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ABSTRACT

Graphene has been hailed as a material with extraordinary properties capable of transforming many scientific 
and industrial fields. In this work, the vector H-field finite element method is used in the characterization of 
a graphene cladded fibre. Results are presented on the modal analysis of various types of graphene cladded 
optical fibres. Such fibres may find use as nonlinear elements in linear pulse compression schemes for ultra 
fast pulse generation. 
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Introduction

Integrated all-optical devices will be fundamental in future 
communication systems. As an essential component 
of communication systems, these optical devices will 
act as switches, multiplexers, modulators, reflectors, 
etc. Research has shown that by perfectly reflecting the 
waves over the frequency range of interest, or confining 
propagation in a specified direction and controlling 
the optical properties of the material,  high-speed data 
transmission could be achieved. Photonic crystal (PhC) 
technology has made it possible to manipulate light 
in a way that is not feasible with conventional optical 
technology. The last two decades has seen tremendous 
advances in the development of femtosecond laser 
systems. In particular, optical pulses with temporal 
widths of a few hundredths of a second or at most a 
few picoseconds are predicted to be central to ultra fast 
communications systems and will find application in 
many domains, including biomedical applications such 
as optical coherence tomography, laser eye surgery, 
metallurgy, chemistry, optical signal processing, sensing 
and terahertz (THz) wave generation.  

Recently a new material “graphene”, which is an allotrope 
of carbon, has been investigated and proven to be an 
optoelectronic material with excellent parameters, 

namely its chemical, magnetic, thermal and electrical 
properties. Graphene is a single layer 2-D atomic crystal 
of carbon with a hexagonal honeycomb structure. 
Studies have found that a graphene-integrated medium 
is amenable to convenient tuning of its electronic 
and optical properties by varying the applied voltage. 
This property is the prime requirement for an optical 
waveguide material, and it has spurred a spate of activities 
within the research community to undertake a study of 
graphene in the optical waveguide domain. It has been 
suggested that graphene could be used as saturable 
absorber in femtosecond laser systems (Bonaccorso et 
al., 2011; Pumera, 2011; Sun et al., 2010; Zhang et al., 
2009; Bao et al., 2009). The literature on graphene has 
grown quite rapidly in recent years, an indication of the 
level of interest in this new material within the research 
community. Graphene has been proposed for use in 
the design of electro-optic modulators, waveguides, 
transistors and integrated circuits, and recently it has 
been suggested as a saturable absorber in a femtosecond 
pulse generation scheme (Bonaccorso et al., 2011) in 
order to achieve mode locking. The use of graphene as 
a saturable absorber offers the possibility of building 
more compact laser systems. In a saturable absorber, 
the absorption of light will decrease as the intensity of 
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the laser beam increases. Until recently, mode-locking 
was achieved by the use of semiconductor saturable 
absorber mirrors. However, their low damage threshold, 
limitations on design flexibility and the carrier relaxation 
time which limits the pulse width have necessitated the 
search for new systems. The operation of such mode 
locked lasers is very complicated, as all the parameters 
associated with its operation are interdependent on each 
other, so that minor changes in one parameter could lead 
to major changes in the laser output (Inoue and Namiki, 
2008). Another well-established method for obtaining 
ultra-short pulses is to use a pulse compression within an 
optical fibre. This method is applicable to any continuous 
wave laser source and is more stable because it is based on 
the intrinsic properties of the travelling wave within the 
fibre. These methods may suffer from large pedestal and 
require the use of nonlinear elements, usually dispersion 
shifted fibre of several hundred metres or even kilometres 
length of fibre.

Liu et al. (2011) demonstrated a broadband, high-
speed, waveguide-integrated electro-absorption modu-
lator based on monolayer graphene, paving the way for 
graphene-based nonlinear photonics. It has high electron 
mobility and optical transparency, in addition to flexibil-
ity, robustness and environmental stability (Bonaccorso 
et al., 2011). It is found that to fully utilize graphene’s re-
markable optical properties, it needs to be integrated into 
planar photonic systems (Li et al., 2012). Studies have 
shown that the behavior of light in graphene could be 
tuned electrically, and the converse may also be feasible 
(Keilmann, 2012). Since light is confined to nanocables 
with dimensions of a millionth of a millimeter, switching 
times could be reduced to less than picoseconds (Keil-
mann, 2012). Thus, integrating graphene with an optical 
waveguide can greatly increase the interaction length 
through the coupling between evanescent waves and 
graphene.

Following this possibility, a team of researchers in UC 
Berkeley built a tiny optical device that uses graphene 
to switch light on and off in a graphene/silicon hybrid 

waveguide structure (Liu et al., 2011). This switching 
ability is the fundamental characteristic of a network 
modulator, which controls the speed at which data 
packets are transmitted. The faster the data pulses are 
sent out, the greater the volume of information that can 
be sent (Liu et al., 2011). The speed of data transmission 
depends on how quickly the modulator can pulse 
light. Further, studies have shown that when the Fermi 
level of graphene is tuned, the optical absorption of 
graphene can be altered. Operating at 1.2 GHz without 
any temperature controller, such a graphene-integrated 
modulator has a broad bandwidth (from 1.3 to 1.6 μm) 
and a small footprint (~25 μm2) (Liu et al., 2011). The 
research found that a graphene modulator achieved a 
modulation speed of 1  GHz and could theoretically 
reach as high as 500 GHz (500 billion cycles a second) 
(Liu et al., 2011).

A review of current literature shows that research on 
graphene is mainly focused on experimental evaluation. 
The ability to predict the performance of a device 
before its practical fabrication can be a key factor in 
the development of new and innovative technologies. 
In this regard, modeling and simulating a device by the 
use of a numerical method to predict its performance 
can lead to reduction in time, cost and constraints 
involved in experimentation as well as performance 
optimization. Numerical methods have experienced a 
resurgence expansion in all fields of engineering due 
to the exponential growth in the computational power 
currently available. Recently, results from the numerical 
characterization of a graphene based terahertz device 
have been reported. (Themistos et al., 2014).

In this present work, we present results on the modal 
numerical analysis of various types of graphene cladded 
optical fibres. Such fibres may find use as nonlinear 
elements in linear pulse compression schemes.
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Numerical Formulation 

The key ideas in the finite element method are to:

•	 discretize the domain under investigation into 
sub-domains or elements. The accuracy of the 
method depends on the level of discretization. It is 
recommended that more elements be used in areas 
where the field is thought to have steep variations. It 
is also not advisable to use elements across physical 
boundaries or interfaces. For symmetrical domains, 
the mesh should follow the same type of symmetry.

•	 the functionals for which the variational principle 
should be applied for the elements are then 
derived. In deciding on the interpolation function, 
certain continuity conditions must be satisfied by 
the interpolation function across inter-element 
boundaries. These requirements are normally 
obvious from a physical examination of the problem. 
It is however also necessary that the function is an 
admissible member of the Ritz and Galerkin methods. 
It follows that the polynomial function must remain 
unchanged under a linear transformation from one 
co-ordinate system to the other.  

•	 assemble all the element contributions to form a 
global matrix.

•	 solve the system of equations that is obtained, in this 
case a matrix equation.

Hence, instead of differential equations for the system 
under investigation, variational expressions are derived 
and the piecewise continuous function approximated by 
a piecewise continuous polynomial within each element. 
From the equivalent discretized model contribution from 
each element, an overall system is assembled. This can be 
regarded as a sub-class of the Ritz-Galerkin method in 
which the trial functions are replaced with polynomial 
functions.

Given the following Helmholtz equation 

022 =+∇ φφ k 					   
			   1

as the governing equation in a waveguide problem, 
defined within the domain Ω , where φ  is the electric 
or magnetic field component, 2∇ is a Laplacian operator 
defined as 
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and 2k is a constant related to frequency, and given also 
that fΓ and nΓ are boundaries within the said domain, 
then the following boundary conditions may be defined:

φφ ˆ=  on the boundary fΓ  (Dirichlet boundary 
condition)			   3
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where n is the outward normal unit vector. The gradient 
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in the Cartesian system of co-ordinates. Taking into 
consideration the stated boundary conditions, the 
functional for equation (1) could be written as (Koshiba, 
1990) 

( )[ ]∫∫∫ ∫∫
Ω Γ

Γ−Ω−∇=
n

ddkF    ψφφφ ˆ
2
1 222 		
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The stationary requirement of the above functional, 
0=Fδ , coincides with the governing equation of 

the problem. The Neumann boundary condition is 
automatically satisfied in the variational procedure; as 
such it is referred to as the natural boundary condition.  
The Dirichlet boundary condition however needs to be 
imposed, and is therefore called the forced boundary 
condition. The functional for each of the elements of the 
region could then be written as 

( )[ ]∫∫∫ ∫∫
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The functional for the whole of the domain can then be 
regarded as a summation of the element functions

∑=
e

eFF 						    
			   8

For the n nodes within each element, the field φ can be 
approximated as follows

∑
=

=
n
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iiN

1
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where iφ  is the ith nodal parameter of the element e and 

iN  is the interpolation or shape function. The above 
equation could be written in matrix form as follows:

{ } { }e
TN φφ = 		  10

where the component of the vector { }eφ  is iφ  and that 
of the vector { }TN  is the interpolation function iN . T 
denotes a transpose, {}⋅  and {}T⋅  denote a column and 
row vector respectively.

For convergence of the solution, the shape function iN  
must satisfy certain conditions when the functional 
contains first order derivatives: 

•	 the variable φ  and its derivatives must include 
constant terms

•	 the variable φ  must be continuous at the interface of 
two adjacent elements.

The first of the two conditions is also known as the 
completeness condition and is simple to satisfy provided 
complete polynomial expressions are used in each 
element. The second of the two conditions is called the 
compatibility condition. 

For the accurate characterisation of general waveguides, 
a vector formulation with at least two field components 
is required. There are two main types of the full vector 
formulations, namely the E-field and H-field. The 
vector E-field approach was first applied by English and 
Young (1971). This formulation is suitable for generally 
anisotropic and loss-less problems. The natural boundary 
condition corresponds to a magnetic wall and as such it 

is essential to enforce the electric wall as the boundary 
condition (nxE=0). Such a condition is quite difficult 
to impose for an irregular structure. It also requires an 
additional integral to ensure the continuity of the fields 
at the dielectric interfaces. The H-field formulation, on 
the other hand, has as its natural boundary condition 
the electric wall, and the magnetic field is continuous 
everywhere. As such, it is suitable for dielectric 
waveguide problems, as no boundary conditions need to 
be imposed. This formulation is given as 
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The above formulation leads to non-physical or spurious 
solutions since the divergence condition 0=⋅∇ Η  
is not satisfied. Various methods exist for detecting 
these spurious modes. A simple way is to examine the 
field profiles: since these modes are characterised by 
inconsistency and a random variation of the field, they 
are easy to identify. The mathematical idea underpinning 
the physical solution is that the condition 0=⋅∇ Η  is 
obeyed by the eigenvector.  By calculating Η⋅∇  for each 
eigenvector, it is possible to identify the true solutions 
from the spurious ones. The objective, however, is not 
simply to detect these modes, but to eliminate them or 
at least suppress them. The penalty-function method 
(Rahman and Davies, 1984) is one of the best established 
methods for eliminating these spurious solutions. The 
method includes an additional term α , the penalty term, 
a dimensionless number in the variational formulation, 
which now is written as: 
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In the above α is a dimensionless penalty term used to 
compensate for the divergence of the H field. ω defines 
the angular frequency, and the vector magnetic field at 
the various nodal points is defined through H. Equation 
(12) may be minimised with respect to the H field in the 
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various axial directions to yield a stationary solution, as 
in Katsriku (2000):

[ ]{ } [ ]{ } 02 =Β−Α xx ω 			   13

As in [23], A[ ]  is a Hermitian matrix of the complex 
type, [ ]Β  is a positive definite real symmetric matrix, 

2ω and { }x represent the eigenvalue and eigenvector 
respectively. Equation (13) can be solved using any 
standard matrix routine to obtain the field values at the 
nodes. In this work, required routines were developed 
using Fortran language.

Numerical Results and Discussion

The two configurations of an optical fibre considered are 
shown diagrammatically in Fig. 1A and Fig. 1B. In one of 
the configurations, Fig. 1A, the core of the fibre is clad-
ded with graphene as the outer layer. In the second con-
figuration, Fig. 1B, the graphene is sandwiched between 
an inner fibre core and an outer fibre cladding. In the sim-
ulations, the number of layers of the graphene was either 
one or two.

fibre core and an outer fibre cladding. In the simulations, the number of layers of the graphene 

was either one or two. 

 

In the simulations, the refractive index of the core region was assumed to be 1.49 and the 

complex refractive index of the graphene region is taken to be 3.51-i14.0  (Themistos, Rahman, 

Markides, et.al., 2014)). A key issue with numerical simulation involving graphene is its atomic 

dimension, 3.5 angstrons, which is a thousandth smaller than the other regions. The numerical 

stability of the solutions was therefore initially tested and the results are depicted in Fig. 2.  
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Fig1b. Showing graphene sandwiched between 
the core and the cladding. 

Fig. 1a A graphene cladded fibre with no outer 
cladding 

Fig. 1: A) A graphene cladded fibre with no outer 
cladding
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Fig1b. Showing graphene sandwiched between 
the core and the cladding. 

Fig. 1a A graphene cladded fibre with no outer 
cladding Fig. 1: B) Showing graphene sandwiched between the 

core and the cladding

In the simulations, the refractive index of the core region 
was assumed to be 1.49 and the complex refractive 
index of the graphene region is taken to be 3.51-i14.0  
(Themistos et al., 2014). A key issue with numerical 
simulation involving graphene is its atomic dimension, 
3.5 angstrons, which is a thousandth smaller than the 
other regions. The numerical stability of the solutions 
was therefore initially tested and the results are depicted 
in Fig. 2. 
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Fig 2. Showing the stability of the numerical solution as mesh size is varied 

 

Hypothetically large widths were chosen equivalent to a thousand layers, hundred layers, ten layers 

and a single layer of graphene. As can be seen, the results are numerically stable with increasing 

mesh divisions. 
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Hypothetically large widths were chosen equivalent 
to a thousand layers, hundred layers, ten layers and a 
single layer of graphene. As can be seen, the results are 
numerically stable with increasing mesh divisions. In 
Fig. 3 shows the dependence of the effective index of 
the fundamental Hy mode of the fibre on the radius of 
the core dimension. In this, it is assumed that there is no 

outer cladding, i.e. the configuration of Fig. 1A is used. 
In Fig. 4A it is seen that as the fibre core is increased, the 
spot size and the width also increase. Fig. 4B shows the 
normalized values of power and propagation constant 
for varying core dimension. It can be seen that when 
the dimension of the fibre core is increased power also 
increases whilst the propagation constant decreases. 
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Fig. 7: Normalized Hy Field profile as a function of 
wavelength
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Fig. 8: B) Effective index as a function of core radius at 
two different wavelengths 

Fig. 5 shows the profile of the field in both the x and y 
axial directions. As can be observed, a symmetrical profile 
is present in all directions. Such a profile ensures the 
integrity of the field. Figure 6 shows how the normalized 
field varies with the core radius of the fibre for two 
different wavelengths of interest. Fig. 7 on the other hand 
shows the dependence of the normalized Hx field profile 
on wavelength. It may be observed that the graph does 
not show a smooth dependence with sharp transitions. 
This may indicate that the field profiles are not uniformly 

confined at the various frequencies and should inform 
the design process. In Fig. 8 is shown the loss factor (Fig. 
8A) and the effective index (Fig. 8B) for two different 
wavelengths as function of core radius. A parameter of 
interest is how the propagation constant and effective 
index will vary with wavelength. This is shown in Fig. 9. 
Fig. 9A shows the normalized propagation constant as a 
function of wavelength whilst Fig. 9B shows the effective 
index as a function of wavelength.
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Fig. 9: B) Dependence of effective index on wavelength 
for two core radii
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Fig. 10: B) Showing the loss factor for two different core 
sizes.

In each case, two different values of the core radius (R1=4 
µm and R1=6 µm) are depicted. It can be observed that 
at a wavelength of λ=1.3 µm, for a core radius of 4 µm 
the normalized value of the propagation constant, β, is 
1.020, and for a core radius of 6 µm, β=1.010, indicating 
a better confinement of the waves. On the other hand, the 

effective index of the smaller fibre core (R1=4 µm) at the 
same wavelength of λ=1.3 µm is 1.215. For a core radius 
of R1=6 µm, the value of the effective index is 1.218. This 
is entirely consistent with what is to be expected, since 
the higher the effective index, the better the waves will 
be propagated. 
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In the next simulations, an outer cladding is introduced to 
reflect the configuration of Fig. 1B. Figure 10 shows the 
results of the dependence of the effective index and the 
loss on the width of the outer cladding for two different 
core sizes. As will be expected, as the outer cladding is 
increased, the effective index also increases. However, 
beyond a certain point, in this case about 10 microns, any 
further increase in the cladding width does not impact on 
the results (Rahman and Davies, 1984). A sharp drop in 
loss factor at the point where the results become stable 
is worth noting. This drop may be attributed to transient 
instabilities.

Fig. 11A shows the normalized values for the Hy field and 
power for two different core sizes as the outer cladding 
is varied. Fig. 11B on the other hand shows the same 
parameters, but in this case, with the cladding width kept 
constant and the core size varied. In one case there is no 
outer cladding. With a constant value for the core region, 
we note that as cladding size is increased, the power within 
the core region decreases. However, if we keep the cladding 
constant and increase the core size, the power increases. 
This can be attributed to the fact that calculations for 
power are done within the core region, and the larger the 
core, the greater the power that is accounted for. 
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Results for Bilayer Configuration: 

In some instances, it is found useful to use a number of 
layers of graphene (Hiura et al., 2010). This may be due to 
the difficulty in obtaining a single sheet of the graphene. 
Usually, the maximum number of layers is assumed to be 
3, as beyond this the material is no longer considered to 
be graphene (Miyazaki et al., 2008; Pimenta et al., 2007; 
Hiura et al., 2010). In the next simulation, Fig. 12, it is 
shown how a two-layer graphene affects the simulation 
parameters. As in the previous simulations, two different 
core sizes are used, and the results or loss compared with 
that of a single layer configuration. It can be seen that the 
loss values for the bilayer devices are α=-15 for R1= 6 and 
α=-9 for R1=4. For the single layer α=-4 for R1=6 and α=-8 
for R1=6. It may therefore be deduced that there is better 
confinement of the field in a double layer configuration.

Conclusion

Results for numerical analysis of a graphene cladded 
fibre have been presented. Two different structures were 
studied, a fibre core cladded with graphene but with no 
outer cladding and one in which there is an outer cladding. 
Single and double layer graphene structures have been 
investigated. Such a structure may find application as 
a nonlinear elements in pulse compression schemes. 
The results obtain show that it is possible to accurately 
model graphene cladded devices using the finite element 
method.
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