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ABSTRACT

An option is a financial tool with the potential to increase profitability and dynamically contribute to effective 
ways of managing funds and mitigating risk in the financial sector. The evolution of options by Black-Scholes 
since its inception has played a vital role in improving the economy, hence the essence of valuation techniques 
that determine the option price. Geometric Brownian motion was commonly used to describe the behaviour 
of an asset price, as it may be, other assets exhibit a mean-reverting process. The pricing formula has been 
derived for assets that follow the geometric Brownian motion model only but in this article, we derived a 
pricing formula for a European option for an asset that follows a geometric mean-reverting model. We then 
compared it to a Monte Carlo Simulation technique to price the European option. The two methods gave close 
valuations but with regards to the time efficiency of the two methods, the derived formula was less. Also, the 
mean absolute error between the two methods was 0.0177 for the European put options; while, the mean 
absolute error between the two methods for the European call options was 0.0434. Also, from our analysis, 
when pricing a European option for this kind of asset, it is better to take note of the interest rate and how 
volatile it is in the market and that will inform the choice of option to trade.

Keywords: Mean reverting; European Option; Risk-Neutral Valuation; Monte-Carlo Method; Feynman-Kac 
Method. 

Introduction
The futures and options trading model has triggered 
a new phase of analyzing the market. Throughout the 
1970s, the rapid growth of the options market brought 
in more research and study in this field. The famous 
one is the Black-Scholes model for pricing options in 
which the underlying assumption of returns displays 
negative skewness and high kurtosis. There have been 
empirical studies that linked the market crash in 1987 to 
the underestimation of the mean reversion component 
of the model in the market at that time (Bingham and 
Kiesel, 2013). However, recent studies under the broad 
spectrum of the general random process have shown that 
some asset prices do exhibit mean reversion not only in 
the price but in the returns and volatilities.

These inquiries led several researchers to propose 
alternative models, which would also loosen some rigid 
assumptions of the Black-Scholes model to pricing 
options. One of such models is the geometric mean-
reverting Brownian motion model. The drift term of the 
mean-reverting model has the speed of reversion, the 
equilibrium level and the logarithm of the underlying 
asset price. When the level of price is less than the 
equilibrium level, the drift is positive. However, if the 
drift term approaches negative (the equilibrium level 
is lesser than the price level), the higher the tendency 
of the price to revert to the equilibrium level (Das and 
Sundaram, 1999).

Numerous researches have been done on the pricing of 
options using the Monte Carlo method (see (Boiquaye, 
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2020), (Miao and Lee, 2013), (Glasserman, 2013) and 
also risk-neutral valuations (see (Bingham and Kiesel, 
2013), (Knopf and Teall, 2013). For example, Boyle 
(1977) performed research on pricing American options 
using the Monte Carlo approach where he numerically 
estimated European call options on a portfolio paying 
discrete dividends. Glasserman has shown that the Monte 
Carlo simulation is an important method in financial 
securities pricing and risk management. Miao and Lee 
suggested that the Monte Carlo method is the most 
effective numerical technique for estimating American 
and European options. They claimed that the Monte 
Carlo method is more robust and generally applicable to 
diverse products. They also stated that the Monte Carlo 
approach usually performs well in European option 
pricing than the American option due to the existence 
of boundary problems in the American option. Bjork 
(2009) used a risk-neutral valuation formula as a pricing 
formula for the Black-Scholes equation. 

One of the most important derivations in the options 
market is the Black-Scholes vanilla options pricing 
formula, which gives an explicit pricing formula for the 
European call and put options. Since then, the pricing 
method has ushered in many pricing formulas with variant 
models.  Swishchuk (2008) provided an explicit formula 
for a mean-reverting asset in the energy market for assets 
such as oil and gas where the mean-reverting model was 
compared with the Black-Scholes and the Heston model. 
Phewchean and Wu (2019) also presented an explicit 
pricing formula for the European call options of stock 
prices modelled after a generalized Ornstein-Uhlenbeck 
model with stochastic earning yield and stochastic 
dividend yield. Their pricing formula when compared 
with other models performed better with empirical data. 
Kuchuk-Iatsenko and Mishura (2015) derived a closed-
form analytical formula for the price of European call 
options in a modified Black-Scholes model that captures 
the stochastic volatility. The stochastic volatility was 
modelled to follow the Ornstein-Uhlenbeck process. 
They also used the Fourier transform and the Gaussian 
property in deriving the option price.

In this paper, we derived a pricing formula for a European 
option for an asset that follows a geometric mean 
reverting model. We then compared it to a Monte Carlo 
Simulation technique to price the European option to see 
how close it was to our new formula. Section 2 presents 
the option formula derivation using both methods. 
Section 3 shows how the European option is evaluated 
using numerical values and section 4 is the conclusion.

2.1 Derivation of the Pricing Formula
The model of the asset price which follows the mean-
reverting Geometric Brownian Motion (the Arithmetic 
Ornstein-Uhlenbeck Process) is given by; 
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Where 𝛾𝛾 is the degree of mean reversion,  𝑃𝑃𝑡𝑡 is the price at time 𝑑𝑑,  �̃�𝐵𝑡𝑡 is the Brownian motion with 

respect to the risk-neutral measure ℚ, 𝜂𝜂 represents the interest rate and 𝜀𝜀 is the volatility rate. The 

deterministic (drift) term of the mean-reverting process given by equation (1) is 𝛾𝛾(𝜂𝜂 −

𝑙𝑙𝑙𝑙𝑃𝑃𝑡𝑡  )𝑃𝑃𝑡𝑡  𝑑𝑑𝑑𝑑. 𝜂𝜂 represents the value around which the 𝑙𝑙𝑙𝑙𝑃𝑃𝑡𝑡 tends to oscillate with 𝛾𝛾 which 

determines the speed at which it reverts. It also determines the overall direction (upward or 

downward movement) of the asset. Thus for 𝛾𝛾 > 0, if 𝑙𝑙𝑙𝑙𝑃𝑃𝑡𝑡 > 𝜂𝜂  the drift term is negative, then the 

asset price tends to move downward and when 𝑙𝑙𝑙𝑙𝑃𝑃𝑡𝑡 < 𝜂𝜂 the drift term is positive, the price takes 

an upward trajectory. The stochastic term 𝜀𝜀𝑃𝑃𝑡𝑡𝑑𝑑�̃�𝐵𝑡𝑡  is the variable in the model that causes the 

fluctuation in the process. The deterministic term acts as a “spring” that pulls the process back to 

the equilibrium every time the stochastic term gives the process a pull away from the equilibrium. 

 The solution obtained from the Stochastic Differential Equation is given by: 
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To be able to derive the formula for the options price we need the risk-neutral valuation formula 

as shown in Theorem 1. 

Theorem 1 (Risk Neutral Valuation): For a maturity time  (𝑇𝑇), let  Ψ(𝑃𝑃𝑇𝑇) be the claim of the 

arbitrage-free price expressed as Π(𝑡𝑡; 𝜓𝜓) = 𝒥𝒥(𝑡𝑡, 𝑃𝑃𝑡𝑡), then                           

                                   𝒥𝒥(𝑡𝑡, 𝑃𝑃𝑡𝑡) = 𝑒𝑒−𝜂𝜂(𝜏𝜏)𝔼𝔼(𝑡𝑡,𝑃𝑃𝑡𝑡)
 ℚ [𝜓𝜓(𝑃𝑃𝑇𝑇)]                                              

𝒥𝒥 is obtained by using the Feynman-Kac Formula and ℚ is the asset price dynamics of 𝑃𝑃𝑇𝑇 and 𝜏𝜏 =

𝑇𝑇 − 𝑡𝑡 (see Bjork, (2009) for proof). 

This suggests that the option price at a given time 𝑡𝑡 and initial price 𝑃𝑃𝑡𝑡 is evaluated by discounting 

the expected value of the price process at maturity, 𝔼𝔼(𝑡𝑡,𝑃𝑃𝑡𝑡)
 ℚ [𝜓𝜓(𝑃𝑃𝑇𝑇)] using the discounting factor 

𝑒𝑒−𝜂𝜂(𝜏𝜏). Equation (2) is used to evaluate the European option using the risk-neutral valuation 

formula in Theorem 1 as seen in Theorems 2 and 3 below. This would assist in valuing the options 

with regards to discounting from the expiration to the present, their expected payoffs, considering 

that they will increase on average at the risk-free rate. It can also leverage the perfect correlation 

with regard to the changes in the option’s value and its underlying asset. 
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that they will increase on average at the risk-free rate. It can also leverage the perfect correlation 
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𝑃𝑃𝑇𝑇 = exp {(𝑙𝑙𝑙𝑙𝑃𝑃𝑡𝑡)𝑒𝑒−𝛾𝛾(𝑇𝑇−𝑡𝑡) + (𝜂𝜂 − 𝜀𝜀2

2𝛾𝛾) (1 − 𝑒𝑒−𝛾𝛾(𝑇𝑇−𝑡𝑡)) +  𝜀𝜀 ∫ 𝑒𝑒𝛾𝛾(𝑠𝑠−𝑇𝑇)
𝑇𝑇

𝑡𝑡

𝑑𝑑�̃�𝐵𝑠𝑠 }                          (2)  

To be able to derive the formula for the options price we need the risk-neutral valuation formula 

as shown in Theorem 1. 

Theorem 1 (Risk Neutral Valuation): For a maturity time  (𝑇𝑇), let  Ψ(𝑃𝑃𝑇𝑇) be the claim of the 

arbitrage-free price expressed as Π(𝑡𝑡; 𝜓𝜓) = 𝒥𝒥(𝑡𝑡, 𝑃𝑃𝑡𝑡), then                           

                                   𝒥𝒥(𝑡𝑡, 𝑃𝑃𝑡𝑡) = 𝑒𝑒−𝜂𝜂(𝜏𝜏)𝔼𝔼(𝑡𝑡,𝑃𝑃𝑡𝑡)
 ℚ [𝜓𝜓(𝑃𝑃𝑇𝑇)]                                              

𝒥𝒥 is obtained by using the Feynman-Kac Formula and ℚ is the asset price dynamics of 𝑃𝑃𝑇𝑇 and 𝜏𝜏 =

𝑇𝑇 − 𝑡𝑡 (see Bjork, (2009) for proof). 

This suggests that the option price at a given time 𝑡𝑡 and initial price 𝑃𝑃𝑡𝑡 is evaluated by discounting 

the expected value of the price process at maturity, 𝔼𝔼(𝑡𝑡,𝑃𝑃𝑡𝑡)
 ℚ [𝜓𝜓(𝑃𝑃𝑇𝑇)] using the discounting factor 

𝑒𝑒−𝜂𝜂(𝜏𝜏). Equation (2) is used to evaluate the European option using the risk-neutral valuation 

formula in Theorem 1 as seen in Theorems 2 and 3 below. This would assist in valuing the options 

with regards to discounting from the expiration to the present, their expected payoffs, considering 

that they will increase on average at the risk-free rate. It can also leverage the perfect correlation 

with regard to the changes in the option’s value and its underlying asset. 

Lemma 1: Given the price process 𝑃𝑃𝑇𝑇 in equation (2), its risk-neutral valuation is                   

                                𝒥𝒥(𝑡𝑡, 𝑃𝑃𝑡𝑡) = 𝑒𝑒−𝜂𝜂(𝜏𝜏) ∫ 𝜓𝜓[𝑃𝑃𝑡𝑡
𝑒𝑒− 𝛾𝛾𝛾𝛾𝑒𝑒𝑢𝑢]𝑔𝑔(𝑢𝑢)𝑑𝑑𝑢𝑢                                              (3)

+∞

−∞
 

 where  𝑢𝑢 = (𝜂𝜂 − 𝜀𝜀2

2𝛾𝛾) (1 − 𝑒𝑒−𝛾𝛾𝜏𝜏) +  𝜀𝜀𝑒𝑒−𝛾𝛾𝑇𝑇 ∫ 𝑒𝑒𝛾𝛾𝑠𝑠𝑇𝑇
𝑡𝑡 𝑑𝑑�̃�𝐵𝑠𝑠  and 𝑔𝑔(𝑢𝑢) = 1

𝑣𝑣√2𝜋𝜋 𝑒𝑒
−1

2[
𝑢𝑢−(𝜂𝜂−𝜀𝜀2

2𝛾𝛾)(1−𝑒𝑒−𝛾𝛾𝛾𝛾)

𝑣𝑣 ]

2

 

 . Equation (2) is used 
to evaluate the European option using the risk-neutral 
valuation formula in Theorem 1 as seen in Theorems 2 
and 3 below. This would assist in valuing the options with 
regards to discounting from the expiration to the present, 
their expected payoffs, considering that they will increase 
on average at the risk-free rate. It can also leverage the 
perfect correlation with regard to the changes in the 
option’s value and its underlying asset.

𝑃𝑃𝑇𝑇 = exp {(𝑙𝑙𝑙𝑙𝑃𝑃𝑡𝑡)𝑒𝑒−𝛾𝛾(𝑇𝑇−𝑡𝑡) + (𝜂𝜂 − 𝜀𝜀2

2𝛾𝛾) (1 − 𝑒𝑒−𝛾𝛾(𝑇𝑇−𝑡𝑡)) +  𝜀𝜀 ∫ 𝑒𝑒𝛾𝛾(𝑠𝑠−𝑇𝑇)
𝑇𝑇

𝑡𝑡

𝑑𝑑�̃�𝐵𝑠𝑠 }                          (2)  

To be able to derive the formula for the options price we need the risk-neutral valuation formula 

as shown in Theorem 1. 

Theorem 1 (Risk Neutral Valuation): For a maturity time  (𝑇𝑇), let  Ψ(𝑃𝑃𝑇𝑇) be the claim of the 

arbitrage-free price expressed as Π(𝑡𝑡; 𝜓𝜓) = 𝒥𝒥(𝑡𝑡, 𝑃𝑃𝑡𝑡), then                           

                                   𝒥𝒥(𝑡𝑡, 𝑃𝑃𝑡𝑡) = 𝑒𝑒−𝜂𝜂(𝜏𝜏)𝔼𝔼(𝑡𝑡,𝑃𝑃𝑡𝑡)
 ℚ [𝜓𝜓(𝑃𝑃𝑇𝑇)]                                              

𝒥𝒥 is obtained by using the Feynman-Kac Formula and ℚ is the asset price dynamics of 𝑃𝑃𝑇𝑇 and 𝜏𝜏 =

𝑇𝑇 − 𝑡𝑡 (see Bjork, (2009) for proof). 

This suggests that the option price at a given time 𝑡𝑡 and initial price 𝑃𝑃𝑡𝑡 is evaluated by discounting 

the expected value of the price process at maturity, 𝔼𝔼(𝑡𝑡,𝑃𝑃𝑡𝑡)
 ℚ [𝜓𝜓(𝑃𝑃𝑇𝑇)] using the discounting factor 

𝑒𝑒−𝜂𝜂(𝜏𝜏). Equation (2) is used to evaluate the European option using the risk-neutral valuation 

formula in Theorem 1 as seen in Theorems 2 and 3 below. This would assist in valuing the options 

with regards to discounting from the expiration to the present, their expected payoffs, considering 

that they will increase on average at the risk-free rate. It can also leverage the perfect correlation 

with regard to the changes in the option’s value and its underlying asset. 

Lemma 1: Given the price process 𝑃𝑃𝑇𝑇 in equation (2), its risk-neutral valuation is                   

                                𝒥𝒥(𝑡𝑡, 𝑃𝑃𝑡𝑡) = 𝑒𝑒−𝜂𝜂(𝜏𝜏) ∫ 𝜓𝜓[𝑃𝑃𝑡𝑡
𝑒𝑒− 𝛾𝛾𝛾𝛾𝑒𝑒𝑢𝑢]𝑔𝑔(𝑢𝑢)𝑑𝑑𝑢𝑢                                              (3)

+∞

−∞
 

 where  𝑢𝑢 = (𝜂𝜂 − 𝜀𝜀2

2𝛾𝛾) (1 − 𝑒𝑒−𝛾𝛾𝜏𝜏) +  𝜀𝜀𝑒𝑒−𝛾𝛾𝑇𝑇 ∫ 𝑒𝑒𝛾𝛾𝑠𝑠𝑇𝑇
𝑡𝑡 𝑑𝑑�̃�𝐵𝑠𝑠  and 𝑔𝑔(𝑢𝑢) = 1

𝑣𝑣√2𝜋𝜋 𝑒𝑒
−1

2[
𝑢𝑢−(𝜂𝜂−𝜀𝜀2

2𝛾𝛾)(1−𝑒𝑒−𝛾𝛾𝛾𝛾)

𝑣𝑣 ]

2

 

Proof of Lemma 1: We know that 𝑢𝑢 = (𝜂𝜂 − 𝜀𝜀2

2𝛾𝛾) (1 − 𝑒𝑒−𝛾𝛾𝛾𝛾) +  𝜀𝜀𝑒𝑒−𝛾𝛾𝛾𝛾 ∫ 𝑒𝑒𝛾𝛾𝛾𝛾𝛾𝛾
𝑡𝑡 𝑑𝑑�̃�𝐵𝛾𝛾, then 𝑃𝑃𝛾𝛾 =

𝑃𝑃𝑡𝑡
𝑒𝑒− 𝛾𝛾𝛾𝛾𝑒𝑒𝑢𝑢. The expectation and variance are given by 𝐸𝐸[𝑢𝑢] = (𝜂𝜂 − 𝜀𝜀2

2𝛾𝛾) (1 − 𝑒𝑒−𝛾𝛾𝛾𝛾) and variance, 

𝑉𝑉𝑉𝑉𝑉𝑉[𝑢𝑢] = 𝜀𝜀2

2𝛾𝛾 (1 − 𝑒𝑒−2𝛾𝛾𝛾𝛾). Suppose that 𝑉𝑉𝑉𝑉𝑉𝑉[𝑢𝑢] = 𝑣𝑣2, then it follows that, 𝑢𝑢~𝑁𝑁 [(𝜂𝜂 − 𝜀𝜀2

2𝛾𝛾) (1 −

𝑒𝑒−𝛾𝛾(𝛾𝛾)), 𝑣𝑣2] and from Theorem 1, the expected value of a continuous variable can be expressed as 

∫ 𝑥𝑥𝑥𝑥(𝑥𝑥)𝑑𝑑𝑥𝑥+∞
−∞  as obtained in Lemma 1. 

Theorem 2:  Given the asset price dynamics in equation (2) with a claim function 𝜓𝜓(𝑃𝑃𝛾𝛾), the 

European call option is: 

 𝒥𝒥(𝑡𝑡, 𝑃𝑃𝑡𝑡) = 𝑒𝑒−𝜂𝜂(𝛾𝛾) (𝑃𝑃𝑡𝑡
𝑒𝑒− 𝛾𝛾𝛾𝛾𝑒𝑒[1

2𝑣𝑣2+(𝜂𝜂−𝜀𝜀2
2𝛾𝛾)(1−𝑒𝑒−𝛾𝛾𝛾𝛾)]𝑁𝑁[�̂�𝐵1] − 𝑉𝑉𝑁𝑁[�̂�𝐵2]), 

where �̂�𝐵1 =
𝑙𝑙𝑙𝑙(𝑃𝑃𝑡𝑡𝑒𝑒− 𝛾𝛾𝛾𝛾

𝑉𝑉 )+𝑣𝑣2+(𝜂𝜂−𝜀𝜀2
2𝛾𝛾)(1−𝑒𝑒−𝛾𝛾𝛾𝛾)

𝑣𝑣 , �̂�𝐵2 = �̂�𝐵1 − 𝑣𝑣, and 𝑣𝑣2 = 𝜀𝜀2

2𝛾𝛾 (1 − 𝑒𝑒−2𝛾𝛾𝛾𝛾) 

𝑉𝑉 is the strike price and 𝑁𝑁[ . ] represents the cumulative distribution function (CDF) of the standard 

normal distribution function. 

Proof of Theorem 2: Given the claim’s expected value at maturity, i.e.  

𝔼𝔼(𝑡𝑡,𝑃𝑃𝑡𝑡)
 ℚ [𝑚𝑚𝑉𝑉𝑥𝑥(𝑃𝑃𝑡𝑡

𝑒𝑒− 𝛾𝛾𝛾𝛾𝑒𝑒𝑢𝑢 − 𝑉𝑉, 0)] = ∫ (𝑃𝑃𝑡𝑡
𝑒𝑒− 𝛾𝛾𝛾𝛾𝑒𝑒𝑢𝑢 − 𝑉𝑉)𝑔𝑔(𝑢𝑢)𝑑𝑑𝑢𝑢 + 0. ℚ(𝑃𝑃𝑡𝑡

𝑒𝑒− 𝛾𝛾𝛾𝛾𝑒𝑒𝑢𝑢 ≤ 𝑉𝑉)
∞

𝑙𝑙𝑙𝑙[ 𝑉𝑉
𝑃𝑃𝑡𝑡𝑒𝑒− 𝛾𝛾𝛾𝛾]

, 

then from Theorem 1, it follows that 

𝒥𝒥(𝑡𝑡, 𝑃𝑃𝑡𝑡) = 𝑒𝑒−𝜂𝜂(𝛾𝛾) ∫ (𝑃𝑃𝑡𝑡
𝑒𝑒− 𝛾𝛾𝛾𝛾𝑒𝑒𝑢𝑢 − 𝑉𝑉)𝑔𝑔(𝑢𝑢)𝑑𝑑𝑢𝑢

∞

𝑙𝑙𝑙𝑙[ 𝑉𝑉
𝑃𝑃𝑡𝑡𝑒𝑒− 𝛾𝛾𝛾𝛾]

 

Proof of Lemma 1: We know that 𝑢𝑢 = (𝜂𝜂 − 𝜀𝜀2

2𝛾𝛾) (1 − 𝑒𝑒−𝛾𝛾𝛾𝛾) +  𝜀𝜀𝑒𝑒−𝛾𝛾𝛾𝛾 ∫ 𝑒𝑒𝛾𝛾𝛾𝛾𝛾𝛾
𝑡𝑡 𝑑𝑑�̃�𝐵𝛾𝛾, then 𝑃𝑃𝛾𝛾 =

𝑃𝑃𝑡𝑡
𝑒𝑒− 𝛾𝛾𝛾𝛾𝑒𝑒𝑢𝑢. The expectation and variance are given by 𝐸𝐸[𝑢𝑢] = (𝜂𝜂 − 𝜀𝜀2

2𝛾𝛾) (1 − 𝑒𝑒−𝛾𝛾𝛾𝛾) and variance, 

𝑉𝑉𝑉𝑉𝑉𝑉[𝑢𝑢] = 𝜀𝜀2

2𝛾𝛾 (1 − 𝑒𝑒−2𝛾𝛾𝛾𝛾). Suppose that 𝑉𝑉𝑉𝑉𝑉𝑉[𝑢𝑢] = 𝑣𝑣2, then it follows that, 𝑢𝑢~𝑁𝑁 [(𝜂𝜂 − 𝜀𝜀2

2𝛾𝛾) (1 −

𝑒𝑒−𝛾𝛾(𝛾𝛾)), 𝑣𝑣2] and from Theorem 1, the expected value of a continuous variable can be expressed as 

∫ 𝑥𝑥𝑥𝑥(𝑥𝑥)𝑑𝑑𝑥𝑥+∞
−∞  as obtained in Lemma 1. 

Theorem 2:  Given the asset price dynamics in equation (2) with a claim function 𝜓𝜓(𝑃𝑃𝛾𝛾), the 

European call option is: 

 𝒥𝒥(𝑡𝑡, 𝑃𝑃𝑡𝑡) = 𝑒𝑒−𝜂𝜂(𝛾𝛾) (𝑃𝑃𝑡𝑡
𝑒𝑒− 𝛾𝛾𝛾𝛾𝑒𝑒[1

2𝑣𝑣2+(𝜂𝜂−𝜀𝜀2
2𝛾𝛾)(1−𝑒𝑒−𝛾𝛾𝛾𝛾)]𝑁𝑁[�̂�𝐵1] − 𝑉𝑉𝑁𝑁[�̂�𝐵2]), 

where �̂�𝐵1 =
𝑙𝑙𝑙𝑙(𝑃𝑃𝑡𝑡𝑒𝑒− 𝛾𝛾𝛾𝛾

𝑉𝑉 )+𝑣𝑣2+(𝜂𝜂−𝜀𝜀2
2𝛾𝛾)(1−𝑒𝑒−𝛾𝛾𝛾𝛾)

𝑣𝑣 , �̂�𝐵2 = �̂�𝐵1 − 𝑣𝑣, and 𝑣𝑣2 = 𝜀𝜀2

2𝛾𝛾 (1 − 𝑒𝑒−2𝛾𝛾𝛾𝛾) 

𝑉𝑉 is the strike price and 𝑁𝑁[ . ] represents the cumulative distribution function (CDF) of the standard 

normal distribution function. 

Proof of Theorem 2: Given the claim’s expected value at maturity, i.e.  

𝔼𝔼(𝑡𝑡,𝑃𝑃𝑡𝑡)
 ℚ [𝑚𝑚𝑉𝑉𝑥𝑥(𝑃𝑃𝑡𝑡

𝑒𝑒− 𝛾𝛾𝛾𝛾𝑒𝑒𝑢𝑢 − 𝑉𝑉, 0)] = ∫ (𝑃𝑃𝑡𝑡
𝑒𝑒− 𝛾𝛾𝛾𝛾𝑒𝑒𝑢𝑢 − 𝑉𝑉)𝑔𝑔(𝑢𝑢)𝑑𝑑𝑢𝑢 + 0. ℚ(𝑃𝑃𝑡𝑡

𝑒𝑒− 𝛾𝛾𝛾𝛾𝑒𝑒𝑢𝑢 ≤ 𝑉𝑉)
∞

𝑙𝑙𝑙𝑙[ 𝑉𝑉
𝑃𝑃𝑡𝑡𝑒𝑒− 𝛾𝛾𝛾𝛾]

, 

then from Theorem 1, it follows that 

𝒥𝒥(𝑡𝑡, 𝑃𝑃𝑡𝑡) = 𝑒𝑒−𝜂𝜂(𝛾𝛾) ∫ (𝑃𝑃𝑡𝑡
𝑒𝑒− 𝛾𝛾𝛾𝛾𝑒𝑒𝑢𝑢 − 𝑉𝑉)𝑔𝑔(𝑢𝑢)𝑑𝑑𝑢𝑢

∞

𝑙𝑙𝑙𝑙[ 𝑉𝑉
𝑃𝑃𝑡𝑡𝑒𝑒− 𝛾𝛾𝛾𝛾]
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where 

𝑔𝑔(𝑢𝑢) = 1
𝑣𝑣√2𝜋𝜋

𝑒𝑒
−1

2[
𝑢𝑢−(𝜂𝜂−𝜀𝜀2

2𝛾𝛾)(1−𝑒𝑒−𝛾𝛾𝛾𝛾)
𝑣𝑣 ]

2

.

Suppose that

𝑔𝑔1 = 𝑃𝑃𝑡𝑡
𝑒𝑒− 𝛾𝛾𝛾𝛾 ∫ 𝑒𝑒𝑢𝑢𝑔𝑔(𝑢𝑢)𝑑𝑑𝑢𝑢        𝑎𝑎𝑎𝑎𝑑𝑑 𝑔𝑔2 = 𝑉𝑉 ∫ 𝑔𝑔(𝑢𝑢)𝑑𝑑𝑢𝑢

∞

𝑙𝑙𝑙𝑙[ 𝑉𝑉
𝑃𝑃𝑡𝑡𝑒𝑒− 𝛾𝛾𝛾𝛾]

 
∞

𝑙𝑙𝑙𝑙[ 𝑉𝑉
𝑃𝑃𝑡𝑡𝑒𝑒− 𝛾𝛾𝛾𝛾]

 

then it implies that 

                                                  𝒥𝒥(𝑡𝑡, 𝑃𝑃𝑡𝑡) = 𝑒𝑒−𝜂𝜂(𝜏𝜏)[𝑔𝑔1 − 𝑔𝑔2].                                                    (4) 

Suppose 

𝑧𝑧 = 𝑢𝑢 − 1
2 [

𝑢𝑢 − (𝜂𝜂 − 𝜀𝜀2

2𝛾𝛾) (1 − 𝑒𝑒−𝛾𝛾𝜏𝜏)
𝑣𝑣 ]

2

 

Then we can further simplify it to get, 

𝑧𝑧 =
2𝑣𝑣2𝑢𝑢 − [𝑢𝑢2 − 2𝑢𝑢 (𝜂𝜂 − 𝜀𝜀2

2𝛾𝛾) (1 − 𝑒𝑒−𝛾𝛾𝜏𝜏) + ((𝜂𝜂 − 𝜀𝜀2

2𝛾𝛾) (1 − 𝑒𝑒−𝛾𝛾𝜏𝜏))
2

]

2𝑣𝑣2  

                        = − 1
2 [

𝑢𝑢−[𝑣𝑣2+(𝜂𝜂−𝜀𝜀2
2𝛾𝛾)(1−𝑒𝑒−𝛾𝛾𝛾𝛾)]

𝑣𝑣 ]
2

+ 1
2 𝑣𝑣2 + [(𝜂𝜂 − 𝜀𝜀2

2𝛾𝛾) (1 − 𝑒𝑒−𝛾𝛾𝜏𝜏)]. 

Also, let 

𝑥𝑥 =
𝑢𝑢 − [𝑣𝑣2 + (𝜂𝜂 − 𝜀𝜀2

2𝛾𝛾) (1 − 𝑒𝑒−𝛾𝛾𝜏𝜏)]
𝑣𝑣   ⟹ 𝑑𝑑𝑢𝑢 = 𝑣𝑣𝑑𝑑𝑥𝑥

 then by substituting the limits of integration in x we obtain, 
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Proof of Lemma 1: We know that 𝑢𝑢 = (𝜂𝜂 − 𝜀𝜀2

2𝛾𝛾) (1 − 𝑒𝑒−𝛾𝛾𝛾𝛾) +  𝜀𝜀𝑒𝑒−𝛾𝛾𝛾𝛾 ∫ 𝑒𝑒𝛾𝛾𝛾𝛾𝛾𝛾
𝑡𝑡 𝑑𝑑�̃�𝐵𝛾𝛾, then 𝑃𝑃𝛾𝛾 =

𝑃𝑃𝑡𝑡
𝑒𝑒− 𝛾𝛾𝛾𝛾𝑒𝑒𝑢𝑢. The expectation and variance are given by 𝐸𝐸[𝑢𝑢] = (𝜂𝜂 − 𝜀𝜀2

2𝛾𝛾) (1 − 𝑒𝑒−𝛾𝛾𝛾𝛾) and variance, 

𝑉𝑉𝑉𝑉𝑉𝑉[𝑢𝑢] = 𝜀𝜀2

2𝛾𝛾 (1 − 𝑒𝑒−2𝛾𝛾𝛾𝛾). Suppose that 𝑉𝑉𝑉𝑉𝑉𝑉[𝑢𝑢] = 𝑣𝑣2, then it follows that, 𝑢𝑢~𝑁𝑁 [(𝜂𝜂 − 𝜀𝜀2

2𝛾𝛾) (1 −

𝑒𝑒−𝛾𝛾(𝛾𝛾)), 𝑣𝑣2] and from Theorem 1, the expected value of a continuous variable can be expressed as 

∫ 𝑥𝑥𝑥𝑥(𝑥𝑥)𝑑𝑑𝑥𝑥+∞
−∞  as obtained in Lemma 1. 

Theorem 2:  Given the asset price dynamics in equation (2) with a claim function 𝜓𝜓(𝑃𝑃𝛾𝛾), the 

European call option is: 

 𝒥𝒥(𝑡𝑡, 𝑃𝑃𝑡𝑡) = 𝑒𝑒−𝜂𝜂(𝛾𝛾) (𝑃𝑃𝑡𝑡
𝑒𝑒− 𝛾𝛾𝛾𝛾𝑒𝑒[1

2𝑣𝑣2+(𝜂𝜂−𝜀𝜀2
2𝛾𝛾)(1−𝑒𝑒−𝛾𝛾𝛾𝛾)]𝑁𝑁[�̂�𝐵1] − 𝑉𝑉𝑁𝑁[�̂�𝐵2]), 

where �̂�𝐵1 =
𝑙𝑙𝑙𝑙(𝑃𝑃𝑡𝑡𝑒𝑒− 𝛾𝛾𝛾𝛾

𝑉𝑉 )+𝑣𝑣2+(𝜂𝜂−𝜀𝜀2
2𝛾𝛾)(1−𝑒𝑒−𝛾𝛾𝛾𝛾)

𝑣𝑣 , �̂�𝐵2 = �̂�𝐵1 − 𝑣𝑣, and 𝑣𝑣2 = 𝜀𝜀2

2𝛾𝛾 (1 − 𝑒𝑒−2𝛾𝛾𝛾𝛾) 

𝑉𝑉 is the strike price and 𝑁𝑁[ . ] represents the cumulative distribution function (CDF) of the standard 

normal distribution function. 

Proof of Theorem 2: Given the claim’s expected value at maturity, i.e.  

𝔼𝔼(𝑡𝑡,𝑃𝑃𝑡𝑡)
 ℚ [𝑚𝑚𝑉𝑉𝑥𝑥(𝑃𝑃𝑡𝑡

𝑒𝑒− 𝛾𝛾𝛾𝛾𝑒𝑒𝑢𝑢 − 𝑉𝑉, 0)] = ∫ (𝑃𝑃𝑡𝑡
𝑒𝑒− 𝛾𝛾𝛾𝛾𝑒𝑒𝑢𝑢 − 𝑉𝑉)𝑔𝑔(𝑢𝑢)𝑑𝑑𝑢𝑢 + 0. ℚ(𝑃𝑃𝑡𝑡

𝑒𝑒− 𝛾𝛾𝛾𝛾𝑒𝑒𝑢𝑢 ≤ 𝑉𝑉)
∞

𝑙𝑙𝑙𝑙[ 𝑉𝑉
𝑃𝑃𝑡𝑡𝑒𝑒− 𝛾𝛾𝛾𝛾]

, 

then from Theorem 1, it follows that 

𝒥𝒥(𝑡𝑡, 𝑃𝑃𝑡𝑡) = 𝑒𝑒−𝜂𝜂(𝛾𝛾) ∫ (𝑃𝑃𝑡𝑡
𝑒𝑒− 𝛾𝛾𝛾𝛾𝑒𝑒𝑢𝑢 − 𝑉𝑉)𝑔𝑔(𝑢𝑢)𝑑𝑑𝑢𝑢

∞

𝑙𝑙𝑙𝑙[ 𝑉𝑉
𝑃𝑃𝑡𝑡𝑒𝑒− 𝛾𝛾𝛾𝛾]
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where 

𝑔𝑔(𝑢𝑢) = 1
𝑣𝑣√2𝜋𝜋

𝑒𝑒
−1

2[
𝑢𝑢−(𝜂𝜂−𝜀𝜀2

2𝛾𝛾)(1−𝑒𝑒−𝛾𝛾𝛾𝛾)
𝑣𝑣 ]

2

.

Suppose that

𝑔𝑔1 = 𝑃𝑃𝑡𝑡
𝑒𝑒− 𝛾𝛾𝛾𝛾 ∫ 𝑒𝑒𝑢𝑢𝑔𝑔(𝑢𝑢)𝑑𝑑𝑢𝑢        𝑎𝑎𝑎𝑎𝑑𝑑 𝑔𝑔2 = 𝑉𝑉 ∫ 𝑔𝑔(𝑢𝑢)𝑑𝑑𝑢𝑢

∞

𝑙𝑙𝑙𝑙[ 𝑉𝑉
𝑃𝑃𝑡𝑡𝑒𝑒− 𝛾𝛾𝛾𝛾]

 
∞

𝑙𝑙𝑙𝑙[ 𝑉𝑉
𝑃𝑃𝑡𝑡𝑒𝑒− 𝛾𝛾𝛾𝛾]

 

then it implies that 

                                                  𝒥𝒥(𝑡𝑡, 𝑃𝑃𝑡𝑡) = 𝑒𝑒−𝜂𝜂(𝜏𝜏)[𝑔𝑔1 − 𝑔𝑔2].                                                    (4) 

Suppose 

𝑧𝑧 = 𝑢𝑢 − 1
2 [

𝑢𝑢 − (𝜂𝜂 − 𝜀𝜀2

2𝛾𝛾) (1 − 𝑒𝑒−𝛾𝛾𝜏𝜏)
𝑣𝑣 ]

2

 

Then we can further simplify it to get, 

𝑧𝑧 =
2𝑣𝑣2𝑢𝑢 − [𝑢𝑢2 − 2𝑢𝑢 (𝜂𝜂 − 𝜀𝜀2

2𝛾𝛾) (1 − 𝑒𝑒−𝛾𝛾𝜏𝜏) + ((𝜂𝜂 − 𝜀𝜀2

2𝛾𝛾) (1 − 𝑒𝑒−𝛾𝛾𝜏𝜏))
2

]

2𝑣𝑣2  

                        = − 1
2 [

𝑢𝑢−[𝑣𝑣2+(𝜂𝜂−𝜀𝜀2
2𝛾𝛾)(1−𝑒𝑒−𝛾𝛾𝛾𝛾)]

𝑣𝑣 ]
2

+ 1
2 𝑣𝑣2 + [(𝜂𝜂 − 𝜀𝜀2

2𝛾𝛾) (1 − 𝑒𝑒−𝛾𝛾𝜏𝜏)]. 

Also, let 

𝑥𝑥 =
𝑢𝑢 − [𝑣𝑣2 + (𝜂𝜂 − 𝜀𝜀2

2𝛾𝛾) (1 − 𝑒𝑒−𝛾𝛾𝜏𝜏)]
𝑣𝑣   ⟹ 𝑑𝑑𝑢𝑢 = 𝑣𝑣𝑑𝑑𝑥𝑥

 then by substituting the limits of integration in x we obtain, 

𝑥𝑥 =
𝑙𝑙𝑙𝑙 [ 𝑉𝑉

𝑃𝑃𝑡𝑡
𝑒𝑒− 𝛾𝛾𝛾𝛾] − [𝑣𝑣2 + (𝜂𝜂 − 𝜀𝜀2

2𝛾𝛾) (1 − 𝑒𝑒−𝛾𝛾𝛾𝛾)]

𝑣𝑣 = �̂�𝐵0   𝑤𝑤ℎ𝑒𝑒𝑙𝑙 𝑢𝑢 = 𝑙𝑙𝑙𝑙 [ 𝑉𝑉
𝑃𝑃𝑡𝑡

𝑒𝑒− 𝛾𝛾𝛾𝛾] 

and when 𝑢𝑢 → ∞, 𝑥𝑥 → ∞ as well. Now substituting them into 𝑔𝑔1 and changing the order of 

integration since x is normally distributed (symmetric), we get  

𝑔𝑔1 = 𝑃𝑃𝑡𝑡
𝑒𝑒− 𝛾𝛾𝛾𝛾𝑒𝑒

[1
2𝑣𝑣2+[(𝜂𝜂−𝜀𝜀2

2𝛾𝛾)(1−𝑒𝑒−𝛾𝛾𝛾𝛾)]]
∫ 1

√2𝜋𝜋
𝑒𝑒−1

2𝑥𝑥2�̂�𝐵1

−∞
𝛾𝛾𝑥𝑥 

where  �̂�𝐵1 = −�̂�𝐵0 =
𝑙𝑙𝑙𝑙(𝑃𝑃𝑡𝑡𝑒𝑒− 𝛾𝛾𝛾𝛾

𝑉𝑉 )+𝑣𝑣2+(𝜂𝜂−𝜀𝜀2
2𝛾𝛾)(1−𝑒𝑒−𝛾𝛾𝛾𝛾)

𝑣𝑣  

This implies that  

                                          𝑔𝑔1 = 𝑃𝑃𝑡𝑡
𝑒𝑒− 𝛾𝛾𝛾𝛾𝑒𝑒

[1
2𝑣𝑣2+[(𝜂𝜂−𝜀𝜀2

2𝛾𝛾)(1−𝑒𝑒−𝛾𝛾𝛾𝛾)]]
𝑁𝑁[�̂�𝐵1]                                (5) 

here, 𝑁𝑁[�̂�𝐵1] represents the CDF of the standard normal distribution. 

Furthermore, let,  

𝑔𝑔2 = 𝑉𝑉 ∫ 1
𝑣𝑣√2𝜋𝜋

∞

𝑙𝑙𝑙𝑙[ 𝑉𝑉
𝑃𝑃𝑡𝑡𝑒𝑒− 𝛾𝛾𝛾𝛾]

 𝑒𝑒
−1

2[
𝑢𝑢−(𝜂𝜂−𝜀𝜀2

2𝛾𝛾)(1−𝑒𝑒−𝛾𝛾𝛾𝛾)
𝑣𝑣 ]

2

𝑑𝑑𝑢𝑢 

and 

𝑦𝑦 =
𝑢𝑢 − (𝜂𝜂 − 𝜀𝜀2

2𝛾𝛾) (1 − 𝑒𝑒−𝛾𝛾𝛾𝛾)
𝑣𝑣 ⟹ 𝑑𝑑𝑢𝑢 = 𝑣𝑣𝑑𝑑𝑦𝑦 

then substituting the limits of integration in y implies that, 
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𝑥𝑥 =
𝑙𝑙𝑙𝑙 [ 𝑉𝑉

𝑃𝑃𝑡𝑡
𝑒𝑒− 𝛾𝛾𝛾𝛾] − [𝑣𝑣2 + (𝜂𝜂 − 𝜀𝜀2

2𝛾𝛾) (1 − 𝑒𝑒−𝛾𝛾𝛾𝛾)]

𝑣𝑣 = �̂�𝐵0   𝑤𝑤ℎ𝑒𝑒𝑙𝑙 𝑢𝑢 = 𝑙𝑙𝑙𝑙 [ 𝑉𝑉
𝑃𝑃𝑡𝑡

𝑒𝑒− 𝛾𝛾𝛾𝛾] 

and when 𝑢𝑢 → ∞, 𝑥𝑥 → ∞ as well. Now substituting them into 𝑔𝑔1 and changing the order of 

integration since x is normally distributed (symmetric), we get  

𝑔𝑔1 = 𝑃𝑃𝑡𝑡
𝑒𝑒− 𝛾𝛾𝛾𝛾𝑒𝑒

[1
2𝑣𝑣2+[(𝜂𝜂−𝜀𝜀2

2𝛾𝛾)(1−𝑒𝑒−𝛾𝛾𝛾𝛾)]]
∫ 1

√2𝜋𝜋
𝑒𝑒−1

2𝑥𝑥2�̂�𝐵1

−∞
𝛾𝛾𝑥𝑥 

where  �̂�𝐵1 = −�̂�𝐵0 =
𝑙𝑙𝑙𝑙(𝑃𝑃𝑡𝑡𝑒𝑒− 𝛾𝛾𝛾𝛾

𝑉𝑉 )+𝑣𝑣2+(𝜂𝜂−𝜀𝜀2
2𝛾𝛾)(1−𝑒𝑒−𝛾𝛾𝛾𝛾)

𝑣𝑣  

This implies that  

                                          𝑔𝑔1 = 𝑃𝑃𝑡𝑡
𝑒𝑒− 𝛾𝛾𝛾𝛾𝑒𝑒

[1
2𝑣𝑣2+[(𝜂𝜂−𝜀𝜀2

2𝛾𝛾)(1−𝑒𝑒−𝛾𝛾𝛾𝛾)]]
𝑁𝑁[�̂�𝐵1]                                (5) 

here, 𝑁𝑁[�̂�𝐵1] represents the CDF of the standard normal distribution. 

Furthermore, let,  

𝑔𝑔2 = 𝑉𝑉 ∫ 1
𝑣𝑣√2𝜋𝜋

∞

𝑙𝑙𝑙𝑙[ 𝑉𝑉
𝑃𝑃𝑡𝑡𝑒𝑒− 𝛾𝛾𝛾𝛾]

 𝑒𝑒
−1

2[
𝑢𝑢−(𝜂𝜂−𝜀𝜀2

2𝛾𝛾)(1−𝑒𝑒−𝛾𝛾𝛾𝛾)
𝑣𝑣 ]

2

𝑑𝑑𝑢𝑢 

and 

𝑦𝑦 =
𝑢𝑢 − (𝜂𝜂 − 𝜀𝜀2

2𝛾𝛾) (1 − 𝑒𝑒−𝛾𝛾𝛾𝛾)
𝑣𝑣 ⟹ 𝑑𝑑𝑢𝑢 = 𝑣𝑣𝑑𝑑𝑦𝑦 

then substituting the limits of integration in y implies that, 

𝑦𝑦 =
𝑙𝑙𝑙𝑙 ( 𝑉𝑉

𝑃𝑃𝑡𝑡
𝑒𝑒− 𝛾𝛾𝛾𝛾) − (𝜂𝜂 − 𝜀𝜀2

2𝛾𝛾) (1 − 𝑒𝑒−𝛾𝛾𝛾𝛾)

𝑣𝑣 = �̂�𝐵  𝑤𝑤ℎ𝑒𝑒𝑙𝑙 𝑢𝑢 = 𝑙𝑙𝑙𝑙 ( 𝑉𝑉
𝑃𝑃𝑡𝑡

𝑒𝑒− 𝛾𝛾𝛾𝛾) 

and when 𝑢𝑢 → ∞, 𝑦𝑦 → ∞ as well. This gives 

𝑔𝑔2 = 𝑉𝑉 ∫ 1
√2𝜋𝜋

𝑒𝑒−1
2𝑦𝑦2𝑑𝑑𝑦𝑦

∞

�̂�𝐵
 

and since y is normally distributed (symmetric) the order of integration can be changed to  

𝑔𝑔2 = 𝑉𝑉 ∫ 1
√2𝜋𝜋

𝑒𝑒−1
2𝑦𝑦2𝑑𝑑𝑦𝑦

�̂�𝐵2

−∞
 

where 

�̂�𝐵2 = −�̂�𝐵 =
𝑙𝑙𝑙𝑙 (𝑃𝑃𝑡𝑡

𝑒𝑒− 𝛾𝛾𝛾𝛾

𝑉𝑉 ) − (𝜂𝜂 − 𝜀𝜀2

2𝛾𝛾) (1 − 𝑒𝑒−𝛾𝛾𝛾𝛾)

𝑣𝑣  

then 

                                                𝑔𝑔2 = 𝑉𝑉𝑉𝑉[�̂�𝐵2] .                                                                              (6) 

Now when we substitute equations (5) and (6) into equation (4), it gives rise to Theorem (2). 

Theorem 3: Given the asset price dynamics in equation (2) with a claim function 𝜓𝜓(𝑃𝑃𝑇𝑇), the 

European put option is;

 𝒥𝒥(𝑡𝑡, 𝑃𝑃𝑡𝑡) = 𝑒𝑒−𝜂𝜂(𝛾𝛾) (𝑉𝑉𝑉𝑉[�̂�𝐵1] − 𝑃𝑃𝑡𝑡
𝑒𝑒− 𝛾𝛾𝛾𝛾𝑒𝑒

[1
2𝑣𝑣2+[(𝜂𝜂−𝜀𝜀2

2𝛾𝛾)(1−𝑒𝑒−𝛾𝛾𝛾𝛾)]]
𝑉𝑉[�̂�𝐵2]) 

where �̂�𝐵1 =
𝑙𝑙𝑙𝑙( 𝑉𝑉

𝑃𝑃𝑡𝑡𝑒𝑒− 𝛾𝛾𝛾𝛾)−(𝜂𝜂−𝜀𝜀2
2𝛾𝛾)(1−𝑒𝑒−𝛾𝛾𝛾𝛾)

𝑣𝑣 , and �̂�𝐵2 = �̂�𝐵1 − 𝑣𝑣 and also 𝑣𝑣2 = 𝜀𝜀2

2𝛾𝛾 (1 − 𝑒𝑒−2𝛾𝛾𝛾𝛾) 

Proof of Theorem 3: Given the claim’s expected value at maturity, i.e.
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𝑦𝑦 =
𝑙𝑙𝑙𝑙 ( 𝑉𝑉

𝑃𝑃𝑡𝑡
𝑒𝑒− 𝛾𝛾𝛾𝛾) − (𝜂𝜂 − 𝜀𝜀2

2𝛾𝛾) (1 − 𝑒𝑒−𝛾𝛾𝛾𝛾)

𝑣𝑣 = �̂�𝐵  𝑤𝑤ℎ𝑒𝑒𝑙𝑙 𝑢𝑢 = 𝑙𝑙𝑙𝑙 ( 𝑉𝑉
𝑃𝑃𝑡𝑡

𝑒𝑒− 𝛾𝛾𝛾𝛾) 

and when 𝑢𝑢 → ∞, 𝑦𝑦 → ∞ as well. This gives 

𝑔𝑔2 = 𝑉𝑉 ∫ 1
√2𝜋𝜋

𝑒𝑒−1
2𝑦𝑦2𝑑𝑑𝑦𝑦

∞

�̂�𝐵
 

and since y is normally distributed (symmetric) the order of integration can be changed to  

𝑔𝑔2 = 𝑉𝑉 ∫ 1
√2𝜋𝜋

𝑒𝑒−1
2𝑦𝑦2𝑑𝑑𝑦𝑦

�̂�𝐵2

−∞
 

where 

�̂�𝐵2 = −�̂�𝐵 =
𝑙𝑙𝑙𝑙 (𝑃𝑃𝑡𝑡

𝑒𝑒− 𝛾𝛾𝛾𝛾

𝑉𝑉 ) − (𝜂𝜂 − 𝜀𝜀2

2𝛾𝛾) (1 − 𝑒𝑒−𝛾𝛾𝛾𝛾)

𝑣𝑣  

then 

                                                𝑔𝑔2 = 𝑉𝑉𝑉𝑉[�̂�𝐵2] .                                                                              (6) 

Now when we substitute equations (5) and (6) into equation (4), it gives rise to Theorem (2). 

Theorem 3: Given the asset price dynamics in equation (2) with a claim function 𝜓𝜓(𝑃𝑃𝑇𝑇), the 

European put option is;

 𝒥𝒥(𝑡𝑡, 𝑃𝑃𝑡𝑡) = 𝑒𝑒−𝜂𝜂(𝛾𝛾) (𝑉𝑉𝑉𝑉[�̂�𝐵1] − 𝑃𝑃𝑡𝑡
𝑒𝑒− 𝛾𝛾𝛾𝛾𝑒𝑒

[1
2𝑣𝑣2+[(𝜂𝜂−𝜀𝜀2

2𝛾𝛾)(1−𝑒𝑒−𝛾𝛾𝛾𝛾)]]
𝑉𝑉[�̂�𝐵2]) 

where �̂�𝐵1 =
𝑙𝑙𝑙𝑙( 𝑉𝑉

𝑃𝑃𝑡𝑡𝑒𝑒− 𝛾𝛾𝛾𝛾)−(𝜂𝜂−𝜀𝜀2
2𝛾𝛾)(1−𝑒𝑒−𝛾𝛾𝛾𝛾)

𝑣𝑣 , and �̂�𝐵2 = �̂�𝐵1 − 𝑣𝑣 and also 𝑣𝑣2 = 𝜀𝜀2

2𝛾𝛾 (1 − 𝑒𝑒−2𝛾𝛾𝛾𝛾) 

Proof of Theorem 3: Given the claim’s expected value at maturity, i.e.

𝔼𝔼(𝑡𝑡,𝑃𝑃𝑡𝑡)
 ℚ [𝑚𝑚𝑚𝑚𝑚𝑚(𝑉𝑉 − 𝑃𝑃𝑡𝑡

𝑒𝑒− 𝛾𝛾𝛾𝛾𝑒𝑒𝑢𝑢, 0)] = ∫ (𝑉𝑉 − 𝑃𝑃𝑡𝑡
𝑒𝑒− 𝛾𝛾𝛾𝛾𝑒𝑒𝑢𝑢)𝑔𝑔(𝑢𝑢)𝑑𝑑𝑢𝑢 + 0. ℚ(𝑉𝑉 ≤ 𝑃𝑃𝑡𝑡

𝑒𝑒− 𝛾𝛾𝛾𝛾𝑒𝑒𝑢𝑢)
𝑙𝑙𝑙𝑙[ 𝑉𝑉

𝑃𝑃𝑡𝑡𝑒𝑒− 𝛾𝛾𝛾𝛾]

−∞
, 

It follows from Theorem 1 that the put options pricing formula is; 

𝒥𝒥(𝑡𝑡, 𝑃𝑃𝑡𝑡) = 𝑒𝑒−𝜂𝜂(𝜏𝜏) ∫ (𝑉𝑉 − 𝑃𝑃𝑡𝑡
𝑒𝑒− 𝛾𝛾𝛾𝛾𝑒𝑒𝑢𝑢)𝑔𝑔(𝑢𝑢)𝑑𝑑𝑢𝑢

𝑙𝑙𝑙𝑙[ 𝑉𝑉
𝑃𝑃𝑡𝑡𝑒𝑒− 𝛾𝛾𝛾𝛾]

−∞
 

with similar analogy and computation by following the approach of the call option we obtain 

Theorem 3.  

 

2.2 Valuation of the European Option using Monte Carlo Method 

The methods of Monte Carlo have proven to be part of the most common methods of simulation 

in mathematical models. The Monte Carlo algorithm is to compute a large number of sets or range 

of possibilities with a certain probability distribution that will be assigned to some possible 

outcomes. The common distributions mostly employed by the Monte Carlo simulation are 

triangular, normal, uniform, log-normal and discrete distributions. It is an equation that randomly 

generates a number in applying probabilities to its variables. The simulation takes a lot of 

calculations to complete and improves on its precision based on the law of large numbers. It 

implies that, when the number of independent experiments or simulations are increased sufficiently 

large, the average value of the simulation converges to the expectation with high probability. The 

introduction of the Monte Carlo method into the fields of natural science has led to its modification 

into different versions (Boyle, 1977). The Monte Carlo method of pricing of option is based on the 

probability-volume relation. The theory of probability associates an event with its volume or 

measures the comparative outcome of an event relative to its possible outcomes in terms of the 
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2.2 Valuation of the European Option using 
Monte Carlo Method
The methods of Monte Carlo have proven to be part of the 
most common methods of simulation in mathematical 
models. The Monte Carlo algorithm is to compute a large 
number of sets or range of possibilities with a certain 
probability distribution that will be assigned to some 
possible outcomes. The common distributions mostly 
employed by the Monte Carlo simulation are triangular, 
normal, uniform, log-normal and discrete distributions. 
It is an equation that randomly generates a number in 
applying probabilities to its variables. The simulation 
takes a lot of calculations to complete and improves on 
its precision based on the law of large numbers. It implies 
that, when the number of independent experiments or 
simulations are increased sufficiently large, the average 
value of the simulation converges to the expectation with 
high probability. The introduction of the Monte Carlo 
method into the fields of natural science has led to its 
modification into different versions (Boyle, 1977). The 
Monte Carlo method of pricing of option is based on the 
probability-volume relation. The theory of probability 
associates an event with its volume or measures the 
comparative outcome of an event relative to its possible 
outcomes in terms of the defined probability of the 
corresponding volume of the event. The association 

of events is reversed in the Monte Carlo process by 
assuming the volume as a probability. This is to say, 
selecting samples randomly from a large population of 
outcomes and then randomly selecting samples again in 
a given set to be the entire set prediction. By applying the 
law of large numbers, it is predicted that the approximate 
outcome will reach the true value as the sample size 
grows. The central limit theorem gives the measure of 
the size of the error as a result of the error of sampling 
some number of times. The Monte Carlo method can 
be applied in finance by noting that the option value 
is associated with the risk-neutral expectation of the 
discounted payoffs. The estimated expected payoffs can 
be evaluated by finding the average of a large number of 
the payoffs and then discounting.

The payoffs of the call and the put option are given 
as  

defined probability of the corresponding volume of the event. The association of events is reversed 

in the Monte Carlo process by assuming the volume as a probability. This is to say, selecting 

samples randomly from a large population of outcomes and then randomly selecting samples again 

in a given set to be the entire set prediction. By applying the law of large numbers, it is predicted 

that the approximate outcome will reach the true value as the sample size grows. The central limit 

theorem gives the measure of the size of the error as a result of the error of sampling some number 

of times. The Monte Carlo method can be applied in finance by noting that the option value is 

associated with the risk-neutral expectation of the discounted payoffs. The estimated expected 

payoffs can be evaluated by finding the average of a large number of the payoffs and then 

discounting. 

The payoffs of the call and the put option are given as max (0,  𝑃𝑃𝑇𝑇 − 𝑉𝑉) and max (0, 𝑉𝑉 − 𝑃𝑃𝑇𝑇) 

respectively at the maturity date 𝑇𝑇. The options price at time 𝑡𝑡 is  

                                   𝒥𝒥(𝑡𝑡, 𝑃𝑃𝑡𝑡) = 𝑒𝑒−𝜂𝜂(𝜏𝜏)𝔼𝔼(𝑡𝑡,𝑃𝑃𝑡𝑡)
 ℚ [𝜓𝜓(𝑃𝑃𝑇𝑇)]                                              

To apply the Monte Carlo simulation, we ought to simulate the asset in equation (2). For each 

simulated path, we compute the payoffs of the put and call option. To obtain an estimated value of 

the put and call option, we simply take the discounted average of these simulated payoffs the put 

(�̂�𝑃) and call option (�̂�𝐶) expressed as 

�̂�𝑃 = 𝑒𝑒−𝜂𝜂𝜏𝜏 1
𝑚𝑚 ∑ max(0, 𝑉𝑉 − 𝑃𝑃𝑇𝑇)    𝑎𝑎𝑎𝑎𝑎𝑎  �̂�𝐶 =

𝑚𝑚

ℓ=1
𝑒𝑒−𝜂𝜂𝜏𝜏 1

𝑚𝑚 ∑ max (0, 𝑃𝑃𝑇𝑇 − 𝑉𝑉)
𝑚𝑚

ℓ=1
                               (7). 
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To apply the Monte Carlo simulation, we ought to simulate the asset in equation (2). For each 

simulated path, we compute the payoffs of the put and call option. To obtain an estimated value of 

the put and call option, we simply take the discounted average of these simulated payoffs the put 

(�̂�𝑃) and call option (�̂�𝐶) expressed as 
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𝑚𝑚 ∑ max(0, 𝑉𝑉 − 𝑃𝑃𝑇𝑇)    𝑎𝑎𝑎𝑎𝑎𝑎  �̂�𝐶 =

𝑚𝑚

ℓ=1
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𝑚𝑚 ∑ max (0, 𝑃𝑃𝑇𝑇 − 𝑉𝑉)
𝑚𝑚
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in the Monte Carlo process by assuming the volume as a probability. This is to say, selecting 

samples randomly from a large population of outcomes and then randomly selecting samples again 

in a given set to be the entire set prediction. By applying the law of large numbers, it is predicted 

that the approximate outcome will reach the true value as the sample size grows. The central limit 

theorem gives the measure of the size of the error as a result of the error of sampling some number 

of times. The Monte Carlo method can be applied in finance by noting that the option value is 

associated with the risk-neutral expectation of the discounted payoffs. The estimated expected 

payoffs can be evaluated by finding the average of a large number of the payoffs and then 

discounting. 

The payoffs of the call and the put option are given as max (0,  𝑃𝑃𝑇𝑇 − 𝑉𝑉) and max (0, 𝑉𝑉 − 𝑃𝑃𝑇𝑇) 
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To apply the Monte Carlo simulation, we ought to simulate the asset in equation (2). For each 

simulated path, we compute the payoffs of the put and call option. To obtain an estimated value of 

the put and call option, we simply take the discounted average of these simulated payoffs the put 

(�̂�𝑃) and call option (�̂�𝐶) expressed as 

�̂�𝑃 = 𝑒𝑒−𝜂𝜂𝜏𝜏 1
𝑚𝑚 ∑ max(0, 𝑉𝑉 − 𝑃𝑃𝑇𝑇)    𝑎𝑎𝑎𝑎𝑎𝑎  �̂�𝐶 =

𝑚𝑚

ℓ=1
𝑒𝑒−𝜂𝜂𝜏𝜏 1

𝑚𝑚 ∑ max (0, 𝑃𝑃𝑇𝑇 − 𝑉𝑉)
𝑚𝑚

ℓ=1
                               (7). 
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theorem gives the measure of the size of the error as a result of the error of sampling some number 

of times. The Monte Carlo method can be applied in finance by noting that the option value is 

associated with the risk-neutral expectation of the discounted payoffs. The estimated expected 
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To apply the Monte Carlo simulation, we ought to simulate the asset in equation (2). For each 

simulated path, we compute the payoffs of the put and call option. To obtain an estimated value of 
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(�̂�𝑃) and call option (�̂�𝐶) expressed as 
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To obtain an estimated value of the put and call option, 
we simply take the discounted average of these simulated 
payoffs the put 
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the put and call option, we simply take the discounted average of these simulated payoffs the put 
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(�̂�𝑃) and call option (�̂�𝐶) expressed as 
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Steps in using the Monte Carlo Method for 
Valuation of European Option
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3. Numerical Simulation of European Option
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 Also, we change a few of the parameters and compare 
the two methods to evaluate the closeness of the option 
prices obtained using the two methods. In particular, 

changes in the time to maturity, interest rate and volatility 
are assessed for the two methods. 

Atiase et al • Derivation of European Option Pricing Formula when the Asset is Geometric Mean Reverting

Table 1: Options prices with varying maturity periods

Call Put
Maturity 3 Month 6 Month 1 Year 3 Month 6 Month 1 Year
Derived (Analytic) 0.2453 0.0914 0.0147 3.7461 5.1306 5.8772
Monte Carlo 0.2187 0.0953 0.0155 3.7011 5.1224 5.8722

Table 1 shows the options prices for the two methods for 
an option expiring in 3 months, 6 months and 1 year for 
the European put and European call options with other 
parameters unchanged. The option prices increase with 
increasing maturity period with the put option prices 
higher than that of the call options. Indeed, this is due 

to the falling nature of the underlying asset which allows 
the put option has a higher payoff than that of the call 
options. In addition, we see that the prices of the call 
options decrease with increasing time to maturity and 
the price of the call options increases with increasing 
time to maturity.

Table 2: Options prices with varying interest rate

Call Put
Interest Rate 0.10 0.20 0.30 0.10 0.20 0.30
Derived (Analytic) 0.0108 0.0133 0.0162 7.0244 6.2393 5.5340
Monte Carlo 0.0121 0.0144 0.0168 7.0197 6.2345 5.5290

The interest rate is also varied from 0.10 to 0.30 for the 
European put and call options using the two methods 
with all other parameters remaining the same (Table 2). 
Similarly, we see a very close valuation for the analytic 
and Monte Carlo methods. We also see the same results 

as in the varying maturity period but with comparatively 
higher prices for the put options and very low prices for 
the call options. However, the price of the put options 
decreases as the interest rate increases while that of the 
call options increases with increasing interest rate.

Table 3:Options prices with varying volatility
Call Put

Volatility 2.0 4.0 6.0 2.0 4.0 6.0

Derived (Analytic) 0.1756 0.1905 0.0397 6.8370 7.5482 7.7694

Monte Carlo 0.1894 0.1975 0.0206 6.5537 7.5540 7.7691

The volatility is varied as well for a range of values while 
maintaining the other parameters in pricing the options 
using both methods as seen in Table 3, where the two 
methods gave comparatively close valuations. The 
European call options are seen to rise and fall as volatility 

increases while the price of the European put increases 
with increasing volatility.

The options price trajectory over time  is shown in Figure 
3. The graph displays the European put and call options 
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when the current time t changes from 0 to 1 with all 
other parameters remaining constant. The graph in blue 
represents the derived formula whiles the green colour 
represents the Monte Carlo simulation. From Figure 
3a and Figure 3b, it can be seen that the European put 
option decreases gradually. Also, from Figure 3c and 
Figure 3d, the price of the European call option increases 

from 0 to 0.9 and decreases sharply to 1. This means that 
at maturity time the option price will lose its value. Also, 
the value of the option of the European put is higher 
than the European call, even at the initial time. For these 
kinds of assets, it is better to sell them off quickly within 
the shortest possible time (the maturity time should be 
shorter) to get a higher payoff.
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Figure 3: A graph of derived formula and Monte Carlo Simulation for European Options 

The mean absolute error calculated using both methods for the European Put and European Call 

option is 0.0434 and 0.0177 respectively. This means that there is a very close valuation of the 

option price for both methods in pricing the European put and call options when the asset is 

geometric-mean reverting. 

Next, we change the values of the asset price 𝑃𝑃𝑡𝑡 to see its effect on the call and put option as shown 

in Figure 4. 
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 to see its 
effect on the call and put option as shown in Figure 4.

Atiase et al • Derivation of European Option Pricing Formula when the Asset is Geometric Mean Reverting

The graph in Figure 4 shows the relationship between 
the option value and the underlying asset price; the 
option delta value. The delta value is used by traders and 
investors to hedge their positions. This value allows an 
investor to hedge his position by informing the investor 
of the amount of the underlying asset to buy or sell 
against a small change in the written position of the 
options. The delta value is calculated from the slope of 
the curve as in Figure 4. The slope for the European put 
options is negative (Figure 4a) which simply informs the 
investor of the amount of the underlying asset to sell to 
hedge a small change in his written position of the put 
options. The graph also shows a steeper slope as the time 
to maturity increases, indicating that the investor has to 
sell more of the underlying asset as the time to maturity 
increases. 

Also, Figure 4b shows the delta of the European call 
options. The slope of the graph is positive which informs 
the investor how much of the underlying asset to buy to 
hedge a small change in the written position of the call 
options. The slope of the graph gets steeper as the time 
to maturity increases. This means that the investor would 
have to buy more of the underlying asset as the time to 
maturity increases.

4. Conclusion
Valuation of options price on mean-reverting geometric 
Brownian motion model has become significant in 
the financial market especially because of certain 
characteristics found in some commodities. As such 
scientific valuation techniques of options of such 
underlying assets have become imperative. The 
European option was evaluated by using the Monte 
Carlo method and the derived formula. The two methods 
produced similar results making the derived method 
more desirable due to its simplicity, less computational 
complexity and stability compared to the Monte Carlo 
simulation method. Changes in the variables will affect 
the outcomes of the simulation for both the derived and 
the Monte Carlo method.  Also, from our analysis, when 
pricing a European option for this kind of asset, it is better 
to take note of the interest rate and how volatile it is in the 
market and that will inform the choice of option to trade. 
For future work, we will consider a multidimensional 
case to see the effect it has on the option price.
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