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ABSTRACT

A large number of complex problems in Mathematics and its related fields require the solution of non-linear 
equations. The Newton method and its early modifications belong to the simplest but not sufficiently efficient 
techniques for solving non-linear equations. A desired characteristic of an efficient method of solving non-linear 
equations is to obtain a root with minimum error (usually lower than the precision limit) and lower number 
of iterations. In this study, we propose two methods of solving non-linear equations (Proposed methods 
1 and 2) through a modification of the Newton Raphson’s method with the forward and central difference 
approximations of the first derivative. The performance of the proposed methods are assessed along with an 
existing method (Secant Method) using three illustrations. The proposed method 2 outperformed the existing 
method (Secant method) and proposed method 1, yielding the lowest absolute relative approximate error and 
the least number of iterations when used to find the roots of the non-linear equations under consideration. 
The proposed methods 1 and 2 were found to be suitable alternatives for solving non-linear equations.

Keyword: Central difference approximation, Forward difference approximation, Secant method, Non-linear 
equations, Absolute relative approximate error

1. Introduction
Non-linear equations are used to represent occurrences in 
most aspects of our life. According to Maheshwari (2009), 
many complex problems in Science and Engineering 
contain functions of nonlinear and transcendental nature 
in the equation of the form 
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Non-linear equations are used to represent occurrences in most aspects of our life. According to 
Maheshwari (2009), many complex problems in Science and Engineering contain functions of 
nonlinear and transcendental nature in the equation of the form 𝑓𝑓(𝑥𝑥) =  0.  Their solutions are 
therefore very important in providing answers to many questions confronting us.   The large 
number of variables and its corresponding parameters in nonlinear equations result in complex 
situations which are mainly solved by numerical methods.  Various   kinds   of numerical methods 
have therefore   been propounded over the years to help provide an effective method of solving 
these equations. These methods include the Bisection, Newton Raphson, and Secant Methods.  
Newton's method has distinction of being most frequently used in the construction of multipoint 
methods (Petkovic, 2012). 

 Their solutions are 
therefore very important in providing answers to many 
questions confronting us.   The large number of variables 
and its corresponding parameters in nonlinear equations 
result in complex situations which are mainly solved by 
numerical methods.  Various   kinds   of numerical methods 
have therefore been propounded over the years to help 
provide an effective method of solving these equations. 
These methods include the Bisection, Newton Raphson, 
and Secant Methods.  Newton’s method has distinction 
of being most frequently used in the construction of 
multipoint methods (Petkovic, 2012).

According to Kaw (2009), one of the first numerical 
methods developed to find the root of a nonlinear 
equation was the bisection method (also called binary-
search method).  The method is based on a theorem 
which states that, “an equation 
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According to Kaw (2009), one of the first numerical methods developed to find the root of a 
nonlinear equation was the bisection method (also called binary-search method).  The method is 
based on a theorem which states that, “an equation 𝑓𝑓(𝑥𝑥) = 0, where 𝑓𝑓(𝑥𝑥) is a real continuous 
function has at least one root between 𝑥𝑥𝑙𝑙 and 𝑥𝑥𝑢𝑢 𝑖𝑖𝑓𝑓 𝑓𝑓(𝑥𝑥𝑙𝑙)𝑓𝑓(𝑥𝑥𝑢𝑢) < 0. 𝑥𝑥𝑙𝑙 and 𝑥𝑥𝑢𝑢 are the two initial 
guesses of the root of the equation.”  

The advantages of this method as listed by Kaw (2009), are as follows:  Since the method brackets 
the root, the method is guaranteed to converge. That is, they are always convergent since they are 
based on reducing the interval between the two guesses to obtain the root of the equation.  

Also, the interval gets halved as iterations are conducted. So, one can guarantee the error in the 
solution of the equation. 

According to Chhabra (2014) and Kaw (2009), some drawbacks of the bisection method are; 

 The convergence of the bisection method is slow as it is simply based on halving the 
interval.   

 If one of the initial guesses is closer to the root, it will take larger number of iterations to 
reach the root which consequently decrease the computational efficiency of the method. 

 For a function 𝑓𝑓(𝑥𝑥) where there is a singularity and it reverses sign at the singularity, the 
bisection method may converge on the singularity.   

The Newton Raphson's method of solving non-linear equations was proposed to address the 
drawbacks of the bisection method listed above. The Newton Raphson's method is an open method. 
This means, only one initial guess is required to get the iterative process started in finding the root 
of the equation. 

 

2. Material and Methods 

Let 𝑓𝑓 be a real single-valued function of a real variable. If 𝑓𝑓(𝛼𝛼) = 0, then 𝛼𝛼 is said to be a zero of 
𝑓𝑓 or equivalently a root of the equation (Petkovic, 2012). 

 

2.1 Derivation of the Newton Raphson Method from Taylor series 

According to Cirnu (2012), the Newton Raphson Method is derived by the first order of the Taylor 
expansion. It assumes that if the initial guess of the root of  𝑓𝑓(𝑥𝑥) = 0 is at 𝑥𝑥𝑖𝑖, then when the tangent 
of the curve is drawn at 𝑓𝑓(𝑥𝑥𝑖𝑖), the point at which the tangent line crosses the 𝑥𝑥 − 𝑎𝑎𝑥𝑥𝑖𝑖𝑠𝑠, 𝑥𝑥𝑖𝑖+1, is an 
improved estimate of the root of the function 𝑓𝑓(𝑥𝑥𝑖𝑖).   

Let 𝑥𝑥𝑖𝑖, 𝑖𝑖 = 1, 2, … , be an initial guess of a root or solution to a non-linear equation 𝑓𝑓(𝑥𝑥) = 0 and 
define 𝑥𝑥𝑖𝑖+1 = 𝑥𝑥𝑖𝑖  + 𝛿𝛿𝑥𝑥, where  𝛿𝛿𝑥𝑥  is a small change in solution. Now a Taylor series expansion 
of a general function 𝑓𝑓(𝑥𝑥) is given as; 

                                                𝑓𝑓(𝑥𝑥𝑖𝑖+1) = ∑ 𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖)∞
𝑖𝑖=0  (𝑥𝑥𝑖𝑖+1−𝑥𝑥𝑖𝑖

𝑖𝑖! )
𝑖𝑖
                                                 (1) 

is a real continuous function has at least one root between  
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initial guesses of the root of the equation.” 

The advantages of this method as listed by Kaw (2009), 
are as follows: Since the method brackets the root, the 
method is guaranteed to converge. That is, they are 
always convergent since they are based on reducing the 
interval between the two guesses to obtain the root of the 
equation. 

Also, the interval gets halved as iterations are conducted. 
So, one can guarantee the error in the solution of the 
equation.
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According to Chhabra (2014) and Kaw (2009), some 
drawbacks of the bisection method are;

• The convergence of the bisection method is 
slow as it is simply based on halving the interval.  

• If one of the initial guesses is closer to the root, 
it will take larger number of iterations to reach 
the root which consequently decrease the 
computational efficiency of the method.

• For a function 
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nonlinear equation was the bisection method (also called binary-search method).  The method is 
based on a theorem which states that, “an equation 𝑓𝑓(𝑥𝑥) = 0, where 𝑓𝑓(𝑥𝑥) is a real continuous 
function has at least one root between 𝑥𝑥𝑙𝑙 and 𝑥𝑥𝑢𝑢 𝑖𝑖𝑓𝑓 𝑓𝑓(𝑥𝑥𝑙𝑙)𝑓𝑓(𝑥𝑥𝑢𝑢) < 0. 𝑥𝑥𝑙𝑙 and 𝑥𝑥𝑢𝑢 are the two initial 
guesses of the root of the equation.”  

The advantages of this method as listed by Kaw (2009), are as follows:  Since the method brackets 
the root, the method is guaranteed to converge. That is, they are always convergent since they are 
based on reducing the interval between the two guesses to obtain the root of the equation.  

Also, the interval gets halved as iterations are conducted. So, one can guarantee the error in the 
solution of the equation. 

According to Chhabra (2014) and Kaw (2009), some drawbacks of the bisection method are; 

 The convergence of the bisection method is slow as it is simply based on halving the 
interval.   

 If one of the initial guesses is closer to the root, it will take larger number of iterations to 
reach the root which consequently decrease the computational efficiency of the method. 

 For a function 𝑓𝑓(𝑥𝑥) where there is a singularity and it reverses sign at the singularity, the 
bisection method may converge on the singularity.   

The Newton Raphson's method of solving non-linear equations was proposed to address the 
drawbacks of the bisection method listed above. The Newton Raphson's method is an open method. 
This means, only one initial guess is required to get the iterative process started in finding the root 
of the equation. 

 

2. Material and Methods 

Let 𝑓𝑓 be a real single-valued function of a real variable. If 𝑓𝑓(𝛼𝛼) = 0, then 𝛼𝛼 is said to be a zero of 
𝑓𝑓 or equivalently a root of the equation (Petkovic, 2012). 

 

2.1 Derivation of the Newton Raphson Method from Taylor series 

According to Cirnu (2012), the Newton Raphson Method is derived by the first order of the Taylor 
expansion. It assumes that if the initial guess of the root of  𝑓𝑓(𝑥𝑥) = 0 is at 𝑥𝑥𝑖𝑖, then when the tangent 
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improved estimate of the root of the function 𝑓𝑓(𝑥𝑥𝑖𝑖).   
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define 𝑥𝑥𝑖𝑖+1 = 𝑥𝑥𝑖𝑖  + 𝛿𝛿𝑥𝑥, where  𝛿𝛿𝑥𝑥  is a small change in solution. Now a Taylor series expansion 
of a general function 𝑓𝑓(𝑥𝑥) is given as; 
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 For a function 𝑓𝑓(𝑥𝑥) where there is a singularity and it reverses sign at the singularity, the 
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based on a theorem which states that, “an equation 𝑓𝑓(𝑥𝑥) = 0, where 𝑓𝑓(𝑥𝑥) is a real continuous 
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guesses of the root of the equation.”  

The advantages of this method as listed by Kaw (2009), are as follows:  Since the method brackets 
the root, the method is guaranteed to converge. That is, they are always convergent since they are 
based on reducing the interval between the two guesses to obtain the root of the equation.  

Also, the interval gets halved as iterations are conducted. So, one can guarantee the error in the 
solution of the equation. 

According to Chhabra (2014) and Kaw (2009), some drawbacks of the bisection method are; 

 The convergence of the bisection method is slow as it is simply based on halving the 
interval.   
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reach the root which consequently decrease the computational efficiency of the method. 

 For a function 𝑓𝑓(𝑥𝑥) where there is a singularity and it reverses sign at the singularity, the 
bisection method may converge on the singularity.   

The Newton Raphson's method of solving non-linear equations was proposed to address the 
drawbacks of the bisection method listed above. The Newton Raphson's method is an open method. 
This means, only one initial guess is required to get the iterative process started in finding the root 
of the equation. 
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According to Kaw (2009), one of the first numerical methods developed to find the root of a 
nonlinear equation was the bisection method (also called binary-search method).  The method is 
based on a theorem which states that, “an equation 𝑓𝑓(𝑥𝑥) = 0, where 𝑓𝑓(𝑥𝑥) is a real continuous 
function has at least one root between 𝑥𝑥𝑙𝑙 and 𝑥𝑥𝑢𝑢 𝑖𝑖𝑓𝑓 𝑓𝑓(𝑥𝑥𝑙𝑙)𝑓𝑓(𝑥𝑥𝑢𝑢) < 0. 𝑥𝑥𝑙𝑙 and 𝑥𝑥𝑢𝑢 are the two initial 
guesses of the root of the equation.”  

The advantages of this method as listed by Kaw (2009), are as follows:  Since the method brackets 
the root, the method is guaranteed to converge. That is, they are always convergent since they are 
based on reducing the interval between the two guesses to obtain the root of the equation.  

Also, the interval gets halved as iterations are conducted. So, one can guarantee the error in the 
solution of the equation. 

According to Chhabra (2014) and Kaw (2009), some drawbacks of the bisection method are; 

 The convergence of the bisection method is slow as it is simply based on halving the 
interval.   

 If one of the initial guesses is closer to the root, it will take larger number of iterations to 
reach the root which consequently decrease the computational efficiency of the method. 

 For a function 𝑓𝑓(𝑥𝑥) where there is a singularity and it reverses sign at the singularity, the 
bisection method may converge on the singularity.   

The Newton Raphson's method of solving non-linear equations was proposed to address the 
drawbacks of the bisection method listed above. The Newton Raphson's method is an open method. 
This means, only one initial guess is required to get the iterative process started in finding the root 
of the equation. 
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Let 𝑓𝑓 be a real single-valued function of a real variable. If 𝑓𝑓(𝛼𝛼) = 0, then 𝛼𝛼 is said to be a zero of 
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improved estimate of the root of the function 𝑓𝑓(𝑥𝑥𝑖𝑖).   

Let 𝑥𝑥𝑖𝑖, 𝑖𝑖 = 1, 2, … , be an initial guess of a root or solution to a non-linear equation 𝑓𝑓(𝑥𝑥) = 0 and 
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According to Kaw (2009), one of the first numerical methods developed to find the root of a 
nonlinear equation was the bisection method (also called binary-search method).  The method is 
based on a theorem which states that, “an equation 𝑓𝑓(𝑥𝑥) = 0, where 𝑓𝑓(𝑥𝑥) is a real continuous 
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 For a function 𝑓𝑓(𝑥𝑥) where there is a singularity and it reverses sign at the singularity, the 
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The Newton Raphson's method of solving non-linear equations was proposed to address the 
drawbacks of the bisection method listed above. The Newton Raphson's method is an open method. 
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According to Kaw (2009), one of the first numerical methods developed to find the root of a 
nonlinear equation was the bisection method (also called binary-search method).  The method is 
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 For a function 𝑓𝑓(𝑥𝑥) where there is a singularity and it reverses sign at the singularity, the 
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The Newton Raphson's method of solving non-linear equations was proposed to address the 
drawbacks of the bisection method listed above. The Newton Raphson's method is an open method. 
This means, only one initial guess is required to get the iterative process started in finding the root 
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of a general function 𝑓𝑓(𝑥𝑥) is given as; 

                                                𝑓𝑓(𝑥𝑥𝑖𝑖+1) = ∑ 𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖)∞
𝑖𝑖=0  (𝑥𝑥𝑖𝑖+1−𝑥𝑥𝑖𝑖

𝑖𝑖! )
𝑖𝑖
                                                 (1) 

 ,  be an initial guess of a root or solution to 
a non-linear equation 

2 
 

According to Kaw (2009), one of the first numerical methods developed to find the root of a 
nonlinear equation was the bisection method (also called binary-search method).  The method is 
based on a theorem which states that, “an equation 𝑓𝑓(𝑥𝑥) = 0, where 𝑓𝑓(𝑥𝑥) is a real continuous 
function has at least one root between 𝑥𝑥𝑙𝑙 and 𝑥𝑥𝑢𝑢 𝑖𝑖𝑓𝑓 𝑓𝑓(𝑥𝑥𝑙𝑙)𝑓𝑓(𝑥𝑥𝑢𝑢) < 0. 𝑥𝑥𝑙𝑙 and 𝑥𝑥𝑢𝑢 are the two initial 
guesses of the root of the equation.”  

The advantages of this method as listed by Kaw (2009), are as follows:  Since the method brackets 
the root, the method is guaranteed to converge. That is, they are always convergent since they are 
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where 𝑓𝑓0 (𝑥𝑥𝑖𝑖) =  𝑓𝑓(𝑥𝑥𝑖𝑖), 𝑓𝑓1 (𝑥𝑥𝑖𝑖) =  𝑓𝑓′(𝑥𝑥𝑖𝑖) ,  𝑓𝑓2(𝑥𝑥𝑖𝑖) =  𝑓𝑓′′(𝑥𝑥𝑖𝑖), … ,  with 𝑓𝑓′(𝑥𝑥) and 𝑓𝑓′′(𝑥𝑥) being 
the first and second derivative of the function 𝑓𝑓 with respect to 𝑥𝑥 respectively. 

𝑓𝑓(𝑥𝑥𝑖𝑖+1) =   𝑓𝑓(𝑥𝑥𝑖𝑖) +  𝑓𝑓′(𝑥𝑥𝑖𝑖) (𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖)
1!  +  𝑓𝑓′′(𝑥𝑥𝑖𝑖) (𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖)2

2!  + 𝑓𝑓′′′(𝑥𝑥𝑖𝑖) (𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖)3

3!
+ ⋯                                                                                                                                    (2) 

 =  𝑓𝑓(𝑥𝑥𝑖𝑖) + 𝑓𝑓′(𝑥𝑥𝑖𝑖) (𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖)
1!  +  𝑂𝑂(𝛿𝛿𝑥𝑥), 
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Assuming 𝑥𝑥𝑖𝑖+1  is a root of the equation then 𝑓𝑓(𝑥𝑥𝑖𝑖+1) = 0. Now, from equation (3) we have; 
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Equation (4) is known as the Newton-Raphson's Method for solving non-linear equations. 

Generally, convergence in an open method is not guaranteed but if an iterative process of solving 
non-linear equation using an open method does converge, it is faster than a bracket method. 

Some drawbacks of the Newton Raphson's method as stated by Kaw (2009) are that; the method 
diverges from root at inflection points, the method fails when the first derivative at a point 𝑥𝑥𝑖𝑖  is 
zero (division by zero) and results obtained from the Newton-Raphson method may oscillate about 
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diverge. There are many methods developed on the improvement of quadratically convergent 
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2009). You may refer to Kou et. al., (2006), Jisheng et. al., (2006), Golbabai et. al., (2007) and 
Abbasbandy (2003) for some modifications of the Newton's Methods to find the roots of non-
linear and transcendental equations. In this study, we propose two modifications of the Newton's 
method (Proposed Method 1 and 2) to find the root of a nonlinear equation. 
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3! + ⋯ (6) 

 

                                                          =  𝑓𝑓(𝑥𝑥𝑖𝑖) − 𝑓𝑓′(𝑥𝑥𝑖𝑖) (𝑥𝑥𝑖𝑖−𝑥𝑥𝑖𝑖−𝑖𝑖)
1!  +  𝑂𝑂(𝛿𝛿𝑥𝑥)                                                                          

                                                          ≈  𝑓𝑓(𝑥𝑥𝑖𝑖)– 𝑓𝑓′(𝑥𝑥𝑖𝑖)(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1)                                              (7)                                                

From equation (7), the backward difference approximation of first derivative of the function 𝑓𝑓 is 
given as; 

𝑓𝑓′(𝑥𝑥𝑖𝑖) ≈ 𝑓𝑓(𝑥𝑥𝑖𝑖) − 𝑓𝑓(𝑥𝑥𝑖𝑖−1)
𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1

  
                                                                                                                                           (8)

            = 𝑓𝑓(𝑥𝑥𝑖𝑖) − 𝑓𝑓(𝑥𝑥𝑖𝑖 − 𝛿𝛿𝑥𝑥)
𝛿𝛿𝑥𝑥  

                                                                                                                                                      (9) 

2.4 Central Difference Approximation of the First Derivative 
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1! +  𝑓𝑓′′(𝑥𝑥𝑖𝑖) (𝛿𝛿𝑥𝑥)2

2! + 𝑓𝑓′′′(𝑥𝑥𝑖𝑖) (𝛿𝛿𝑥𝑥)3

3!  + ⋯                     (10) 

Also, given that 𝛿𝛿𝑥𝑥 =  𝑥𝑥𝑖𝑖  −  𝑥𝑥𝑖𝑖−1 we can rewrite equation (6) as; 
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Subtracting (11) from (10) gives; 

𝑓𝑓(𝑥𝑥𝑖𝑖+1)  −  𝑓𝑓(𝑥𝑥𝑖𝑖−1) =  2𝑓𝑓′(𝑥𝑥𝑖𝑖)(𝛿𝛿𝑥𝑥) +   2𝑓𝑓′′′(𝑥𝑥𝑖𝑖)
(𝛿𝛿𝑥𝑥)3

3!   

= 2𝑓𝑓′(𝑥𝑥𝑖𝑖)(𝛿𝛿𝑥𝑥) +  𝑂𝑂(𝛿𝛿𝑥𝑥)2,  
where 𝑂𝑂(𝛿𝛿𝑥𝑥)2 is the error due to the truncation of the Taylor series at the third term. 

                                                        ≈  2𝑓𝑓′(𝑥𝑥𝑖𝑖)(𝛿𝛿𝑥𝑥)                                                                   (12) 

From equation (12), the central difference approximation of the first derivative of the function 𝑓𝑓 
is given as; 
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 is a small change in solution; then a Taylor series expansion of a general 
function  is given as:

local maximum or minimum. Eventually, it may lead 
to division by a number close to zero and may diverge. 
There are many methods developed on the improvement 
of quadratically convergent Newton’s method so as 
to get a superior convergence order than the Newton 
method (Maheshwari, 2009). You may refer to Kou et. 
al., (2006), Jisheng et. al., (2006), Golbabai et. al., (2007) 
and Abbasbandy (2003) for some modifications of the 
Newton’s Methods to find the roots of non-linear and 
transcendental equations. In this study, we propose 
two modifications of the Newton’s method (Proposed 
Method 1 and 2) to find the root of a nonlinear equation.

2.2 Forward Difference Approximation of the 
First Derivative

From equation (3), the forward difference approximation 
of the first derivative of the function  is given by;
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where 𝑓𝑓0 (𝑥𝑥𝑖𝑖) =  𝑓𝑓(𝑥𝑥𝑖𝑖), 𝑓𝑓1 (𝑥𝑥𝑖𝑖) =  𝑓𝑓′(𝑥𝑥𝑖𝑖) ,  𝑓𝑓2(𝑥𝑥𝑖𝑖) =  𝑓𝑓′′(𝑥𝑥𝑖𝑖), … ,  with 𝑓𝑓′(𝑥𝑥) and 𝑓𝑓′′(𝑥𝑥) being 
the first and second derivative of the function 𝑓𝑓 with respect to 𝑥𝑥 respectively. 
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1!  +  𝑓𝑓′′(𝑥𝑥𝑖𝑖) (𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖)2

2!  + 𝑓𝑓′′′(𝑥𝑥𝑖𝑖) (𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖)3

3!
+ ⋯                                                                                                                                    (2) 

 =  𝑓𝑓(𝑥𝑥𝑖𝑖) + 𝑓𝑓′(𝑥𝑥𝑖𝑖) (𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖)
1!  +  𝑂𝑂(𝛿𝛿𝑥𝑥), 

where  𝑂𝑂(𝛿𝛿𝑥𝑥) is the error due the truncation the Taylor series at the second term.

                                             ≈  𝑓𝑓(𝑥𝑥𝑖𝑖) +  𝑓𝑓′(𝑥𝑥𝑖𝑖)(𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖)                       (3) 

Assuming 𝑥𝑥𝑖𝑖+1  is a root of the equation then 𝑓𝑓(𝑥𝑥𝑖𝑖+1) = 0. Now, from equation (3) we have; 

                                                          𝑥𝑥𝑖𝑖+1 ≈  𝑥𝑥𝑖𝑖  − 𝑓𝑓(𝑥𝑥𝑖𝑖)
𝑓𝑓′(𝑥𝑥𝑖𝑖)                                                           (4) 

Equation (4) is known as the Newton-Raphson's Method for solving non-linear equations. 

Generally, convergence in an open method is not guaranteed but if an iterative process of solving 
non-linear equation using an open method does converge, it is faster than a bracket method. 

Some drawbacks of the Newton Raphson's method as stated by Kaw (2009) are that; the method 
diverges from root at inflection points, the method fails when the first derivative at a point 𝑥𝑥𝑖𝑖  is 
zero (division by zero) and results obtained from the Newton-Raphson method may oscillate about 
the local maximum or minimum without converging on a root but converging on the local 
maximum or minimum. Eventually, it may lead to division by a number close to zero and may 
diverge. There are many methods developed on the improvement of quadratically convergent 
Newton's method so as to get a superior convergence order than the Newton method (Maheshwari, 
2009). You may refer to Kou et. al., (2006), Jisheng et. al., (2006), Golbabai et. al., (2007) and 
Abbasbandy (2003) for some modifications of the Newton's Methods to find the roots of non-
linear and transcendental equations. In this study, we propose two modifications of the Newton's 
method (Proposed Method 1 and 2) to find the root of a nonlinear equation. 
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1!  +  𝑂𝑂(𝛿𝛿𝑥𝑥)                                                                          

                                                          ≈  𝑓𝑓(𝑥𝑥𝑖𝑖)– 𝑓𝑓′(𝑥𝑥𝑖𝑖)(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1)                                              (7)                                                

From equation (7), the backward difference approximation of first derivative of the function 𝑓𝑓 is 
given as; 

𝑓𝑓′(𝑥𝑥𝑖𝑖) ≈ 𝑓𝑓(𝑥𝑥𝑖𝑖) − 𝑓𝑓(𝑥𝑥𝑖𝑖−1)
𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1

  
                                                                                                                                           (8)

            = 𝑓𝑓(𝑥𝑥𝑖𝑖) − 𝑓𝑓(𝑥𝑥𝑖𝑖 − 𝛿𝛿𝑥𝑥)
𝛿𝛿𝑥𝑥  

                                                                                                                                                      (9) 

2.4 Central Difference Approximation of the First Derivative 

Given that 𝛿𝛿𝑥𝑥 =  𝑥𝑥𝑖𝑖+1 −  𝑥𝑥𝑖𝑖, we can rewrite equation (2) as; 

                   𝑓𝑓(𝑥𝑥𝑖𝑖+1) =   𝑓𝑓(𝑥𝑥𝑖𝑖) +  𝑓𝑓′(𝑥𝑥𝑖𝑖) 𝛿𝛿𝑥𝑥
1! +  𝑓𝑓′′(𝑥𝑥𝑖𝑖) (𝛿𝛿𝑥𝑥)2

2! + 𝑓𝑓′′′(𝑥𝑥𝑖𝑖) (𝛿𝛿𝑥𝑥)3

3!  + ⋯                     (10) 

Also, given that 𝛿𝛿𝑥𝑥 =  𝑥𝑥𝑖𝑖  −  𝑥𝑥𝑖𝑖−1 we can rewrite equation (6) as; 

                   𝑓𝑓(𝑥𝑥𝑖𝑖−1) =   𝑓𝑓(𝑥𝑥𝑖𝑖) −  𝑓𝑓′(𝑥𝑥𝑖𝑖) 𝛿𝛿𝑥𝑥
1! +  𝑓𝑓′′(𝑥𝑥𝑖𝑖) (𝛿𝛿𝑥𝑥)2

2!  − 𝑓𝑓′′′(𝑥𝑥𝑖𝑖) (𝛿𝛿𝑥𝑥)3

3! + ⋯                     (11) 

Subtracting (11) from (10) gives; 

𝑓𝑓(𝑥𝑥𝑖𝑖+1)  −  𝑓𝑓(𝑥𝑥𝑖𝑖−1) =  2𝑓𝑓′(𝑥𝑥𝑖𝑖)(𝛿𝛿𝑥𝑥) +   2𝑓𝑓′′′(𝑥𝑥𝑖𝑖)
(𝛿𝛿𝑥𝑥)3

3!   

= 2𝑓𝑓′(𝑥𝑥𝑖𝑖)(𝛿𝛿𝑥𝑥) +  𝑂𝑂(𝛿𝛿𝑥𝑥)2,  
where 𝑂𝑂(𝛿𝛿𝑥𝑥)2 is the error due to the truncation of the Taylor series at the third term. 

                                                        ≈  2𝑓𝑓′(𝑥𝑥𝑖𝑖)(𝛿𝛿𝑥𝑥)                                                                   (12) 

From equation (12), the central difference approximation of the first derivative of the function 𝑓𝑓 
is given as; 
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𝑓𝑓′(𝑥𝑥𝑖𝑖) ≈ 𝑓𝑓(𝑥𝑥𝑖𝑖+1)  −  𝑓𝑓(𝑥𝑥𝑖𝑖−1)
2𝛿𝛿𝑥𝑥   

                                                                 = 𝑓𝑓(𝑥𝑥𝑖𝑖 +𝛿𝛿𝑥𝑥 )−𝑓𝑓(𝑥𝑥𝑖𝑖−𝛿𝛿𝑥𝑥)
2𝛿𝛿𝑥𝑥                                                    (13) 

 

2.5 Secant Method of Solving Non-linear Equations 

Substituting (8) into (4) gives; 

 

                                                    𝑥𝑥𝑖𝑖+1 ≈  𝑥𝑥𝑖𝑖  − 𝑓𝑓(𝑥𝑥𝑖𝑖) [ 𝑥𝑥𝑖𝑖 −𝑥𝑥𝑖𝑖−1
𝑓𝑓(𝑥𝑥𝑖𝑖)−𝑓𝑓(𝑥𝑥𝑖𝑖−1)]          (14) 

 

which is also known as the Secant method of solving non-linear equations. 

 

2.6 Proposed Method 1 (PM1): Using the Forward difference approximation of the first 
derivative 

By substituting (5) into (4), we get; 

𝑥𝑥𝑖𝑖+1 ≈  𝑥𝑥𝑖𝑖  −  𝑓𝑓(𝑥𝑥𝑖𝑖) [ 𝛿𝛿𝑥𝑥
𝑓𝑓(𝑥𝑥𝑖𝑖  +  𝛿𝛿𝑥𝑥) −  𝑓𝑓(𝑥𝑥𝑖𝑖)] 

                                                =   𝑥𝑥𝑖𝑖 –  𝑓𝑓(𝑥𝑥𝑖𝑖) [ 𝑥𝑥𝑖𝑖 −𝑥𝑥𝑖𝑖−1
𝑓𝑓(2𝑥𝑥𝑖𝑖−𝑥𝑥𝑖𝑖−1)− 𝑓𝑓(𝑥𝑥𝑖𝑖)]                                       (15) 

where 𝛿𝛿𝑥𝑥 =  𝑥𝑥𝑖𝑖  − 𝑥𝑥𝑖𝑖−1. 

 

2.7 Proposed Method 2 (PM2): Using the Central difference approximation of the first derivative 

By substituting equation (13) into (4), we get 

𝑥𝑥𝑖𝑖+1  ≈  𝑥𝑥_𝑖𝑖 −  𝑓𝑓(𝑥𝑥𝑖𝑖) [ 2𝛿𝛿𝑥𝑥
𝑓𝑓(𝑥𝑥𝑖𝑖  +  𝛿𝛿𝑥𝑥) − 𝑓𝑓(𝑥𝑥𝑖𝑖  − 𝛿𝛿𝑥𝑥)] 

                                                             =   𝑥𝑥𝑖𝑖 −  𝑓𝑓(𝑥𝑥𝑖𝑖) [ 2(𝑥𝑥𝑖𝑖 −𝑥𝑥𝑖𝑖−1)
𝑓𝑓(2𝑥𝑥𝑖𝑖−𝑥𝑥𝑖𝑖−1)− 𝑓𝑓(𝑥𝑥𝑖𝑖−1)]                        (16) 

where 𝛿𝛿𝑥𝑥 =  𝑥𝑥𝑖𝑖  − 𝑥𝑥𝑖𝑖−1. 
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𝑓𝑓′(𝑥𝑥𝑖𝑖) ≈ 𝑓𝑓(𝑥𝑥𝑖𝑖+1)  −  𝑓𝑓(𝑥𝑥𝑖𝑖−1)
2𝛿𝛿𝑥𝑥   

                                                                 = 𝑓𝑓(𝑥𝑥𝑖𝑖 +𝛿𝛿𝑥𝑥 )−𝑓𝑓(𝑥𝑥𝑖𝑖−𝛿𝛿𝑥𝑥)
2𝛿𝛿𝑥𝑥                                                    (13) 

 

2.5 Secant Method of Solving Non-linear Equations 

Substituting (8) into (4) gives; 

 

                                                    𝑥𝑥𝑖𝑖+1 ≈  𝑥𝑥𝑖𝑖  − 𝑓𝑓(𝑥𝑥𝑖𝑖) [ 𝑥𝑥𝑖𝑖 −𝑥𝑥𝑖𝑖−1
𝑓𝑓(𝑥𝑥𝑖𝑖)−𝑓𝑓(𝑥𝑥𝑖𝑖−1)]          (14) 

 

which is also known as the Secant method of solving non-linear equations. 

 

2.6 Proposed Method 1 (PM1): Using the Forward difference approximation of the first 
derivative 

By substituting (5) into (4), we get; 

𝑥𝑥𝑖𝑖+1 ≈  𝑥𝑥𝑖𝑖  −  𝑓𝑓(𝑥𝑥𝑖𝑖) [ 𝛿𝛿𝑥𝑥
𝑓𝑓(𝑥𝑥𝑖𝑖  +  𝛿𝛿𝑥𝑥) −  𝑓𝑓(𝑥𝑥𝑖𝑖)] 

                                                =   𝑥𝑥𝑖𝑖 –  𝑓𝑓(𝑥𝑥𝑖𝑖) [ 𝑥𝑥𝑖𝑖 −𝑥𝑥𝑖𝑖−1
𝑓𝑓(2𝑥𝑥𝑖𝑖−𝑥𝑥𝑖𝑖−1)− 𝑓𝑓(𝑥𝑥𝑖𝑖)]                                       (15) 

where 𝛿𝛿𝑥𝑥 =  𝑥𝑥𝑖𝑖  − 𝑥𝑥𝑖𝑖−1. 

 

2.7 Proposed Method 2 (PM2): Using the Central difference approximation of the first derivative 

By substituting equation (13) into (4), we get 

𝑥𝑥𝑖𝑖+1  ≈  𝑥𝑥_𝑖𝑖 −  𝑓𝑓(𝑥𝑥𝑖𝑖) [ 2𝛿𝛿𝑥𝑥
𝑓𝑓(𝑥𝑥𝑖𝑖  +  𝛿𝛿𝑥𝑥) − 𝑓𝑓(𝑥𝑥𝑖𝑖  − 𝛿𝛿𝑥𝑥)] 

                                                             =   𝑥𝑥𝑖𝑖 −  𝑓𝑓(𝑥𝑥𝑖𝑖) [ 2(𝑥𝑥𝑖𝑖 −𝑥𝑥𝑖𝑖−1)
𝑓𝑓(2𝑥𝑥𝑖𝑖−𝑥𝑥𝑖𝑖−1)− 𝑓𝑓(𝑥𝑥𝑖𝑖−1)]                        (16) 

where 𝛿𝛿𝑥𝑥 =  𝑥𝑥𝑖𝑖  − 𝑥𝑥𝑖𝑖−1. 
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2.8 The Algorithm 

The following are the steps for the Secant and the proposed methods in finding the root of an 
equation 𝑓𝑓(𝑥𝑥) = 0. 

1. Use two initial guesses, 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑖𝑖−1 to estimate the new value of the root 𝑥𝑥𝑖𝑖+1 using 
either equation (14), (15) or (16). 
 

2. Find the absolute relative approximate error, |𝜀𝜀𝑎𝑎 |, which the absolute value of the relative 
approximate error, 𝜀𝜀𝑎𝑎. The relative approximate error 𝜀𝜀𝑎𝑎 is defined as the ratio between 
the approximate error (𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖) and the present approximation (𝑥𝑥𝑖𝑖+1).  
Mathematically, the absolute relative approximate error is given as; 

                                                                |𝜀𝜀𝑎𝑎| =  |𝑥𝑥𝑖𝑖+1−𝑥𝑥𝑖𝑖
𝑥𝑥𝑖𝑖+1

|                                         (17) 

The absolute relative approximate error, |𝜀𝜀𝑎𝑎 | is usually expressed as percentage. 

3. According to Petkovic (2012), iterating any root-finding method based on the evaluation 
of a function and its derivative makes sense only when the absolute value of the function 
do not exceed the precision limit 𝜀𝜀𝑡𝑡𝑡𝑡𝑙𝑙 of the employed computer arithmetic. Also the 
number of iterations must be finite. Here, we compare the absolute relative approximate 
error, |𝜀𝜀𝑎𝑎|  to a pre-specified error tolerance 𝜀𝜀𝑡𝑡𝑡𝑡𝑙𝑙. 

a. if |𝜀𝜀𝑎𝑎|  >  |𝜀𝜀𝑡𝑡𝑡𝑡𝑙𝑙|, proceed to step 1 and go through the algorithm; else, terminate 
the algorithm.  

b. The algorithm may also be terminated if the number of iterations exceeds the 
maximum number of iterations allowed; in which case the user must be notified 
accordingly. 
 

4. Equivalently, suppose that a zero 𝛼𝛼 lies in an interval of unit width (if 𝛼𝛼 is real) or in the 
unit disk (if 𝛼𝛼 is complex). Starting with an initial approximation 𝑥𝑥0 to 𝛼𝛼, a stopping 
criterion may be given by 

                                                      |𝑥𝑥𝑛𝑛  − 𝛼𝛼| < 𝜀𝜀𝑡𝑡𝑡𝑡𝑙𝑙  =  10−𝑚𝑚                                   (18) 
 
where 𝑛𝑛 is the iteration index, 𝜀𝜀𝑡𝑡𝑡𝑡𝑙𝑙 is the required accuracy (precision limit) and $m$ is 
the number of significant decimal digits of the approximation 𝑥𝑥𝑛𝑛. 
 
 
2.9 Evaluation of the Numerical Methods 
 
In this study, the absolute relative approximate error |𝜀𝜀𝑎𝑎|, the number of numerical iteration 
required 𝑛𝑛, and the number of significant digits correct in an answer, 𝑚𝑚 are main 
performance metrics used to assess the numerical methods. 

1.  Use two initial guesses, 
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2.8 The Algorithm 

The following are the steps for the Secant and the proposed methods in finding the root of an 
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1. Use two initial guesses, 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑖𝑖−1 to estimate the new value of the root 𝑥𝑥𝑖𝑖+1 using 
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The absolute relative approximate error, |𝜀𝜀𝑎𝑎 | is usually expressed as percentage. 

3. According to Petkovic (2012), iterating any root-finding method based on the evaluation 
of a function and its derivative makes sense only when the absolute value of the function 
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number of iterations must be finite. Here, we compare the absolute relative approximate 
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It is expected that; 
 
                                               |𝜀𝜀𝑎𝑎| ≤  0.5 ×  102−𝑚𝑚                                           (19) 
It follows from (18) that, the number of significant digits correct in an answer, 𝑚𝑚  is 
given as; 
 
                                                           𝑚𝑚 ≤  2 − 𝑙𝑙𝑙𝑙𝑔𝑔10 2|𝜀𝜀𝑎𝑎|                                         (20) 
 
 
 

3.  Results and Discussion 
 

In this section, we compare solutions of some non-linear equations using the Secant method, 
Proposed method 1 (Using the Forward difference approximation of the first derivative) and 
Proposed Method 2 (Using the Central difference approximation of the first derivative). 

 

3.1 Illustration 1 

The equation that gives the depth 𝑥𝑥  to which the ball with radius 0.09m is submerged under 
water is given by 

 
𝑥𝑥3  − 0.165𝑥𝑥2  +  0.0003993 = 0 

 

Use the secant method, proposed method 1 and proposed Method 2 of finding roots of equations 
to find the depth 𝑥𝑥  to which the ball is submerged under water. 

 

3.1.1 Solutions to illustration 1 

 

For all three methods, we set the two initial guesses to 0 and 0.18 since the diameter of the ball is 
0.18m. 

The error tolerance is also set at 10−3 and the maximum number of iterations at 𝑛𝑛 = 10. Figure 1 
is a graph of the function 𝑓𝑓(𝑥𝑥)  = 𝑥𝑥3  − 0.165𝑥𝑥2  +  0.0003993. 
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3. According to Petkovic (2012), iterating any root-finding method based on the evaluation 
of a function and its derivative makes sense only when the absolute value of the function 
do not exceed the precision limit 𝜀𝜀𝑡𝑡𝑡𝑡𝑙𝑙 of the employed computer arithmetic. Also the 
number of iterations must be finite. Here, we compare the absolute relative approximate 
error, |𝜀𝜀𝑎𝑎|  to a pre-specified error tolerance 𝜀𝜀𝑡𝑡𝑡𝑡𝑙𝑙. 

a. if |𝜀𝜀𝑎𝑎|  >  |𝜀𝜀𝑡𝑡𝑡𝑡𝑙𝑙|, proceed to step 1 and go through the algorithm; else, terminate 
the algorithm.  

b. The algorithm may also be terminated if the number of iterations exceeds the 
maximum number of iterations allowed; in which case the user must be notified 
accordingly. 
 

4. Equivalently, suppose that a zero 𝛼𝛼 lies in an interval of unit width (if 𝛼𝛼 is real) or in the 
unit disk (if 𝛼𝛼 is complex). Starting with an initial approximation 𝑥𝑥0 to 𝛼𝛼, a stopping 
criterion may be given by 

                                                      |𝑥𝑥𝑛𝑛  − 𝛼𝛼| < 𝜀𝜀𝑡𝑡𝑡𝑡𝑙𝑙  =  10−𝑚𝑚                                   (18) 
 
where 𝑛𝑛 is the iteration index, 𝜀𝜀𝑡𝑡𝑡𝑡𝑙𝑙 is the required accuracy (precision limit) and $m$ is 
the number of significant decimal digits of the approximation 𝑥𝑥𝑛𝑛. 
 
 
2.9 Evaluation of the Numerical Methods 
 
In this study, the absolute relative approximate error |𝜀𝜀𝑎𝑎|, the number of numerical iteration 
required 𝑛𝑛, and the number of significant digits correct in an answer, 𝑚𝑚 are main 
performance metrics used to assess the numerical methods. 
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3.1.1 Solutions to illustration 1 

 

For all three methods, we set the two initial guesses to 0 and 0.18 since the diameter of the ball is 
0.18m. 

The error tolerance is also set at 10−3 and the maximum number of iterations at 𝑛𝑛 = 10. Figure 1 
is a graph of the function 𝑓𝑓(𝑥𝑥)  = 𝑥𝑥3  − 0.165𝑥𝑥2  +  0.0003993. 
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3. Results and Discussion
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Figure 1: A sketch of the function in illustration 1 

From Table 1, a root of the equation is 0.146360 attained at the 7th iteration (𝑛𝑛 = 7) with an 
error less than or equal to the pre-specified tolerance. 

Table 1: Solution from Secant Method 

iteration root     |𝜺𝜺𝒂𝒂|  𝒇𝒇(𝒙𝒙) m 
1 -0.14789 221.7130 -0.006443932 -5 
2 0.140394 205.3383 -0.000085693 -5 
3 0.144280 2.692927 -0.000032029 0 
4 0.146598 1.581830  0.000003831 0 
5 0.146351 0.169274 -0.000000140 3 
6 0.146359 0.005955 -0.000000001 6 
7 0.146360 0.000024  0.000000000 11 

 

From Table 2 the Proposed Method 1, gave a root of 0.146360 at the 7th iteration with  

            |𝜀𝜀𝑎𝑎| ≤  10−3. 
Table 2: Solution from Proposed Method 1 

iteration root  |𝜺𝜺𝒂𝒂|        𝒇𝒇(𝒙𝒙) M 
1 0.173571 3.704076 0.000657511 -1 
2 0.152262 13.99473 0.000103988 -2 
3 0.144583 5.311406 -0.000027510 -1 
4 0.146699 1.442798 0.000005457 0 
5 0.146373 0.222728 0.000000220 2 
6 0.146359 0.009485 -0.000000001 5 
7 0.146360 0.000051 0.000000000 11 

 

 with an error less than or equal 
to the pre-specified tolerance.

Table 1: Solution from Secant Method

iteration root
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It is evident from Table 3 that the root of equation (0.146360) is found on the 6th iteration with 
|𝜀𝜀𝑎𝑎| ≤  10−3 when the Proposed method 2 is used to solve the equation. 

 

Table 3: Solution from Proposed Method 2 

iteration Root |𝜺𝜺𝒂𝒂| 𝒇𝒇(𝒙𝒙) m 
1 0.167389 7.5340190 0.000466234 -1 
2 0.15130 10.634103 0.000085675 -2 
3 0.146791 3.0711020 0.000006947 0 
4 0.146363 0.2925720 0.000000059 2 
5 0.14636 0.0025300 0.000000000 7 
6 0.14636 0.0000000 0.000000000 16 

 

 

3.2: Illustration 2 

Find a root of the non-linear equation, 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥) − 𝑥𝑥𝑒𝑒𝑥𝑥  = 0, using the Secant method, Proposed 
methods 1 and 2. Take the maximum number of iterations 𝑛𝑛 = 10, with initial guesses, 𝑥𝑥𝑖𝑖−1 =
0, 𝑥𝑥𝑖𝑖 = 1 and the error tolerance to be 10−3. Figure 2 is the graph of the function 𝑓𝑓(𝑥𝑥) =
 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥) − 𝑥𝑥𝑒𝑒𝑥𝑥. 

 

         Figure 2: A sketch of the function in illustration 2 

From Table 4, the secant method provides a root, 0.517757 for the equation under consideration 
at 𝑛𝑛 = 7 iterations with |𝜀𝜀𝑎𝑎| =  10−6 which is less than the pre-specified tolerance of 10−3. 
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 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥) − 𝑥𝑥𝑒𝑒𝑥𝑥. 
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From Table 4, the secant method provides a root, 0.517757 for the equation under consideration 
at 𝑛𝑛 = 7 iterations with |𝜀𝜀𝑎𝑎| =  10−6 which is less than the pre-specified tolerance of 10−3. 
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From Table 4, the secant method provides a root, 0.517757 for the equation under consideration 
at 𝑛𝑛 = 7 iterations with |𝜀𝜀𝑎𝑎| =  10−6 which is less than the pre-specified tolerance of 10−3. 

 

m

1 0.314665 217.797952 0.519871174 -5

2 0.446728 29.562231 0.203544778 -3

3 0.531706 15.982091 -0.042931093 -2

4 0.516904 2.863468 0.002592763 0

5 0.517747 0.162820 0.000030112 3

6 0.517757 0.001913 -0.000000022 7

7 0.517757 0.000001 0.000000000 14

From Tables 5 and 6 the Proposed methods 1 and 2 
provided a root (0.517757) to the equation at 6th and 
5th iterations (n=5 and n=6) respectively. The roots were 
obtained at precision limit less than the pre-specified 
tolerance of .

Table 5: Solution from Proposed Method 1

iteration Root
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From Table 4, the secant method provides a root, 0.517757 for the equation under consideration 
at 𝑛𝑛 = 7 iterations with |𝜀𝜀𝑎𝑎| =  10−6 which is less than the pre-specified tolerance of 10−3. 
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It is evident from Table 3 that the root of equation (0.146360) is found on the 6th iteration with 
|𝜀𝜀𝑎𝑎| ≤  10−3 when the Proposed method 2 is used to solve the equation. 
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From Table 4, the secant method provides a root, 0.517757 for the equation under consideration 
at 𝑛𝑛 = 7 iterations with |𝜀𝜀𝑎𝑎| =  10−6 which is less than the pre-specified tolerance of 10−3. 

 

m

1 0.832673 20.09521 -1.241793162 -2

2 0.549698 51.47814 -0.099796443 -3

3 0.510267 7.727561 0.022643969 -1

4 0.518060 1.504182 -0.000919664 0

5 0.517759 0.057979 -0.000006207 4

6 0.517757 0.000394 0.000000002 9

Table 6: Solution from Proposed Method 2

iteration Root
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It is evident from Table 3 that the root of equation (0.146360) is found on the 6th iteration with 
|𝜀𝜀𝑎𝑎| ≤  10−3 when the Proposed method 2 is used to solve the equation. 
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From Table 4, the secant method provides a root, 0.517757 for the equation under consideration 
at 𝑛𝑛 = 7 iterations with |𝜀𝜀𝑎𝑎| =  10−6 which is less than the pre-specified tolerance of 10−3. 
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It is evident from Table 3 that the root of equation (0.146360) is found on the 6th iteration with 
|𝜀𝜀𝑎𝑎| ≤  10−3 when the Proposed method 2 is used to solve the equation. 

 

Table 3: Solution from Proposed Method 2 

iteration Root |𝜺𝜺𝒂𝒂| 𝒇𝒇(𝒙𝒙) m 
1 0.167389 7.5340190 0.000466234 -1 
2 0.15130 10.634103 0.000085675 -2 
3 0.146791 3.0711020 0.000006947 0 
4 0.146363 0.2925720 0.000000059 2 
5 0.14636 0.0025300 0.000000000 7 
6 0.14636 0.0000000 0.000000000 16 
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Find a root of the non-linear equation, 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥) − 𝑥𝑥𝑒𝑒𝑥𝑥  = 0, using the Secant method, Proposed 
methods 1 and 2. Take the maximum number of iterations 𝑛𝑛 = 10, with initial guesses, 𝑥𝑥𝑖𝑖−1 =
0, 𝑥𝑥𝑖𝑖 = 1 and the error tolerance to be 10−3. Figure 2 is the graph of the function 𝑓𝑓(𝑥𝑥) =
 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥) − 𝑥𝑥𝑒𝑒𝑥𝑥. 

 

         Figure 2: A sketch of the function in illustration 2 

From Table 4, the secant method provides a root, 0.517757 for the equation under consideration 
at 𝑛𝑛 = 7 iterations with |𝜀𝜀𝑎𝑎| =  10−6 which is less than the pre-specified tolerance of 10−3. 

 

m

1 0.731018 36.795478 -0.773972497 -3

2 0.553063 32.176402 -0.110618158 -3

3 0.519082 6.546315 -0.004033931 -1

4 0.517759 0.255454 -0.000005839 2

5 0.517757 0.000371 0.000000000 9
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3.3 Illustration 3

Find a root of the nonlinear equation, 
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3.3 Illustration 3 

Find a root of the nonlinear equation, 𝑥𝑥3  − 𝑒𝑒−𝑥𝑥 = 0, using the Secant, Proposed Methods 1 and 2 
given the initial guesses (0, 2), maximum number of iterations, 𝑛𝑛 = 10 and pre-specified tolerance 
of 10−3. Figure 3 is a graph of the function, 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3  − 𝑒𝑒−𝑥𝑥 = 0. 
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It can be seen from Table 7 that, the Secant method of solving non-linear equation provided a 
root of 0.7728834 with |𝜀𝜀𝑎𝑎|  <  10−3 at 𝑛𝑛 = 9 iterations. 

Table 7: Solution from Secant Method 

iteration root |𝜺𝜺𝒂𝒂| 𝒇𝒇(𝒙𝒙) M 
1 0.225615 786.466472 -0.786541141 -6 
2 0.386937 41.692024 -0.621202127 -3 
3 0.993045 61.035345 0.608832428 -3 
4 0.693038 43.288595 -0.16718665 -3 
5 0.757672 8.530581 -0.033801676 -1 
6 0.774051 2.116029 0.002635996 0 
7 0.772866 0.153314 -0.000037316 3 
8 0.772883 0.00214 -0.00000004 7 
9 0.772883 0.000002 0.000000000 14 
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It is evident from Table 3 that the root of equation (0.146360) is found on the 6th iteration with 
|𝜀𝜀𝑎𝑎| ≤  10−3 when the Proposed method 2 is used to solve the equation. 

 

Table 3: Solution from Proposed Method 2 

iteration Root |𝜺𝜺𝒂𝒂| 𝒇𝒇(𝒙𝒙) m 
1 0.167389 7.5340190 0.000466234 -1 
2 0.15130 10.634103 0.000085675 -2 
3 0.146791 3.0711020 0.000006947 0 
4 0.146363 0.2925720 0.000000059 2 
5 0.14636 0.0025300 0.000000000 7 
6 0.14636 0.0000000 0.000000000 16 
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From Table 4, the secant method provides a root, 0.517757 for the equation under consideration 
at 𝑛𝑛 = 7 iterations with |𝜀𝜀𝑎𝑎| =  10−6 which is less than the pre-specified tolerance of 10−3. 
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methods 1 and 2. Take the maximum number of iterations 𝑛𝑛 = 10, with initial guesses, 𝑥𝑥𝑖𝑖−1 =
0, 𝑥𝑥𝑖𝑖 = 1 and the error tolerance to be 10−3. Figure 2 is the graph of the function 𝑓𝑓(𝑥𝑥) =
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From Table 4, the secant method provides a root, 0.517757 for the equation under consideration 
at 𝑛𝑛 = 7 iterations with |𝜀𝜀𝑎𝑎| =  10−6 which is less than the pre-specified tolerance of 10−3. 

 

m

1 0.225615 786.466472 -0.786541141 -6

2 0.386937 41.692024 -0.621202127 -3

3 0.993045 61.035345 0.608832428 -3

4 0.693038 43.288595 -0.16718665 -3

5 0.757672 8.530581 -0.033801676 -1

6 0.774051 2.116029 0.002635996 0

7 0.772866 0.153314 -0.000037316 3

8 0.772883 0.00214 -0.00000004 7

9 0.772883 0.000002 0.000000000 14

From Tables 8 and 9, the Proposed methods 1 and 2 
gave a root (0.772883) to the non-linear equation,  
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From Tables 8 and 9, the Proposed methods 1 and 2 gave a root (0.772883) to the non-linear 
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among the three methods considered. Proposed Method 1 (PM1) also obtained the roots of the 
non-linear equations with lower number of iterations when compared to the Secant method. 
Although the |𝜀𝜀𝑎𝑎| of PM1 were higher than those of the Secant method, they were less than the 
pre-specified precision limit of 10−3. 
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It is evident from Table 3 that the root of equation (0.146360) is found on the 6th iteration with 
|𝜀𝜀𝑎𝑎| ≤  10−3 when the Proposed method 2 is used to solve the equation. 

 

Table 3: Solution from Proposed Method 2 

iteration Root |𝜺𝜺𝒂𝒂| 𝒇𝒇(𝒙𝒙) m 
1 0.167389 7.5340190 0.000466234 -1 
2 0.15130 10.634103 0.000085675 -2 
3 0.146791 3.0711020 0.000006947 0 
4 0.146363 0.2925720 0.000000059 2 
5 0.14636 0.0025300 0.000000000 7 
6 0.14636 0.0000000 0.000000000 16 

 

 

3.2: Illustration 2 

Find a root of the non-linear equation, 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥) − 𝑥𝑥𝑒𝑒𝑥𝑥  = 0, using the Secant method, Proposed 
methods 1 and 2. Take the maximum number of iterations 𝑛𝑛 = 10, with initial guesses, 𝑥𝑥𝑖𝑖−1 =
0, 𝑥𝑥𝑖𝑖 = 1 and the error tolerance to be 10−3. Figure 2 is the graph of the function 𝑓𝑓(𝑥𝑥) =
 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥) − 𝑥𝑥𝑒𝑒𝑥𝑥. 

 

         Figure 2: A sketch of the function in illustration 2 

From Table 4, the secant method provides a root, 0.517757 for the equation under consideration 
at 𝑛𝑛 = 7 iterations with |𝜀𝜀𝑎𝑎| =  10−6 which is less than the pre-specified tolerance of 10−3. 
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m
1 1.515884 31.936198 3.263743963 -3
2 1.072222 41.377791 0.890444758 -3
3 0.849578 26.206468 0.185615279 -2
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three non-linear equations with the smallest absolute 
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From Tables 8 and 9, the Proposed methods 1 and 2 gave a root (0.772883) to the non-linear 
equation,  𝑓𝑓(𝑥𝑥)  =  𝑥𝑥3  − 𝑒𝑒−𝑥𝑥 at 𝑛𝑛 = 8 and 𝑛𝑛 = 7 iterations respectively. This was achieved at an 
absolute relative approximate error,  |𝜀𝜀𝑎𝑎|  less than the precision limit, 10−3. 
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Table 10: Comparison of the results obtained from the different methods
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Table 10: Comparison of the results obtained from the different methods 

Non-Linear Equation |𝜺𝜺𝒂𝒂| Method n root (x) 𝒇𝒇(𝒙𝒙) 
  0.000024 Secant 7 0.146360 0 
 𝑥𝑥3  − 0.165𝑥𝑥2  +  0.0003993 = 0 0.000051 PM1 7 0.146360 0 
             0.000000 PM2 6 0.146360 0 
  0.000001 Secant 7 0.517757 0 

𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥) − 𝑥𝑥𝑒𝑒𝑥𝑥  = 0 0.000394 PM1 6 0.517757 2 × 10−9 
                              0.000371 PM2 5 0.517757 0 
  0.000002 Secant 9 0.772883 0 

𝑥𝑥3  − 𝑒𝑒−𝑥𝑥 = 0 0.000206 PM1 8 0.772883 10−9 
             0.000000 PM2 7 0.772883 0 

 

4.  Conclusion and Recommendation 

The study proposed a modification of the Newton's method with forward and central difference 
approximations of the first derivative. The proposed method 2, which was obtained through a 
modification of the Newton Raphson's method of solving non-linear equations with the central 
difference approximation of the first derivative outperformed the Secant method and Proposed 
Method 1 (modification with forward difference approximation of the first derivative).  

That is, the Proposed method 2 had the lowest absolute relative approximate error and the least 
number of iterations in finding the roots of the non-linear equations considered. This can be 
attributed to the fact that; the central difference approximation of the first derivative gives a better 
approximation when compared to the forward and backward difference approximations of the first 
derivative. 

With a pre-specified precision limit of 10−3, Proposed Method 1 (PM1) also obtained the roots of 
the non-linear equations with lower number of iterations when compared to the Secant method.  

The Proposed methods 1 and 2 are therefore recommended as viable alternatives for solving non-
linear equations. 
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4. Conclusion and Recommendation
The study proposed a modification of the Newton’s 
method with forward and central difference 
approximations of the first derivative. The proposed 
method 2, which was obtained through a modification 
of the Newton Raphson’s method of solving non-linear 
equations with the central difference approximation of 
the first derivative, outperformed the Secant method 
and Proposed Method 1 (modification with forward 
difference approximation of the first derivative). 

That is, the Proposed method 2 had the lowest absolute 
relative approximate error and the least number of 
iterations in finding the roots of the non-linear equations 
considered. This can be attributed to the fact that, the 
central difference approximation of the first derivative 

gives a better approximation when compared to the 
forward and backward difference approximations of the 
first derivative.

With a pre-specified precision limit of 10-3 Proposed 
Method 1 (PM1) also obtained the roots of the non-
linear equations with lower number of iterations when 
compared to the Secant method. 

The Proposed methods 1 and 2 are therefore 
recommended as viable alternatives for solving non-
linear equations.
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