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ABSTRACT

In extreme value analysis, the Generalised Pareto (GP) is an important statistical distribution for modelling 
tails of several phenomena. The tail index for this distribution plays a vital role as it determines the tail 
heaviness of the underlying distribution and it is the primary parameter required for the estimation of other 
extreme events. The estimation of the tail index of the GP distribution is addressed in this paper. The standard 
methods, such as maximum likelihood and probability weighted moments, are known to perform badly in 
small samples and to provide estimates that are inconsistent with observed values respectively. In this paper, 
the parameters of the GP distribution are estimated using a transformation to the Pareto distribution. Unlike 
the GP distribution, explicit expressions exist for the maximum likelihood estimators of the parameters of the 
Pareto distribution. In addition, a linear transformation of the distribution function enables the estimation of 
the tail index independent of the scale parameter. The proposed estimators are compared with the maximum 
likelihood estimator through a simulation study. The results show that the performance of the estimators was 
better, and at worst, approximately equal in performance to the standard method. We illustrate the application 
of the estimators with real data on insurance claims.

Keywords: Generalised Pareto, Pivot, Transformation, Pareto distribution, estimation

Introduction
The generalised Pareto (GP) distribution is a three (or 
two) parameter distribution for modelling several tail 
phenomena such as extreme wind speeds (Holmes and 
Moriarty, 1999), water levels in a hydroelectric dam 
(Minkah, 2016), computation of Value-at-Risk (Gilli and 
Këllezi, 2006) and extreme earthquake characterisation 
(Pisarenko and Sornette, 2003). The generalised 
Pareto (GP) distribution was shown in the seminal 
papers of Balkema and de Haan (1974) and Pickands 
(1975) as the limiting distribution of the excesses or 
the exceedances over a sufficiently large threshold. The 
most common methods for estimating the parameters 
of the GP distribution are maximum likelihood and 
(probability weighted) moment estimators. However, 

these estimators are known to perform badly in small 
samples and/or in data sets with some contamination i.e. 
with some unusually large or small values. In this paper, 
we make use of a transformation from generalised Pareto 
distribution to GP distribution and subsequently, the 
estimators are obtained based on a least squares method 
via a pivotal quantity. 

Consider the independent and identically distributed 
(i.i.d) random variables 1 2, ,..., nX X X  with unknown 
underlying distribution function F; and corresponding 
ordered values (in ascending order) 1, 2, ,, ,...,n n n nX X X  
Thus, 1,nX  and ,n nX , are the sample minimum and 
maximum respectively. The distribution function and 
the density function of the three-parameter generalised 
Pareto distribution are given by
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respectively. Here, μ, σ, and α are are the location, scale 
and the shape parameters respectively.

In the extreme value theory literature, the tail index of the 
GP distribution is given by the reciprocal of the shape 
parameter, i.e. 

1γ
α

= .                                      (3)

This quantity determines the tail heaviness of the 
underlying distribution and other important extreme 
events estimation depend on this parameter. As a result, 
the estimation of γ remains a central research area in 
extreme value analysis (see. e.g., Csörgó and Viharos, 
1998; Beirlant et al., 1999; Gomes et al., 2008).

Several methods exist for estimating the parameters of 
the GP distribution. These include maximum likelihood, 
elemental percentile and probability weighted moments. 
In most cases, the maximum likelihood estimation is 
the standard method for estimating parameters of the 
generalised Pareto distribution because it has attractive 
properties such as asymptotic normality, consistency and 
efficiency. However, it has no explicit expression for the 
maximum likelihood estimators, and hence, numerical 
procedures are used to obtain approximate values. In 
addition, its performance in the case of small samples can 
be erratic. Therefore, alternative estimators that perform 
better in terms of the mean squared error (MSE) may be 
needed in such cases.

The moment and probability weighted moment (PWM), 
introduced by Hosking and Wallis (1987), are some of 
the estimators that are usually used in the case of small 
samples. The PWM has been shown to perform well 

when [0,1]γ ∈= [0,1]γ ∈ and even better if [0,0.5]γ ∈= [0,0.5]γ ∈  (de Zea 
Bermudez and Kotz, 2010). However, these moment-
based estimators have their shortfalls too. For example, 
they do not exist when 1γ ≥  and estimates obtained 
from these estimators may be inconsistent with observed 
data (Beirlant et al., 2004). In view of these difficulties 
with the estimators mentioned above, the search for 
better estimators remains an active research area in 
statistics of extremes.

For example, van Zyl (2015) transformed GP distributed 
random variables using initial estimates of the GP 
distribution to Pareto distributed random variables. 
The aim of this transformation, similar to other 
transformations used in Statistics, is to improve and 
stabilise the estimation. Thus, the author investigated 
whether the transformation leads to improved estimators 
of the tail index of the GP distribution. Two methods 
were used for the initial transformation: the Probability 
Weighted Moments (Hosking and Wallis, 1987) and an 
empirical Bayes method (Zhang and Stephens, 2009). 
Thereafter, the resulting Pareto distribution’s estimators 
were fitted using the maximum likelihood method. The 
maximum likelihood estimator of the Pareto distribution 
is known to have desirable properties. Firstly, the 
estimator of the tail index of the Pareto distribution is 
consistent; its variance is the smallest among all unbiased 
estimators of the tail index, and hence, it is efficient. 
Despite these advantages, the poor performance of the 
maximum likelihood estimator of the tail index has been 
shown in small samples. Also, the estimator is sensitive to 
contaminations of the sample (see e.g. Kim et al., 2017; 
Finkelstein et al., 2006).
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This paper makes use of the idea from van Zyl (2015) and 
transforms the GP distribution to Pareto distribution. 
However, a pivot-based method is used to estimate 
the parameters of the resulting Pareto distribution, 
thereby making use of the attractive properties such as 
its performance in small samples and its robustness to 
contamination as enumerated in Kim et al. (2017).

The remainder of the paper is organised as follows. Firstly, 
we present the methods of estimation of the tail index 
of the GP distribution. Secondly, a simulation study is 
conducted to assess the performance of the proposed 
estimators with the existing standard estimators in the 
literature. In addition, general conclusions from the 
simulation results are presented. Thirdly, the estimators 
of the tail index are illustrated with practical data from 
insurance. Lastly, we present concluding remarks.

Methods of Estimation
In this section, the methods for the estimation of the 
parameters of the generalised Pareto (GP) distribution 
are presented. We start with the direct method where the 
estimation is done from the distribution function of the 
GP. In the second approach, a transformation of the GP 
distribution to the Pareto distributed random variables is 
used to obtain estimates of the parameters.

Direct Methods of Estimation
Several methods have been proposed in the literature for 
the estimation of the parameters of the GP distribution. 
The common ones include maximum likelihood, 
(probability weighted) moment and elemental percentile. 
In this paper, we consider the maximum likelihood and 
the probability weighted moments.

The maximum likelihood estimator is obtained through 
the maximisation of the likelihood function, 

1/ 1

1

1( , , ) 1
n

i

i

xL
γ

µγ σ µ γ
σ σ

− −

=

 −  = +  
  

∏ ,
       

(4)

obtained from (2) with respect to the parameters ,γ σ  
and μ. However, it is well-known that there is no closed 
form solution to the likelihood function, (4), and hence, 
numerical methods are used to obtain approximate 
solutions (see e.g. Coles, 2001; Beirlant et al., 2004).

Also, Hosking and Wallis (1987) introduced the method 
of moments (MOM) and the method of probability-
weighted moment (PWM) estimators for the GP 
distribution. The basic idea underlying these methods is 
that if the population moments exist, then the expression 
for them can be used to derive estimators of the unknown 
population moments. A third method based on Bayesian 
statistics has been studied by Zhang and Stephens 
(2009).

Estimation via Pareto Transformation
In this section, we introduce the estimation of the 
parameters of a GP distribution through a transformation 
to the Pareto distribution. The idea of transformation 
using estimated parameters is a common practice in 
statistics. The aims may include stabilising and improving 
estimation, removing dependence and obtaining a 
common distribution.

For the three parameter GP distribution (2), van Zyl 
(2015) considers the transformation
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Once the parameters of the Pareto distribution, (7), 
have been obtained, any event such as quantiles and 
exceedance probabilities can be obtained. These 
estimates can then be transformed back to the original 
GP distribution using the transformation, (6).

The methods for estimating the parameters of the Pareto 
distribution will now be presented.

Maximum Likelihood Estimation
From (7), the likelihood function of the Pareto 
distributed random variables is given by
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Here, 1,ny  is the minimum value of the Pareto distributed 
random variable Y. The maximum likelihood estimators 
are the standard method for estimating the parameters 
of the Pareto distribution. As mentioned earlier, the 
attractive properties of the maximum likelihood 
estimators are consistency, asymptotic normality and 
efficiency. However, it is known to perform poorly in 
small samples. Secondly, the estimation of the tail index 
through (10) involves the estimated value of the scale 
parameter (11). Thus, any error associated with this 
estimate is passed onto the estimation of the tail index.

Pivotal Quantity
The pivotal quantity idea introduced by Kim et al. (2017) 
is based on the fact that the logarithmic transform of 
Pareto distributed random variables are exponentially 

distributed. That is, from (8), we can obtain the following:
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In addition, Kim et al. (2017) introduced a second 
estimator based on weighted regression. It can easily be 
shown that
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Taking the weights 1
,( )i i nw Var D −= , 1,...,i n=  yields 

a weighted version of (16) as

 
, , 1,

2

2
, 1,

2

( )(log log )
ˆ

(log log )

n

i i n i n n
i

wls n

i i n n
i

w E D Y Y

w Y Y
α =

=

−
=

−

∑

∑
.

       

(18)

It can be seen that (18) reduces to (16) if the weights 
'iw s  are equal. In the case of µ , another method is 

needed to estimate it. Kim et al. (2017) proposed using 
the method of moments estimator

1,
1ˆ 1
ˆp n

p

Y
n

µ
α

 
= −  
                             

(19)

where { },p lsp wls∈{lsp,   wls} with justification from the reported 
studies by Lu and Tao (2007). The authors show that the 
method of moments estimator of µ  performs better 
than the maximum likelihood estimator. The asymptotic 
properties including consistency of the estimators (16) 
and (18) have been addressed in Kim et al. (2017).

This paper makes use of the transformation of the 
generalised Pareto distribution to Pareto distributed 
variables. However, the parameter estimation of the 
resulting Pareto distribution is obtained using the pivotal-
based methods of Kim et al. (2017) outlined above.

Simulation Study
The performance of the existing estimators and 
the proposed estimator of the tail index of the GP 
distribution is compared in this section using a 
simulation study. The simulation design and the results 
as well as the accompanying discussions are presented in 
the subsections that follow.

Simulation Design
Samples were generated from the generalised Pareto 
distribution consisting of three parameters. Three 
choices of parameter values were assessed: firstly, 1µ =  

1σ =  and a range of values of (0,1]γ ∈ (0,1]γ ∈ ; secondly, 
1µ = , 2σ =  and a range of values of (0,1]γ ∈ ; and 

lastly, μ=1, σ=3 and (0,1]γ ∈ . The estimators of the tail 
index, (0,1]γ ∈, of the GP distribution considered in the study 
are presented in Table 1.

Table 1: List of estimators of the tail index of the GP 
distribution

Notation of 
Estimator

Description

ML The ML estimator of the tail index of the GPD

T.ML The ML estimator of the tail index of the 
GPD based on the transformation to Pareto 
samples

T.lsp The pivotal least squares estimator of the tail 
index of the GPD based on transformed Pareto 
samples

T.wls The pivotal weighted least squares estimator 
the of tail index of the GPD based on 
transformed Pareto samples

The sample sizes considered were n = 50, 200 and 500, 
and the Monte Carlo simulations were performed R =  
5000 times. The performance measures used are the 
Mean Square Error (MSE) computed as

 2

1

1ˆ ˆ( , ) ( )
R

i
i

MSE
R

γ γ γ γ
=

= −∑  (20)

and the bias given by

ˆ ˆ( , ) ( ) .bias Eγ γ γ γ= −                          (21)

Simulation Results and Discussion
A sample simulation result arising from the estimation 
of the tail index, γ , of the GP distribution based on 
the procedure outlined in Section 3.1 is shown in Table 
2. The simulation was carried out for various parameter 
choices to measure the effect of changing μ and σ. For 
brevity and ease of presentation, the report is given on 

1µ =  and 1γ = . The reader is referred to Appendix 
1 and 2 for results on σ = 2 and σ = 3 respectively. The 
results were similar for other values of µ , and hence, for 
ease of presentation, those results were omitted.
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The actual numbers for MSE and Bias are given for the 
ML estimator and the other estimators are expressed as 
percentages to the standard ML. Thus, the ML estimator 
is always 100% and a better estimator should have an 
MSE or a Bias less than 100%.

It was found that for smaller sample sizes, i.e. 50n ≤ , the 
proposed estimator, T.wls, is the best in terms of bias and 
MSE. The other two estimators, T.lsp and T.ML, have 
mixed results in relation to their performance with that 
of the ML. However, both record a much smaller bias 
compared with the ML estimator.

For larger sample sizes,  n50 n≤500 the ML estimator is 
preferred, as the other estimators do not show much 
improvement in terms of MSE. This is expected, as 
the asymptotic properties of maximum likelihood 
estimation work better for larger sample sizes. Regardless, 
the proposed estimators, T.lsp and T.wls, record quite a 
smaller bias compared to the ML estimator. Therefore, 
these estimators can be considered for estimating the 
tail index as k  increases (i.e. the inclusion of more 
intermediate order statistics).

Table 2: Performance of estimators of g of the GPD with 1σ =  and 1µ = .

1, 1µ σ= =  MSE  Bias

n γ ML T.ML T.lsp T.wls  ML T.ML T.lsp T.wls

0.100 0.037 404.4 339.6 70.1 -0.054 -176.1 -149.2 -52.1

50 0.250 0.042 114.0 103.0 60.9 -0.055 -55.5 -55.5 2.9

0.500 0.050 90.5 92.2 98.4 -0.054 83.0 62.3 60.9

1.000 0.089 99.9 103.7 103.4 -0.060 100.0 59.9 56.6

0.100 0.016 252.4 213.2 53.4 -0.032 -260.9 -241.2 -77.8

200 0.250 0.020 84.6 84.6 80.8 -0.027 37.5 28.0 46.3

0.500 0.028 98.3 100.7 84.8 -0.022 97.3 62.6 51.0

1.000 0.042 100.0 104.5 109.7 -0.027 99.9 41.7 21.6

0.100 0.003 90.8 90.1 96.7 -0.006 28.4 25.6 40.6

500 0.250 0.003 99.9 100.3 117.7 -0.007 100.0 84.0 56.9

0.500 0.005 100.0 101.3 103.5 -0.003 99.9 21.8 -69.1

1.000 0.008 99.9 102.8 105.2 0.002 99.7 164.9 98.2

Application
This section illustrates the estimators of the tail index 
on an insurance dataset. The data is obtained from the 
SOA Group Medical Insurance Large Claims Database 
studied by Beirlant et al. (2004). The data were obtained 
from https://lstat.kuleuven.be/Wiley/Data/soa.txt. 

The data consist of records of 75788 claim amounts 
exceeding 25,000 USD over the year 1991. It was 
extracted from a much larger claims database of over 3 
million records over the year 1991-1992 available at 
http://www.soa.org. In this illustration, we consider 
claim amounts exceeding 350,000 USD so as to study the 
extreme tail of the distribution of claim amounts.
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Fig. 1: (a) Plot of claim amount (b) Histogram of claim amount

Fig. 2: (a) Mean excess plot (b) Estimates of the tail index

Figure 1 shows a scatter plot and histogram of the claim 
amounts. The histogram is highly skewed to the right. In 
addition, the increasing behaviour of the mean excess 
as k decreases as shown in Figure 2(a) indicates that 
the distribution of the data has a heavier tail than the 
exponential distribution, and hence, likely to have a 
positive value of tail index, γ. Therefore, this fits well for 
the illustration of the proposed estimators. In the case of 
the ML estimator, it has been illustrated in Beirlant et al. 
(2004) for the SOA data.

Figure 2(b) shows the estimates of the tail index of 
the distribution for the claim amounts. It can be seen 
that at k < 200, the estimators exhibit large variations, 

with the exception of T.wls and the ML estimator, 
which exhibit much stabler conditions. Thus, these 
two may be considered the best for estimating the tail 
index. Furthermore, at k > 200, all the estimators are 
near constant. Overall, the T.wls is the most stable for 
estimating the tail index of large claim amounts in the 
SOA data. Therefore, T.wls can be considered the most 
appropriate for the estimation of the tail index in this 
practical consideration.

Conclusion
This paper introduced a method for estimating the tail 
index of the generalised Pareto distribution through a 
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transformation to the Pareto distribution and the use 
of a least squares estimation criterion. Two estimators 
resulted from this method: an ordinary least squares 
and a weighted least squares. It was shown through the 
simulation study that the performance of these estimators 
is better, or at least at par, in terms of mean square errors 
and bias with the standard maximum likelihood estimator. 
The estimators were illustrated using a real data set from 
the insurance industry. An area for future research is the 
search for an optimum method for finding the initial 
estimates of the parameters for the transformation 
from generalised Pareto to Pareto distributed random 
variables. In addition, the asymptotic properties of the 
proposed estimators are a subject for future research. An 
analytical assessment of the performance of estimators 
can be done as a follow up to the results.
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Appendix 1: Performance of estimators of g of the GPD with 1µ =  and 2σ = .

1, 2µ σ= = MSE Bias

n γ ML T.ML T.lsp T.wls ML T.ML T.lsp T.wls

0.100 0.036 406.8 339.9 65.9 -0.063 -308.4 -284.8 -75.3

50 0.250 0.041 101.9 94.4 64.5 -0.047 -58.6 -60.4 0.9

0.500 0.056 82.0 84.7 75.2 -0.049 60.0 37.5 42.4

1.000 0.090 100.0 103.2 100.3 -0.056 99.9 55.0 48.1

0.100 0.015 272.1 230.6 56.1 -0.030 -261.9 -242.6 -76.6

200 0.250 0.019 86.4 86.2 85.9 -0.024 38.4 27.6 48.8

0.500 0.025 100.0 100.8 110.9 -0.032 99.9 77.1 65.6

1.000 0.042 99.9 104.6 153.2 -0.032 99.9 77.1 65.6

0.100 0.002 91.4 91.6 98.3 0.002 -38.6 -54.0 -31.6

500 0.250 0.003 99.9 100.8 119.9 -0.004 99.9 68.2 31.5

0.500 0.005 100.0 99.9 137.1 -0.007 100.0 66.4 21.0

1.000 0.009 100.0 104.8 278.9 -0.001 100.4 -146.2 -313.8

Appendix 2: Performance of estimators of g of the GPD with 1µ =  and 3σ = .

1, 3µ σ= =
MSE Bias

n γ ML T.ML T.lsp T.wls ML T.ML T.lsp T.wls

0.100 0.039 451.8 379.1 73.1 -0.062 -333.7 -308.9 -97.9

50 0.250 0.040 100.8 93.4 65.1 -0.054 -33.0 -34.4 17.2

0.500 0.053 90.5 92.8 96.7 -0.054 -33.0 -34.4 17.2

1.000 0.083 99.9 103.3 121.1 -0.049 99.9 50.3 42.7

0.100 0.015 277.2 235.4 56.1 -0.024 -330.2 -307.8 -112.1

200 0.250 0.020 92.0 89.3 85.9 -0.037 41.8 36.0 58.2

0.500 0.024 100.0 100.9 97.7 -0.025 99.9 70.3 57.3

1.000 0.040 100.0 100.9 99.0 -0.031 99.9 52.6 47.0

0.100 0.003 89.0 88.7 90.7 -0.005 9.5 5.8 48.5

500 0.250 0.003 100.0 100.5 119.9 -0.004 100.0 67.2 3.7

0.500 0.004 100.0 101.0 160.5 -0.004 100.0 47.1 -25.1

1.000 0.009 100.0 102.5 261.9 -0.001 99.6 -513.0 -517.6
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