients. A one-dimensional (1D) single-ion ADE, which 
involves terms accounting for zero-order production, 
linear equilibrium adsorption, and first-order decay, was 
solved analytically by Van Genuchten (1982). Mohsen 
and Baluch (1983) provided an analytic solution to a 1D 
ADE for fixed concentration boundary conditions over 
a finite domain.  The transformed equation was decom-
posed into two components and separation of variables 
was used to obtain the required result. Davis (1985), us-
ing a Laplace transform technique, provided two distinct 
analytic solutions to a single ADE over a finite domain. 
One solution was found to be continuous at both ends 
of the domain, and the other is discontinuous at the ori-
gin. In other to resolve the discontinuity at the origin, he 
compared the discontinuous analytic solution to the one 
provided by Mohsen and Baluch (1983) in Eq (20) of his 
paper. He found that his results and that of Mohsen and 
Baluch (1983) were the same but was incorrectly given 
as the negative of his solution. He stated that the discon-
tinuity at the origin in the equation was due to the Fouri-
er sine series expansion for the ratio of hyperbolic sines. 
In a semi-infinite domain where the diffusion coefficient 
is proportional to the square of the spatially dependent 
velocity, Kumar et al., (2012) presented an analytic solu-
tion to a 1D ADE with variable coefficients using the La-
place transform technique. Mojtabi and Deville (2015) 
also provided an analytical solution to a one-dimensional 
ADE using separation of variables but with a sinusoidal 
initial condition and a homogeneous boundary condi-
tion. Using a one-sided Laplace transform, Kim (2020) 
provided analytic solutions to a 1D Convection-Diffu-

sion Reaction Source (CDRS) equation without explic-
itly computing the inverse Laplace transform. The CDRS 
equation was solved for both Dirichlet/Dirichlet and Di-
richlet/Neumann boundary conditions together with a 
constant initial condition. Unlike most previous research 
on the ADE, few have provided analytical solutions to a 
one-dimensional ADE subject to an exponentially decay-
ing boundary condition.

This paper presents analytic solutions to a one-dimen-
sional ADE using constant initial condition and an ex-
ponentially decaying inlet boundary condition, together 
with Dirichlet and Neumann outlet conditions. With-
out directly computing the inverse Laplace transform, 
solutions to the ADE are obtained using the Laplace 
transform technique and the residue theorem approach 
in complex analysis as employed in Kim (2020). Addi-
tionally, the analytical solutions are compared to some 
observational data and the differences between the two 
are discussed.

Background Theory
The one-dimensional Advection-Diffusion Equation, 
with constant coefficients which is derived from the 
principle of mass conservation, is given by 
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The choice of the exponentially decaying inlet BC is motivated by observational data in Fena 
River in Ghana (Duncan et al., 2020), where the pollutant at the inlet appears to be decaying 
in time as shown later. 
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We next introduce and discuss two analytical solutions 
to the 1D ADE with Dirichlet boundary condition 
(referred to as Dirichlet Model) and Neumann boundary 
condition (referred to as Neumann Model). 

Dirichlet Model
The equation to be solved is 

subject to boundary conditions (BCs):

              

                                         

and initial condition 

The choice of the exponentially decaying inlet BC is 
motivated by observational data in Fena River in Ghana 
(Duncan et al., 2020), where the pollutant at the inlet 
appears to be decaying in time as shown later.

Applying the Laplace transform 

to Eq. (3) gives a second order ordinary differential 
equation

                                                                                                 

                                                                                             

where

           

Define a new function as:

 We now write Eq. (8) as 

                                                                                       

The general solution for 

 4 

to Eq. (3) gives a second order ordinary differential equation 
 

                                                
T-U
T?-

 − 2𝜆𝜆	 𝑑𝑑Φ𝑑𝑑𝑑𝑑 − 𝑝𝑝Φ = −𝜔𝜔&                                               (7) 

 
                                              V𝔇𝔇? − 𝜆𝜆XYV𝔇𝔇? − 𝜆𝜆QYΦ = −𝜔𝜔& ,                                            (8) 
                                                
where 

             𝔇𝔇? = 
T
T?

 ,  𝜆𝜆X = 𝜆𝜆 − 𝛽𝛽 , 𝜆𝜆Q = 𝜆𝜆 + 𝛽𝛽  and 𝛽𝛽 = [𝜆𝜆8 + 𝑝𝑝 . 

 
Define a new function as: 
 
                                           Φ\ ≔ V𝔇𝔇? − 𝜆𝜆QYΦ = 𝑒𝑒^_?𝔇𝔇𝑑𝑑`Φ𝑒𝑒E^_?a.                              (9) 
 
We now write Eq. (8) as  
                                                   𝑒𝑒^b?𝔇𝔇𝑑𝑑`Φ†𝑒𝑒E^b?a = −𝜔𝜔0 .                                       (10) 
 
The general solution for Φ\ is  
 

                                          Φ\ = 𝐵𝐵G𝑒𝑒𝜆𝜆𝑚𝑚𝑑𝑑 + 
fg
^b

 .                     (11) 
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𝜔𝜔0
𝑝𝑝                                (12) 

 
where 

                                        Φ(0, 𝑝𝑝) = 
=g
QhF

  and  Φ(1, 𝑝𝑝) = 
=i
Q

 .                             (13) 
 
Applying Eq. (13) above to Eq. (12) gives  
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j

𝜙𝜙0
𝑝𝑝	+	𝛾𝛾	E	

𝜔𝜔0
𝑝𝑝 l	:m	E	j	

𝜙𝜙1
𝑝𝑝 	E	

𝜔𝜔0
𝑝𝑝 	l	:

no

8 pqrst
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𝜔𝜔0
𝑝𝑝 l	:no		E		j	
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𝜔𝜔0
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nm
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To solve Eq. (16), one must apply the inverse Laplace transform (iLT) defined below which involves the method of 
contour integration and calculus of residues. 

               .                       
However, this approach is most often difficult to use. Here, we apply the method devised by Kim (2020) which states 
that if a Laplace transformed function has only two singularity poles, z = z0 (contributing to the steady-state solution) 
and  z = z1 (contributing to the transient behaviour), then the inverse Laplace transform can be avoided by applying the 
initial condition. To apply this method, we first let

              

and also let 

                       

where 

 5 

 
                            −	 {𝜔𝜔0	sinh	V𝛽𝛽`1	−	𝜉𝜉aY	+	𝜔𝜔0𝑒𝑒−𝜆𝜆 sinh`𝛽𝛽𝜉𝜉a

sinh𝛽𝛽 | 𝑒𝑒
𝜆𝜆𝜉𝜉

𝑝𝑝	  +
𝜔𝜔0
𝑝𝑝  .             (16) 

 
To solve Eq. (16), one must apply the inverse Laplace transform (iLT) defined below which 
involves the method of contour integration and calculus of residues.  
 

            𝜙𝜙(𝜉𝜉, 𝜏𝜏) = ℒEG[Φ(𝜉𝜉, ∙)](𝜏𝜏) = 
G

8}~	
 ∫ 𝑒𝑒𝜏𝜏𝜏𝜏Φ(𝜉𝜉, 𝜏𝜏)𝑑𝑑𝜏𝜏€h~R
€E~R .                        

                      
However, this approach is most often difficult to use. Here, we apply the method devised by 
Kim (2020) which states that if a Laplace transformed function has only two singularity poles, 
𝜏𝜏 = 𝜏𝜏& (contributing to the steady-state solution) and 𝜏𝜏 = 𝜏𝜏G (contributing to the transient 
behaviour), then the inverse Laplace transform can be avoided by applying the initial condition. 
To apply this method, we first let 
 

             ΦÅ"(𝜉𝜉, 𝑝𝑝) = 	 u
𝜙𝜙0	sinh	V𝛽𝛽`1	−	𝜉𝜉aY

sinh𝛽𝛽 z 𝑒𝑒𝜆𝜆𝜉𝜉
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𝜙𝜙1𝑒𝑒−𝜆𝜆	sinh	`𝛽𝛽𝜉𝜉a
sinh𝛽𝛽 | 𝑒𝑒

𝜆𝜆𝜉𝜉

𝑝𝑝	  

 
          Φ‚"(𝜉𝜉, 𝑝𝑝) = −	 {𝜔𝜔0	sinh	V𝛽𝛽`1	−	𝜉𝜉aY	+	𝜔𝜔0𝑒𝑒−𝜆𝜆 sinh`𝛽𝛽𝜉𝜉a

sinh𝛽𝛽 | 𝑒𝑒
𝜆𝜆𝜉𝜉

𝑝𝑝	  +
𝜔𝜔0
𝑝𝑝  , 
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                           ΦÅ"i(𝜉𝜉, 𝑝𝑝) = 	 u
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𝑝𝑝	+	𝛾𝛾 ,   

  

                           ΦÅ"-(𝜉𝜉, 𝑝𝑝) =  {
𝜙𝜙1𝑒𝑒−𝜆𝜆	sinh	`𝛽𝛽𝜉𝜉a

sinh𝛽𝛽 | 𝑒𝑒
𝜆𝜆𝜉𝜉

𝑝𝑝	  , 
 
where  ΦÅ"i, ΦÅ"- and Φ‚"  are partial solutions of Φ. We replace the Laplace parameter 𝑝𝑝 by 
the complex variable 𝜏𝜏 and write the iLT of Eq. (16) as 
 

𝜙𝜙(𝜉𝜉, 𝜏𝜏) = ℒEG[Φ(𝜉𝜉, ∙)](𝜏𝜏) = 
G

8}~	
 ∫ 𝑒𝑒𝜏𝜏𝜏𝜏Φ(𝜉𝜉, 𝜏𝜏)𝑑𝑑𝜏𝜏€h~R
€E~R  

 
            = ResVexp(𝜏𝜏𝜏𝜏)ΦÅ"i(𝜉𝜉, 𝜏𝜏) + exp(𝜏𝜏𝜏𝜏)ΦÅ"-(𝜉𝜉, 𝜏𝜏) + exp(𝜏𝜏𝜏𝜏)Φ‚"(𝜉𝜉, 𝜏𝜏)Y. 
 
 
The expressions exp(𝜏𝜏𝜏𝜏)ΦÅ"i(𝜉𝜉, 𝜏𝜏), exp(𝜏𝜏𝜏𝜏)ΦÅ"-(𝜉𝜉, 𝜏𝜏) and exp(𝜏𝜏𝜏𝜏)Φ‚"(𝜉𝜉, 𝜏𝜏) have simple 
poles at  𝜏𝜏 = 0 and 𝜏𝜏 = −𝛾𝛾. 
 
The Residue of  exp(𝜏𝜏𝜏𝜏)ΦÅ"(𝜉𝜉, 𝜏𝜏) and exp(𝜏𝜏𝜏𝜏)Φ‚"(𝜉𝜉, 𝜏𝜏) at the simple poles are calculated  
as follows:  
 
             Res(Φ, z = −𝛾𝛾) = lim

Š→EF
V(𝜏𝜏 + 𝛾𝛾)ΦÅ"i(𝜉𝜉, 𝜏𝜏)𝑒𝑒𝜏𝜏𝜏𝜏Y = 𝑓𝑓Åi𝑒𝑒𝜆𝜆𝜉𝜉−𝛾𝛾𝜏𝜏, 

 where  
                         

 6 

                             𝑓𝑓Åi = u𝜙𝜙0	sinh	ω`1	−	𝜉𝜉a
sinh𝜔𝜔 z                                                                (17) 

  
and 𝜔𝜔 = [𝜆𝜆8 − 𝛾𝛾. For physically relevant solutions, we suppose that 𝜆𝜆8 > 𝛾𝛾. Solutions for the 
case where 𝜆𝜆8 < 𝛾𝛾 can be derived (see Obeng-Forson, 2022) but yield unrealistic values.  
 
 
Similarly,  
 
              Res(Φ, z = 0) = lim

Š→&
V𝑧𝑧ΦÅ"-(𝜉𝜉, 𝑧𝑧)𝑒𝑒𝜏𝜏𝑧𝑧Y = 𝑓𝑓Å-𝑒𝑒𝜆𝜆𝜉𝜉, 

 
where                        

                             𝑓𝑓Å- = {𝜙𝜙1𝑒𝑒
−𝜆𝜆	sinh	`𝜆𝜆	𝜉𝜉a
sinh𝜆𝜆 |.                                                                (18) 

Also, 
 
                Res(Φ, z = 0) = lim

Š→&
[𝑧𝑧Φ‚"(𝜉𝜉, 𝑧𝑧)𝑒𝑒𝜏𝜏𝑧𝑧] = −𝑓𝑓"𝑒𝑒𝜆𝜆𝜉𝜉 + 𝜔𝜔& , 

 
where    

                             𝑓𝑓" = 
fg	pqrs	[^(G	E	?)]	h	fg:no pqrs(^?)

pqrs^
 .                      (19) 

 
Besides, ΦÅ"(𝜉𝜉, 𝑧𝑧) and Φ‚"(𝜉𝜉, 𝑧𝑧) have the same pole when 
 
                                  sinh𝛽𝛽 = 0		 ⟹ 			𝑧𝑧 = −𝜆𝜆8. 
 
The Residues at 𝑧𝑧 = −𝜆𝜆8 are calculated below. That of exp(𝜏𝜏𝑧𝑧)ΦÅ"i(𝜉𝜉, 𝑧𝑧) is calculated as 
 

                        lim
Š→E^-

V(𝑧𝑧 + 𝜆𝜆8)𝑒𝑒𝜏𝜏𝑧𝑧ΦÅ"i(𝜉𝜉, 𝑧𝑧)Y = − 
:o‘no-’

^-	E	F
 ℛV𝑓𝑓ÅiY ,  

where  

                  ℛV𝑓𝑓ÅiY = lim
Š→E^-

(𝑧𝑧 + 𝜆𝜆8) j
𝜙𝜙0	sinh	β`1	−	𝜉𝜉a

sinh𝛽𝛽 l 
 
and 𝛽𝛽 = √𝜆𝜆8 + 𝑧𝑧 . 
 
Similarly, the Residue of exp(𝜏𝜏𝑧𝑧)ΦÅ"-(𝜉𝜉, 𝑧𝑧) is calculated as 
 

                    lim
Š→E^-

V(𝑧𝑧 + 𝜆𝜆8)𝑒𝑒𝜏𝜏𝑧𝑧ΦÅ"-(𝜉𝜉, 𝑧𝑧)Y = − 
:o‘no-’

^-
 ℛV𝑓𝑓Å-Y 

 
where  

                  ℛV𝑓𝑓Å-Y = lim
Š→E^-

(𝑧𝑧 + 𝜆𝜆8) –
𝜙𝜙1𝑒𝑒−𝜆𝜆	sinh	`𝛽𝛽	𝜉𝜉a

sinh𝛽𝛽 —. 

 
Lastly, the residue of exp(𝜏𝜏𝑧𝑧)Φ‚"(𝜉𝜉, 𝑧𝑧) is 
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                             𝑓𝑓Åi = u𝜙𝜙0	sinh	ω`1	−	𝜉𝜉a
sinh𝜔𝜔 z                                                                (17) 

  
and 𝜔𝜔 = [𝜆𝜆8 − 𝛾𝛾. For physically relevant solutions, we suppose that 𝜆𝜆8 > 𝛾𝛾. Solutions for the 
case where 𝜆𝜆8 < 𝛾𝛾 can be derived (see Obeng-Forson, 2022) but yield unrealistic values.  
 
 
Similarly,  
 
              Res(Φ, z = 0) = lim

Š→&
V𝑧𝑧ΦÅ"-(𝜉𝜉, 𝑧𝑧)𝑒𝑒𝜏𝜏𝑧𝑧Y = 𝑓𝑓Å-𝑒𝑒𝜆𝜆𝜉𝜉, 

 
where                        

                             𝑓𝑓Å- = {𝜙𝜙1𝑒𝑒
−𝜆𝜆	sinh	`𝜆𝜆	𝜉𝜉a
sinh𝜆𝜆 |.                                                                (18) 

Also, 
 
                Res(Φ, z = 0) = lim

Š→&
[𝑧𝑧Φ‚"(𝜉𝜉, 𝑧𝑧)𝑒𝑒𝜏𝜏𝑧𝑧] = −𝑓𝑓"𝑒𝑒𝜆𝜆𝜉𝜉 + 𝜔𝜔& , 

 
where    

                             𝑓𝑓" = 
fg	pqrs	[^(G	E	?)]	h	fg:no pqrs(^?)

pqrs^
 .                      (19) 

 
Besides, ΦÅ"(𝜉𝜉, 𝑧𝑧) and Φ‚"(𝜉𝜉, 𝑧𝑧) have the same pole when 
 
                                  sinh𝛽𝛽 = 0		 ⟹ 			𝑧𝑧 = −𝜆𝜆8. 
 
The Residues at 𝑧𝑧 = −𝜆𝜆8 are calculated below. That of exp(𝜏𝜏𝑧𝑧)ΦÅ"i(𝜉𝜉, 𝑧𝑧) is calculated as 
 

                        lim
Š→E^-

V(𝑧𝑧 + 𝜆𝜆8)𝑒𝑒𝜏𝜏𝑧𝑧ΦÅ"i(𝜉𝜉, 𝑧𝑧)Y = − 
:o‘no-’

^-	E	F
 ℛV𝑓𝑓ÅiY ,  

where  

                  ℛV𝑓𝑓ÅiY = lim
Š→E^-

(𝑧𝑧 + 𝜆𝜆8) j
𝜙𝜙0	sinh	β`1	−	𝜉𝜉a

sinh𝛽𝛽 l 
 
and 𝛽𝛽 = √𝜆𝜆8 + 𝑧𝑧 . 
 
Similarly, the Residue of exp(𝜏𝜏𝑧𝑧)ΦÅ"-(𝜉𝜉, 𝑧𝑧) is calculated as 
 

                    lim
Š→E^-

V(𝑧𝑧 + 𝜆𝜆8)𝑒𝑒𝜏𝜏𝑧𝑧ΦÅ"-(𝜉𝜉, 𝑧𝑧)Y = − 
:o‘no-’

^-
 ℛV𝑓𝑓Å-Y 

 
where  

                  ℛV𝑓𝑓Å-Y = lim
Š→E^-

(𝑧𝑧 + 𝜆𝜆8) –
𝜙𝜙1𝑒𝑒−𝜆𝜆	sinh	`𝛽𝛽	𝜉𝜉a

sinh𝛽𝛽 —. 

 
Lastly, the residue of exp(𝜏𝜏𝑧𝑧)Φ‚"(𝜉𝜉, 𝑧𝑧) is 
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                      lim
Š→E^-

[(𝑧𝑧 + 𝜆𝜆8)𝑒𝑒𝜏𝜏𝑧𝑧Φ‚"(𝜉𝜉, 𝑧𝑧)] =  
:o‘no-’

^-
 ℛ[𝑓𝑓"] 

 
where  

                       ℛ[𝑓𝑓"] = lim
Š→E^-

(𝑧𝑧 + 𝜆𝜆8) –𝜔𝜔0	sinh	V𝛽𝛽`1	−	𝜉𝜉aY	+	𝜔𝜔0𝑒𝑒−𝜆𝜆 sinh`𝛽𝛽𝜉𝜉a
sinh𝛽𝛽 	— 

 
and ℛ[𝑓𝑓] indicates the specific residue to be calculated for	𝑧𝑧 = −𝜆𝜆8. 
 
Using the calculated residues, the solution can now be written in terms of 𝜏𝜏 as 
 
            𝜙𝜙(𝜉𝜉, 𝜏𝜏) = 𝑓𝑓Åi𝑒𝑒𝜆𝜆𝜉𝜉−𝛾𝛾𝜏𝜏 + 𝑓𝑓Å-𝑒𝑒𝜆𝜆𝜉𝜉 − 𝑓𝑓"𝑒𝑒𝜆𝜆𝜉𝜉 − (𝜆𝜆8 − 𝛾𝛾)EG𝑒𝑒𝜆𝜆𝜉𝜉−𝜆𝜆

2𝜏𝜏	ℛV𝑓𝑓ÅiY 

                                             −𝜆𝜆E8𝑒𝑒𝜆𝜆𝜉𝜉−𝜆𝜆
2𝜏𝜏	ℛV𝑓𝑓Å-Y + 𝜆𝜆E8𝑒𝑒𝜆𝜆𝜉𝜉−𝜆𝜆

2𝜏𝜏	ℛ[𝑓𝑓"] + 𝜔𝜔&                 (20) 
 
where the residues ℛ[𝑓𝑓] are still unknown.  
 
A major step in the solution approach is to apply the initial condition 𝜙𝜙(𝜉𝜉, 0) = 𝜔𝜔& to Eq.(20) 
to calculate for the residues. 
 
This gives 
                (𝜆𝜆8 − 𝛾𝛾)EG	ℛV𝑓𝑓ÅiY +	𝜆𝜆

E8ℛV𝑓𝑓Å-Y − 𝜆𝜆E8ℛ[𝑓𝑓"] = 𝑓𝑓Åi + 𝑓𝑓Å- − 𝑓𝑓"  ,                      (21) 
 
and substituting Eq. (21) into Eq. (20) gives 
 
  𝜙𝜙(𝜉𝜉, 𝜏𝜏) = 𝑓𝑓Åi𝑒𝑒𝜆𝜆𝜉𝜉−𝛾𝛾𝜏𝜏 + 𝑓𝑓Å-𝑒𝑒𝜆𝜆𝜉𝜉 − 𝑓𝑓"𝑒𝑒𝜆𝜆𝜉𝜉 − `𝑓𝑓Åi + 𝑓𝑓Å- − 𝑓𝑓"a	𝑒𝑒𝜆𝜆𝜉𝜉−𝜆𝜆

2𝜏𝜏 	+ 𝜔𝜔& 
                                       (22) 
              = 𝑓𝑓Åi ˜𝑒𝑒−𝛾𝛾𝜏𝜏 − 	𝑒𝑒−𝜆𝜆

2𝜏𝜏™ 𝑒𝑒𝜆𝜆𝜉𝜉 + 𝑓𝑓Å-	 ˜1 − 	𝑒𝑒−𝜆𝜆
2𝜏𝜏™ 𝑒𝑒𝜆𝜆𝜉𝜉 − 𝑓𝑓" ˜1 − 	𝑒𝑒−𝜆𝜆

2𝜏𝜏™ 𝑒𝑒𝜆𝜆𝜉𝜉 + 𝜔𝜔& 
 
 
Substituting Eq. (17), Eq. (18) and Eq. (19) into Eq. (22) yields 
 

 𝜙𝜙(𝜉𝜉, 𝜏𝜏) = 
=g pqrsf(G	E	?)

pqrsf
 ˜𝑒𝑒−𝛾𝛾𝜏𝜏 − 	𝑒𝑒−𝜆𝜆

2𝜏𝜏™ 𝑒𝑒𝜆𝜆𝜉𝜉 + 
=i:no pqrs(^?)

pqrs^
 ˜1 − 	𝑒𝑒−𝜆𝜆

2𝜏𝜏™ 𝑒𝑒𝜆𝜆𝜉𝜉  
                  
                  −𝜔𝜔& jsinh𝜆𝜆`1	−	𝜉𝜉a	+𝑒𝑒

−𝜆𝜆 sinh`𝜆𝜆𝜉𝜉a
sinh𝜆𝜆 l ˜1 − 	𝑒𝑒−𝜆𝜆

2𝜏𝜏™ 𝑒𝑒𝜆𝜆𝜉𝜉 + 𝜔𝜔&.                          (23) 
 
The steady-state solution for 𝜙𝜙(𝜉𝜉, 𝜏𝜏) is given as 
 

𝜙𝜙šš(𝜉𝜉) = 
=i:no pqrs(^?)

pqrs^
𝑒𝑒𝜆𝜆𝜉𝜉 − 𝜔𝜔0 ›

pqrs^(G	E	?)	h:no pqrs(^?)
pqrs^

œ 𝑒𝑒𝜆𝜆𝜉𝜉 + 𝜔𝜔0 
 
The solution for 𝜙𝜙(𝜉𝜉, 𝜏𝜏) holds for 0 < 𝜉𝜉 < 1 but it does not satisfy the conditions at the 
boundaries in general. However, it can be shown that to satisfy the inlet boundary condition, 
we must have 𝜔𝜔& = 𝜙𝜙&. Similarly, to satisfy only the outlet condition one must have 𝜔𝜔& = 𝜙𝜙G. 
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                      lim
Š→E^-

[(𝑧𝑧 + 𝜆𝜆8)𝑒𝑒𝜏𝜏𝑧𝑧Φ‚"(𝜉𝜉, 𝑧𝑧)] =  
:o‘no-’

^-
 ℛ[𝑓𝑓"] 

 
where  

                       ℛ[𝑓𝑓"] = lim
Š→E^-

(𝑧𝑧 + 𝜆𝜆8) –𝜔𝜔0	sinh	V𝛽𝛽`1	−	𝜉𝜉aY	+	𝜔𝜔0𝑒𝑒−𝜆𝜆 sinh`𝛽𝛽𝜉𝜉a
sinh𝛽𝛽 	— 

 
and ℛ[𝑓𝑓] indicates the specific residue to be calculated for	𝑧𝑧 = −𝜆𝜆8. 
 
Using the calculated residues, the solution can now be written in terms of 𝜏𝜏 as 
 
            𝜙𝜙(𝜉𝜉, 𝜏𝜏) = 𝑓𝑓Åi𝑒𝑒𝜆𝜆𝜉𝜉−𝛾𝛾𝜏𝜏 + 𝑓𝑓Å-𝑒𝑒𝜆𝜆𝜉𝜉 − 𝑓𝑓"𝑒𝑒𝜆𝜆𝜉𝜉 − (𝜆𝜆8 − 𝛾𝛾)EG𝑒𝑒𝜆𝜆𝜉𝜉−𝜆𝜆

2𝜏𝜏	ℛV𝑓𝑓ÅiY 

                                             −𝜆𝜆E8𝑒𝑒𝜆𝜆𝜉𝜉−𝜆𝜆
2𝜏𝜏	ℛV𝑓𝑓Å-Y + 𝜆𝜆E8𝑒𝑒𝜆𝜆𝜉𝜉−𝜆𝜆

2𝜏𝜏	ℛ[𝑓𝑓"] + 𝜔𝜔&                 (20) 
 
where the residues ℛ[𝑓𝑓] are still unknown.  
 
A major step in the solution approach is to apply the initial condition 𝜙𝜙(𝜉𝜉, 0) = 𝜔𝜔& to Eq.(20) 
to calculate for the residues. 
 
This gives 
                (𝜆𝜆8 − 𝛾𝛾)EG	ℛV𝑓𝑓ÅiY +	𝜆𝜆

E8ℛV𝑓𝑓Å-Y − 𝜆𝜆E8ℛ[𝑓𝑓"] = 𝑓𝑓Åi + 𝑓𝑓Å- − 𝑓𝑓"  ,                      (21) 
 
and substituting Eq. (21) into Eq. (20) gives 
 
  𝜙𝜙(𝜉𝜉, 𝜏𝜏) = 𝑓𝑓Åi𝑒𝑒𝜆𝜆𝜉𝜉−𝛾𝛾𝜏𝜏 + 𝑓𝑓Å-𝑒𝑒𝜆𝜆𝜉𝜉 − 𝑓𝑓"𝑒𝑒𝜆𝜆𝜉𝜉 − `𝑓𝑓Åi + 𝑓𝑓Å- − 𝑓𝑓"a	𝑒𝑒𝜆𝜆𝜉𝜉−𝜆𝜆

2𝜏𝜏 	+ 𝜔𝜔& 
                                       (22) 
              = 𝑓𝑓Åi ˜𝑒𝑒−𝛾𝛾𝜏𝜏 − 	𝑒𝑒−𝜆𝜆

2𝜏𝜏™ 𝑒𝑒𝜆𝜆𝜉𝜉 + 𝑓𝑓Å-	 ˜1 − 	𝑒𝑒−𝜆𝜆
2𝜏𝜏™ 𝑒𝑒𝜆𝜆𝜉𝜉 − 𝑓𝑓" ˜1 − 	𝑒𝑒−𝜆𝜆

2𝜏𝜏™ 𝑒𝑒𝜆𝜆𝜉𝜉 + 𝜔𝜔& 
 
 
Substituting Eq. (17), Eq. (18) and Eq. (19) into Eq. (22) yields 
 

 𝜙𝜙(𝜉𝜉, 𝜏𝜏) = 
=g pqrsf(G	E	?)

pqrsf
 ˜𝑒𝑒−𝛾𝛾𝜏𝜏 − 	𝑒𝑒−𝜆𝜆

2𝜏𝜏™ 𝑒𝑒𝜆𝜆𝜉𝜉 + 
=i:no pqrs(^?)

pqrs^
 ˜1 − 	𝑒𝑒−𝜆𝜆

2𝜏𝜏™ 𝑒𝑒𝜆𝜆𝜉𝜉  
                  
                  −𝜔𝜔& jsinh𝜆𝜆`1	−	𝜉𝜉a	+𝑒𝑒

−𝜆𝜆 sinh`𝜆𝜆𝜉𝜉a
sinh𝜆𝜆 l ˜1 − 	𝑒𝑒−𝜆𝜆

2𝜏𝜏™ 𝑒𝑒𝜆𝜆𝜉𝜉 + 𝜔𝜔&.                          (23) 
 
The steady-state solution for 𝜙𝜙(𝜉𝜉, 𝜏𝜏) is given as 
 

𝜙𝜙šš(𝜉𝜉) = 
=i:no pqrs(^?)

pqrs^
𝑒𝑒𝜆𝜆𝜉𝜉 − 𝜔𝜔0 ›

pqrs^(G	E	?)	h:no pqrs(^?)
pqrs^

œ 𝑒𝑒𝜆𝜆𝜉𝜉 + 𝜔𝜔0 
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When 𝛾𝛾 = 0 we recover the general solution provided by Kim (2020) (Eq. (8) in his paper for 
𝜅𝜅 = 0 and 𝜎𝜎 = 0.) 
 
Figure 1 shows plots of Eq. (23) for fixed values of 𝜏𝜏. When 𝛾𝛾 = 0, we recover the solution of 
Kim (2020) as displayed in Figure 1A. In this case, the concentration everywhere within the 
domain increases with time until the system reaches steady state, with concentration decreasing 
monotonically from the inlet to the outlet. 
 

Figure 1: Concentration at different times for 𝜆𝜆 = 0.5, 𝜙𝜙& = 1 and (A) γ = 0, ω& = 0 = ϕG           
(B) γ = 0.05, ω& = 0 = ϕG (C) γ = 0.05, ω& = 0, ϕG = 0.2 and (D) γ = 0.05, ω& = 0.2, 
ϕG = 0.4. 
 
However, in the presence of a decaying inlet condition with a Dirichlet outlet condition, the 
time evolution of concentration behaves differently from the case for which 𝛾𝛾 = 0 as seen in 
Figure 1B. Initially the concentration is zero except at the inlet where it has a maximum value 
of 𝜙𝜙(𝜉𝜉, 0) = 𝜙𝜙& = 1.  As time evolves, the concentration at the inlet begins to decrease while 
the concentration everywhere within the domain increases, with a monotonically decreasing 
shape as in Figure 1A. The concentration within the domain increases to a maximum point 
(around 𝜏𝜏 = 10 in this case) and begins to decrease (see the curve for 𝜏𝜏 = 16) and eventually 
goes to zero everywhere at steady-state.  
 
If both the initial concentration and 𝛾𝛾 are non-zero (e.g., 𝜔𝜔& = 𝜙𝜙G = 0.2, 𝛾𝛾 = 0.05), the 
solution behaves similarly to the case for 𝜔𝜔& = 0 (Figure 1B), but the rate of increase of 𝜙𝜙 
within the domain to the maximum point is much faster (Figure 1C), since the initial 
concentration is non-zero. Moreover, the steady state solution is not zero everywhere as in the 
previous case but increases gradually from zero at the inlet to the value at the outlet. Thus, in 
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this case, the concentration can decrease below the initial concentration due to the 
exponentially decreasing condition at the inlet. A more general case in which the initial 
condition and outlet value are non-zero and different from each other is shown in Figure 1D. 
The concentration increases to a maximum value as in Figures 1B-C, but tends to converge at 
the outlet value (𝜙𝜙G = 0.4 in this case).  
 
  
 
Neumann Model 
 
The equation to be solved is  
 

                                                   
!=
!>

 	=  
!-=
!?-

 −	2𝜆𝜆 
!=
!?

 ,     0 ≤ 𝜉𝜉 ≤ 1,		                                          
subject to BCs 
 
                                                    𝜙𝜙(0, 𝜏𝜏) = 𝜙𝜙&𝑒𝑒EF>  ,                                                    
                                                                                                                                               (24) 

                                                      
!=(G,>)

!?
 = 𝐽𝐽G  ,                                                                        

and initial condition  
 
                                                     𝜙𝜙(𝜉𝜉, 0) = 𝜔𝜔& .                                                                  (25) 
  
Using the same procedure as in the Dirichlet model, the analytical solution to the Neumann 
model is (Obeng-Forson, 2022)   
 

   𝜙𝜙(𝜉𝜉, 𝜏𝜏) = 
¦i:no pqrs^?

^ pqrs^	h	^ §¨ps^
 ˜1 − 	𝑒𝑒−𝜆𝜆

2𝜏𝜏™ 𝑒𝑒𝜆𝜆𝜉𝜉 
 

                     + 
=g^ pqrsf(G	E	?)	h	=gf §¨psf(G	E	?)

©pqrsf	h	f §¨psf
 ˜	𝑒𝑒−𝛾𝛾𝜏𝜏 − 	𝑒𝑒−𝜆𝜆

2𝜏𝜏™ 𝑒𝑒𝜆𝜆𝜉𝜉  
 

− 
fg ©pqrs^(G	E	?)	h	fg^ §¨ps^(GE	?)

©pqrs^	h	^ §¨ps^
V1 − 	𝑒𝑒−𝜆𝜆

2𝜏𝜏Y𝑒𝑒𝜆𝜆𝜉𝜉 + 𝜔𝜔0.          (26) 
 
The steady-state solution is given as 
 

𝜙𝜙šš(𝜉𝜉) = –
𝐽𝐽1𝑒𝑒−𝜆𝜆 sinh𝜆𝜆𝜉𝜉

𝜆𝜆sinh𝜆𝜆	+	𝜆𝜆cosh𝜆𝜆— 𝑒𝑒
𝜆𝜆𝜉𝜉 − j𝜔𝜔0λsinh𝜆𝜆`1	−	𝜉𝜉a	+	𝜔𝜔0𝜆𝜆cosh𝜆𝜆`1−	𝜉𝜉a

λsinh𝜆𝜆	+	𝜆𝜆cosh𝜆𝜆 l 𝑒𝑒𝜆𝜆𝜉𝜉 + 𝜔𝜔&.  (27) 

 
Example plots from the solution in equations (26) and (27) can be found in Obeng-Forson 
(2022).    
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Application to the Transport of a Pollutant

We now apply our theoretical solutions to model the 
transport of a pollutant (iron) in the Fena River in the 
Ashanti region of Ghana. 

Data are obtained from the published paper by Duncan 
et al., (2020) who conducted research in and around 
the Fena River to determine the levels of heavy metal 
pollution due to illegal mining (locally referred to as 
“galamsay”) activities. They took samples from five 
locations: Fenaso No. 1 (referred to as Fen-1), Fenaso No. 
2 (referred to as Fen-2), Point A, Point B, Point C, and 
Fenaso No. 3 (referred to as Fen-3), in that order from 
north to south. Thus, the river flows southward from Fen-
1 through Fen-3 until it enters the Gulf of Guinea in the 
Atlantic Ocean. A map of the area and sampling points 
can be seen in their Figure 1. The sampling points at Fen-
1 and Fen-2 are very close to each other. According to 
Duncan et al., (2020), there were illegal mining activities 
in and around all the sampling locations except sampling 
Point A where there was no apparent mining activity 

going on. The three main heavy metal pollutants in the 
river; exceeding safe drinking water guidelines, were 
found to be Cadmium (Cd), Lead (Pb) and Iron (Fe) 
(Duncan et al., 2020). Here, we focus on modeling the 
transport of Iron, because the initial and boundary data 
roughly match our theoretical set up. 

The monthly concentration of Iron at three locations 
(Fen-1, Fen-2 and Point-A, obtained from Table 3 of 
Duncan et al., 2020) over the one-year period of their 
study (from January to December in 2020) is shown 
in Figure 2. We display only three locations because 
we are interested in modeling concentrations at Fen-2 
and Point-A. We are particularly interested in Point-A 
because it was reported that there was no apparent illegal 
mining activity at the location, so we assume that the 
concentration of Fe at Point-A is likely due to upstream 
effects. The highest concentrations occur at Fen-1 and 
Fen-2 with the smallest concentrations of Fe at Point-C 
(not shown). The concentration of Fe at Fen-1 is generally 
decreasing with time over the study period (Figure 2a). 

Figure 2 [Row 1] Variation of Iron (Fe) concentration over time in Fena river (as reported in Table 3 of Duncan et 
al., 2020). The vertical scales are different to highlight variability in concentrations. [Row 2] Same as Row 1 but for 
normalized concentrations.
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Methodology and diffusion coefficient 
estimation

To apply our mathematical models, we normalized the 
concentrations by the highest concentration at Fen-1 (see 
Figure 3). The concentration at the inlet is taken to be the 
concentrations at Fen-1 while the initial concentration is 
taken to be that of January at all locations. The measured 
concentration of Fe in January is depicted in Figure 3 
(left panel). 

The parameter  λ in the governing equation is related to 
the Peclet number Pe = 2λ with λ=LV0/D0 , where L is the 
length scale of the domain, V0  is the averaged velocity 
of the flow and D0 is a constant diffusion coefficient. 
We estimated the velocity, V0 of the river to be  2m/s, 
by taking videos of the flow and measuring the speed of 
floating objects. We also measured the average width,  W 
of the river around the same location to be ~5.2m  and the 
average depth, H  to be 1.0 m. So, the average discharge,  
Q=HWV0 , at the location is about  10.4m3/s.

Figure 3: Normalized concentration of Fe in January at all sampling points (left panel) and the right panel shows 
Diffusion coefficient as a function of discharge from Table 7 (case 2) of Tayfur and Singh (2005) for  D0<100 m2 /s.

Besides the velocity, the parameter that plays a much 
more critical role in modeling the transport of pollutants 
in streams and rivers is the longitudinal diffusion 
coefficient, D0. Once a pollutant is released into a river or 
flowing water body, it undergoes various stages of mixing 
with the ambient water. After the contaminant is mixed 
in the cross-sectional direction, the most important 
process is the longitudinal dispersion which is measured 
by the longitudinal dispersion coefficient (Tayfur & 
Singh, 2005). Tayfur and Singh (2005) developed a 
model based on Artificial Neural Network (ANN) 
for predicting the longitudinal dispersion coefficient. 

Among other things, they reported that the discharge 
data alone is sufficient for computing the dispersion 
coefficient for more frequently occurring low values of 
the dispersion coefficient  D0<100 m2/s. We fitted lines 
to their data points that are closest to the observed data 
(see their Table 7, case 2) to get the diffusion coefficient, 
D, as a function of discharge to be
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as depicted in Figure 3 (right panel). Using the formula 
in Eq. (28), we estimate the value of the longitudinal 
dispersion in Fena River to be 39.6 m2/s. Thus, the 
Peclet number is  389 and the parameter λ≈194.5.

Comparison of model results to observational 
data
We compared the observational data of iron (Fe) 
concentration in Fena River with the Dirichlet model. 
The initial concentration ω0=0.52 is taken to be the 
average concentration at all locations in January (see 
Figure 3, left panel). In each case, the inlet boundary is 

an exponentially decreasing concentration of the form  
ϕ0 e-γτ where ϕ0=1. By fitting an exponentially decreasing 
function to the data at Fen-1 (see Figure 2a), we get 
γ=0.025.  

We plot the model results against the observational data 
of Fe in the Fena River for Fen-1, Fen-2, and Point A after 
estimating all parameters in the analytical solution of 
the Dirichlet model, Eq. (23). Note that the e τ values 
are calculated from the dimensionless equation, τ=tD0/
L2, where L = 7700 m is the estimated length scale of the 
spatial domain.

Figure 4: Temporal variation of observed and Dirichlet model concentrations at Fen-1, Fen-2 and Point-A.

The concentration of iron as a function of time from both 
the observational data and Dirichlet model is shown in 
Figure 4a. Apart from the initial time, the model results 
at Fen-1, Fen-2 and Point-A are indistinguishable from 
each other. The model captures the concentrations at 
Fen-1 and Fen-2 relatively well since these locations are 
closer to each other, and data from Fen-1 is used as the 
inlet boundary condition. However, the model predicts 
very large concentrations at Point-A. We conjecture 
a couple of reasons that may account for the higher 

modelled concentrations at Point-A. Firstly, Fen-1 
and Fen-2 are not directly located on the river, so it is 
likely that we overestimated the concentrations there, 
resulting in higher concentrations at Point-A. Secondly, 
we notice that the normalized concentrations at Point-A 
are generally constant around a mean value of 0.25 (also 
see Figure 2f). Thus, it appears other unknown factors, 
besides direct transport from Fen-1 and Fen-2, maybe 
implicated. Thirdly, there are several uncertainties in 
estimating the parameters that went into applying our 
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model to the observational data. For instance, the speed 
of the flow varies both in space and time, but this is 
neither captured in the model nor our observed speed. 
Finally, another reason could be the fact that the model 
is one-dimensional and so does not capture lateral 
dispersion of pollutants which is likely to reduce the 
concentration of Iron at Point-A if direct transport is the 
principal mechanism. 

The comparison of the Neumann model to the 
observations is not very different from that of the 
Dirichlet model, so we do not show that here (see Obeng-
Forson, 2022). 

Conclusions
We derived analytical solutions to the 1D Advection-Dif-
fusion Equation with exponentially decaying inlet bound-
ary condition. This was motivated by observational data 
in Fena River in the Ashanti Region of Ghana where il-
legal mining activities (locally referred to as “galamsey”) 
have been reported. Using the Laplace transform tech-
nique, the analytical solutions were obtained without 
directly computing the inverse Laplace transform of the 
transformed equation following work by Kim (2020). 
Additionally, our analytical solutions were compared to 
the observed data of pollutants (iron in this case) from 
Fena River. We found that the analytical results well 
capture the concentration of iron at two sampling loca-
tions, Fen-1 and Fen-2, as shown in Figure 4. However, 
the model results predicted very large concentrations 
at Point-A. We have given several reasons that could be 
responsible for this discrepancy. These include, but not 
limited to, the fact that (1) the initial source concentra-
tions used in our model might be overestimated, (2) the 
one-dimensional nature of the model limits lateral dis-
persion, and (3) other factors, other than direct transport 
from Fen-1 and Fen-2, might be at play at Point-A. In the 
future, we plan to model the advection and diffusion of 
some of the other chemicals found in the river.
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