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ABSTRACT 

Field-estimated above-ground biomass (AGB) and spectral data from remote sensing were collected from 

randomly selected 50 sample plots. AGB was estimated through the biomass density equation. 

Radiometric measurements were carried out using a set of spectral vegetation indices. The remote sensing 

data was calibrated with those obtained from the field using GPS points. The average model-based 

estimation using satellite image canopy cover was 30.71 t/plot, while the multispectral data was 69.07 

t/plot in the biosphere. This gave a difference of 1.44 t/plot and 36.91 t/plot respectively from the 

calculated carbon 32.16 t/plot. The canopy cover based estimation deviated from the ground measurement 

with 1.44 t/plot, while the estimation based on vegetation indices was twice that of field measurement. The 

result indicated that calibrated field measurements with forest canopy cover from high resolution image 

was the most reliable remote sensing technique in estimating AGB in a natural forest as compared to 

vegetation index. The model selected for a single tree forest based on modified soil adjusted vegetation 

index with value of 61.18 t/plot compared to the calculated value of 49.84 t/plot may to some extent 

improve AGB estimation.  
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INTRODUCTION  

Managing carbon deposits of forests is a valid step 

to mitigating world climate change (Manrique et 

al, 2012). Deforestation and forest degradation 

contributes significantly to increased global 

concentration of CO2 in the atmosphere causing a 

change in global climate (IPCC, 2007). The forest 

emits carbon through burning, degradation, 

deforestation, decomposition and sinks 

atmospheric carbon by means of photosynthesis 

and plant development (Boschetti et al., 2007). 

Carbon represents 50% of the biomass (IPCC, 

2000) and the knowledge of the processes 

involved in the storage and the release of carbon 

in terms of scale and time from earthly habitats 

still needs to be improved (Keith et al., 2009; 

Manrique et al, 2012). 

In Nigeria, 9.7 million hectares (about 10%) of the 

total land mass of the country, consists of forest 

reserves and only a small portion of this forest is 

lowland rainforest. In the late 1990s it was 

estimated that only 1.19 million hectares of 

lowland rainforest remained in the country and 

about 288,000 hectares of which was designated 

as official forest reserves (ITTO, 2011; Salami et 

al., 2016).  

 

Spectral records from sensors have shown good 

relationships with the biomass in different regions 

(Lu et al., 2004; Anaya et al., 2009). Also, good 

relations have been reported between field-

estimated spectral records and different 

biophysical attributes of forest (Grant et al., 

2007). Geospatial techniques are recently being 

used in the study of forest ecosystems (Fernández 

et al., 2010). However, few studies were found to 

have estimated AGB with the combination of 
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radiometric signals from remote sensing data and 

AGB field survey.  

The spectral reflectance data is usually 

transformed into spectral vegetation indices (VI), 

in form of mathematical models used to measure 

the spectral contribution of vegetation in 

multispectral observations (Nikolaos et al., 2006; 

Manrique, et al., 2012). Several VIs were 

correlated with biophysical vegetation parameters 

and with biomass (Foody et al., 2003; Soenen et 

al., 2010). Some of the best known VIs often used 

for monitoring biomass, are, the Normalized 

Difference Vegetation Index (NDVI), 

Transformed Soil-Adjusted Vegetation Index 

(TSAVI), Modified Soil-Adjusted Vegetation 

Index (MSAVI2), Ratio Vegetation Index (RVI), 

and Advanced vegetation  (AVI) (Foody et al., 

2003; Soenen et al., 2010; Thenkabail et al., 

2002). 

 

The focus of this paper is to estimate carbon, 

specifically in terms of above-ground biomass 

with the specific objectives to conduct a field 

measurement to determine tree parameters and 

compare Carbon from the field measurements and 

estimation from remote sensing data. The study 

develops a reliable methodology which integrates 

the data mentioned above in a Geographic 

Information System (GIS), which allows 

modelling and mapping of the AGB and carbon 

present in a mosaic natural and single tree forests 

 

MATERIALS AND METHODS  

Study Area 

The Omo Forest Biosphere Reserve, which 

derives its name from River Omo that traverses it, 

is located north of Sunmoge, between latitudes 6
o
 

42' to 7
o
 05' N and longitude 4

o
 12' to 4

o
 35' E 

(Fig 1) in the Ijebu area of Ogun State in South-

western Nigeria. Omo covers about 130,500 

hectares, which includes a 460 ha Strict Nature 

Reserve (Okali and Ola-Adams 1987). The 

climate is tropical in nature and it is characterized 

by wet and dry seasons. The temperature ranges 

between 21 and 34°C while the annual rainfall 

ranges between 150 and 3000 mm (Larinde et al., 

2011; Adedeji et al., 2015). 

 

 
Figure1: Map of Omo Forest Reserve 

 

Data Collection and Analysis 

The structural variables such as diameter at breast 

height (DBH)  20 cm, tree height and wood 

density were recorded in the field. This structural 

information obtained was used to estimate the 

AGB, which is the total amount of living organic 

material of trees. Field measurement of tree 

variables were carried out using relaskop, haga 
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altimeter, increment borer, scale weight, 

measuring tape, ranging pole and Global 

Positioning System (GPS). These field allometric 

data were acquired in January, 2018.  

 

Landsat 8 OLI satellite image of 2018 was 

identified as path 190 and row 55, and used with 

Transverse Mercator Projection System and 

Datum WGS84. This image provides moderate-

scale data of 30m. A high resolution image of 1m 

was used to extract forest canopy coverage in 

Omo Biosphere. 

  

Aboveground biomass (AGB) of Omo forest 

reserve 
To estimate the AGB, Tree Basal Area (TBA) 

which is the cross-sectional area (over the bark) at 

breast height (1.3 metres above the ground) was 

first calculated (equation 1). This was determined 

by measuring the diameter at breast height in 

centimeters and calculate the basal area (m
2
) using 

an equation based on the formula for the area of a 

circle (area = p r
2
 where r = radius and p = 3.142) 

where r is DBH divided by 2.  

BA(m
2
) = pi * DBH(cm)

2
 /4  ...... [1] 

The Volume for each tree was estimated using the 

Newton’s formula 

2 2 24

24

Db Dm Dt
V H

  
  

 
 ......... [2] 

Where  

V =  Stem  volume  (m3),   

H  =  total  height  (m),   

Db  = Diameter at base (cm),  

Dm = Diameter at the middle (cm),  

Dt = Diameter at the top (cm). 

The AGTB is being calculated using equation 3 

AGTB (t/ha) = Volume of tree (m
3
/ha) × Wood 

specific density (t/m
3
) x Biomass Expansion 

Factor (5)                                                                                                 

(3) 

Where:  

BEF= Exp {(3.213 – 0.506*Ln (BV)} for BV < 

190 t/ha …… [4] 

When BV > = 190 t/ha, a constant of 1.74  

Where  
BV= Biomass Volume (t/ha) = Volume per hectare 

(m
3
/ha) x Average wood density (t/m

3
) .. [5 

 

Where Biomass Volume (BV) = Vol/ha x 

Average Density....... [6]  

and average density calculated thus 

 

Average Density =     …. [7] 

 

Carbon (C) stock was derived from aboveground 

biomass by assuming that nearly 50% of the 

biomass is made up by carbon (IPCC, 2006 and 

Hung et al, 2012). 

C = Biomass (t/ha) ∗ 0.5 ….. [8] 

The weight of carbon dioxide in trees is 

determined by the ratio of CO2 to C which is 

44/12 (Kauffman & Donato, 2012). Carbon 

dioxide was calculated as follows: 

CO2 = Carbon (t C/ha) ∗ 44/12 ….. [9] 

Sub-pixel based Carbon Estimation  

To achieve this, satellite image obtained was 

subjected to basic adjustments or pre-processing. 

This pre-processing is necessary to adjust the data 

for use in quantitative analysis (Agbor et al, 2018) 

such as radiometric correction. Radiometric error 

of the Landsat satellite image of 2018 were 

verified to ensure data quality using ArcGIS 10.5. 

The images used in this study were first converted 

to Top of Atmosphere (TOA) radiance using 

equation 10 (Giannini et al., 2015). 

 

 …… [10] 

 

Where: 

 =Spectral radiance at the sensor's aperture 

[W/(m
2
 sr µm)] 

QCAL = Quantized calibrated pixel value [DN] 

QCALMIN = Minimum quantized calibrated pixel 

value corresponding to LMIN  [DN] 

QCALMAX = Maximum quantized calibrated pixel 

value corresponding to LMAX ) [DN] 

LMIN  = Spectral at-sensor radiance that is scaled 

to QCALMIN [W/(m
2
 sr µm)] 

LMAX, = Spectral at-sensor radiance that is 

scaled to Qcalmax [W/ (m 2 sr µm)]. 

The above expression does not consider the 

atmospheric effects, therefore there is need to 

convert images from radiance to reflectance 

measures, using equation 11 ((Giannini et al., 

2015).  
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2

Esun

* r*d

E *Cos sz

TOA



 



     …… [11] 

Where: 

Planetary TOA reflectance (unitless) 

π  mathematical constant approximately equal to 

3.14159 (unitless) 

spectral radiance at the sensors aperture 

[w/(m
2
 sr µm)] 

 the earth-Sun distance (Astronomical unit) 

 mean exoatmospheric solar irradiance 

[w/(m
2
 sr µm)]. 

θSZ= the solar zenith angle (degree). The cosine of 

this angle is equal to the sine of the sun elevation 

θSE. That is, θSZ = cos(90- θSE). 

 

These are rescaling factors given in metadata. 

The grid referencing system of individual bands of 

each of the images used have been transformed to 

one reference system (WGS1984 UTM Zone 

31N). The re-projection is important to make 

accurate analysis of the datasets and comparability 

possible. For the satellite analysis of the sample 

plots, we extracted the reflectance in the 

respective bands of the image of Landsat 8 OLI. 

This study utilized Maximum Likelihood 

classification Algorithm and spectral values based 

on Vegetation indices and band ratios, as integral 

part of the classification processes. The results of 

these operations make classification of the study 

area in pixels into different land cover types 

relatively easy.  

 

Image classification generally involves labeling 

the pixels as belonging to particular spectral class 

using the spectral data available. It is assumed in 

this study that the spectral classes for an image be 

represented by ωi and the pixel as x. To determine 

the class or category to which a pixel x belongs; it 

is strictly the conditional probabilities  |p i x . 

This is the probability that the class  i is the 

correct for a pixel at position x where 

 

i = 1 . . . m …. [12] 

m = total number of classes. 

The image classification will be performed 

according to  

 if  ….. [13] 

 for all j  I ……… [14] 

 

This means that the pixel at position  belongs to 

class ωi if p(ωi |x) is the largest. One major 

problem that associates with this classifier is that 

are not always known. To estimate a 

probability distribution for a land cover type (i.e. a 

class) that describes the chance of finding a pixel 

from class  at position  (  this 

study ensured that sufficient training samples are 

available as recommended by (John et al, 2006). 

They recommend as a practical minimum that 

 training pixels per spectral class be used, 

where  is the number of channels. The 

dimensionality of data (images) that will be used 

in this research is low (3-channel multispectral 

images), therefore achieving these numbers will 

not be impossible. 

 

 Forest Canopy Analysis  

30 plots of 30m x 30m boundary was overlay on a 

high resolution of 1m and the forest cover was 

digitalized. The area of the digitized forest cover 

was calculated to determine the area cover of the 

tree crown. Figure 3 shows selected plots used for 

canopy cover analysis in Omo Biosphere.   

 

Forest cover assessment by Vegetation Indices 

The Normalized Difference Vegetation Index is 

defined as 





RedNir

Re






dNir
NDVI  …….. [15] 

This was introduced by Rouse et al. in1974 in 

order to produce a spectral VI that separates green 

vegetation from its background soil brightness 

using Landsat digital data (Nikolaos et al., 2006). 

It is expressed as the difference between the near 

infrared and red bands normalized by the sum of 

those bands. It is the most commonly used VI as it 

retains the ability to minimize topographic effects 

while producing a linear measurement scale. In 

addition, division by zero errors is significantly 

reduced. NDVI values will typically range 

between -1 and 1 where the higher the value, the 

healthier and denser the vegetation (Makinde et 

al., 2018). 

 

The Advance Vegetation Index (AVI), which is 

highly sensitive to forest density and 

physiognomic vegetation classes, was also used 

im estimating carbon stock from satellite image. 

AVI was calculated using equation 4 (Agbor et al, 

2018). 
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3 B4)}-B4)(B5-1)(65536+ {(B6 = AVI   ……. [16] 

Where B = Band 

Another widely used VI is the Ratio Vegetation 

Index (RVI), which was adopted in this study and 

calculated as shown in the following equation 15. 

 





Red

Nir
RVI    …….. [17] 

 

Another index used is the TSAVI2 (Transformed 

Soil-Adjusted Vegetation Index) is a VI that 

considers a correction factor to compensate for the 

relative effect of the soil, and to take into account 

the observed amount of vegetation. It was 

propounded by Baret and Guyot, in 1991 

(Nikolaos et al, 2006) and is calculated using 

equation 18. 

 
 

)a (1 0.08  ab - aNIR  R
TSAVI2

2




baRNira  …….. [18] 

 

Where NIR = reflectance in the near infrared band 

(expressed as reflectances), R = reflectance in the 

visible red band (expressed as reflectances), a = 

slope of the soil line and b = intercept of the soil 

line. The final index used is the MSAVI2.  This is 

the second modified SAVI introduced by Qi, et 

al., 1994 which uses an inductive L factor to 

remove the soil "noise" that was not canceled out 

by the product of NDVI and correct values greater 

than 1 that SAVI may have due to the low 

negative value of NDVI (Nikolaos et al, 2006). 

The general expression of MSAVI2 is given as 

equation 19. 

 

   
2

81 2– 1 2
MSAVI

Re

2

2

dnirnirnir
 

  …….. [19] 

nir = reflectance of the near infrared band 

(expressed as reflectances) 

dRe = reflectance of the red band (expressed as 

reflectances) 

 

Regression Analysis 

AGB and spectral (VI) data were used to derive 

and evaluate a set of predictive relations for AGB 

estimation from remote sensing.  For all data, the 

correlations between AGB and VI, as well as 

those between the different VI (field and satellite), 

were assessed using regression equation expressed 

as in equation 20.  

 

mxay  …….. [20] 

Where:  

  = the measured variable 

  a = the intercept 

  = the rate of change and  

  = the VI.  

 

The data with more statistically significant 

relationships and higher correlation coefficient 

was selected to model the AGB in the forest 

reserve. The simulated biomass was compared 

with field data. For validation of the estimated 

AGB, we used 30 randomly selected field plots to 

model biomass distribution and 20 plots whose 

biomass was compare with the predicted biomass. 

 

RESULTS  

Aboveground biomass (AGB) of Omo forest 

reserve 
A  total  of  eight hundred  and  one  (801)  trees 

of twenty three (23) families and sixty five species 

of DBH ≥ 20cm were enumerated  in the study 

area as shown in table 1.  
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       Table 1: Data distribution according to family and number of tree species  

S/No. Family No. of Species No of Observation % 

1 Annonaceae 4 25 3.12 

2 Apocynaceae 3 44 5.49 

3 Bignoniaceae 1 1 0.12 

4 Boraginaceae 1 30 3.75 

5 Cannabaceae 2 18 2.25 

6 Combretaceae 2 8 1 

7 Ebenaceae 5 70 8.74 

8 Euphorbiaceae 7 116 14.5 

9 Fabaceae 5 17 2.12 

10 Malvaceae 8 126 15.7 

11 Meliaceae 5 40 4.99 

12 Moraceae 1 8 1 

13 Myristicaceae 1 19 2.37 

14 Olacaceae 1 130 16.2 

15 Phyllanthaceae 2 2 0.25 

16 Putranjavaceae 7 81 10.1 

17 Rubiaceae 3 24 3 

18 Ruscaceae 1 2 0.25 

19 Rutaceae 1 3 0.37 

20 Sapindaceae 1 1 0.12 

21 Sterculiacae 1 1 0.12 

22 Tiliaceae 2 30 3.75 

23 Urticaceae 1 5 0.62 

 Total 65 801 100 

 

 
Figure 2: Forest cover of Omo Biosphere 

177 

 



 

 
 

JOURNAL OF RESEARCH IN FORESTRY, WILDLIFE AND ENVIRONMENT, VOLUME 12, NO. 3,  SEPTEMBER, 2020 

 

Mshelia et al., 2020 

 

                Table 1: Forest cover Statistics of Omo Biosphere Reserve. 

Category Area m Area ha % 

Forest cover 4169 375.21 89 

Open land 499 44.91 11 

Total 4668 420.12 100 

 

Figure 2, shows the forest cover of Omo biosphere 

with the colour green showing the area covered by 

forest and colour yellow are areas of non-forest 

which were the mosaic of water body and open 

land. The image was classified into forest and 

open land for ease of estimation of the actual 

carbon stock in the study area. Table 1 indicates 

that the area covered by forest in the biosphere is 

89%, while non-forest is 11%, covering 375.21 ha 

and 44.91 ha respectively. 

 

Table 2 Summary of Forest Carbon Stock Estimation from Sampled Plots 

Parameter AGB (t/ha) Carbon stock (t/ha) C02 (t/ha) 

Mean 737.93 368.97 1354.10 

Minimum 21.28 10.64 39.04 

Maximum 1765.67 882.84 3240.01 

Sum 36896.58 18448.29 67705.22 

 

Table 2 shows the summary of the above ground 

biomass (AGB), carbon stock and carbon dioxide 

calculated from the 50 sampled plots in Omo 

biosphere reserve. The estimated net biomass of 

the stems ranges from 21.28 to 1765.67 ton/ha 

with a mean of 737.93ton/ha; the carbon stock 

ranges from 10.64 to 882.84 ton/ha with a mean of 

368.97 ton/ha; and the CO2 sequestered ranges 

from 39.04 to 3240.01 ton/ha with a mean of 

1354.10 ton/ha (Table 2). 

Since the actual area of Omo biosphere reserve 

under forest is 375.21 ha, the carbon content of 

the reserve is estimated as: 375.21 (ha) x 368.97 

(t/ha). Estimated Carbon Content of the Reserve = 

138,441.24 tons. Estimated CO2 Content of the 

Reserve = 138,441.24 x 3.67 = 508,079.33 tons 

 

Therefore, estimated net carbon stock of the stems 

of the Omo biosphere is 138,441.24 tons while the 

CO2 equivalent is 508,079.33 tons. The study 

determined that Omo biosphere reserve has great 

capacity to sink carbon and it can also emit CO2 

about four times into the environment than the 

amount it sinks when it undergoes deforestation 

and degradation. This shows the important of 

sustainable forest management as a measure to 

mitigate the impact of climate change. 

 

Table 2: Linear Relationships between Estimated Biomass and Vegetation Indices 

Vegetation Indices Equation R
2
: plantation R

2
: natural forest 

NDVI  

 

 

Linear 

0.29 0.001 

MSAVI2 0.32 0.033 

AVI 0.29 0.001 

TSAVI1 0.30 0.001 

RVI -0.29 0.007 

Forest Canopy  - 0.75 

 

The relationships between the vegetation indices 

obtained from satellite data shown in table 2 

indicated a weak relationship between VIs and the 

biomass. The Omo biosphere with dense 

vegetation of different trees species had the 

poorest values of all indices with MSAVI2 having 

the highest value. Boschetti et al. (2007) 

established that NDVI exhibits low fidelity with 

the above-ground biomass in heterogeneous 

forest. In contrast, the relationship improved in the 

site that is characterised by single tree species 

(Gmelina arborea) with AVI, NDVI, MSAVI22, 

TSAVI and RVI.  The best fitting index proved to 

be the MSAVI2, as asserted by other authors in the 

monitoring of vegetation (Julien et al., 2009).  
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Table 3: Derived Models to Assess and Map AGB in Omo Biosphere and Plantation 

Model Equations     R
 

    Forest type Independent 

variable 

Dependent 

variable 

1   0.75  

Natural forest 

 

Forest canopy Estimated 

biomass 

2    

 

0.03 MSAVI22 Estimated 

biomass 

3 y = 145.78x - 21.203 0.32 Plantation forest MSAVI22 Estimated 

biomass  

 

Vegetation Indices and forest canopy based 

estimated AGB 

Vegetation indices were introduced to estimate 

carbon by sub-pixels. The regression model 

obtained described the relationship between 

calculated AGB from the field data and VI 

(MSAVI22). The regression produced a 

coefficient of the independent variable (MSAVI2) 

and an intercept value indicating the state of the 

dependent variable (calculated AGB) when the 

independent variable is zero. To estimate the AGB 

by pixels, the MSAVI2 images served as the 

independent variable(x) in equations 2 and 3 

(table 3). Adding the product of the images and 

the coefficient to the constant (a) produce the 

value of y for each pixel. The established 

equations between the values of forest canopy and 

AGB was linear (r
2
=0.75). The distribution of 

biomass showed a lower range as compared to 

estimation based on vegetation indices in the 

natural forest of Omo biosphere (Table 3).  

 

Forest Canopy Analysis  
30 plots of 30m x 30m boundary was overlay on a 

high resolution of 1m and the forest cover was 

digitalized. The area of the digitized forest cover 

was calculated to determine the area cover of the 

tree crown. Figure 2 shows selected plots used for 

canopy cover analysis in Omo Biosphere.   

 

 
Figure 3: Selected plots within Omo forest reserve on high resolution image 

 

Adopting tree canopy as a way to determine 

biomass became necessary because of mixed 

pixels present in Landsat images used.  This 

increases the level of uncertainty in biomass 

estimation from the coarse images that can be 

minimized using a finer resolution image such as 

Google archived image (figure 3). It provides a 

more reliable carbon estimates and relates better 

with ground data than lower resolution image used 

for radiometric estimates. 
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(a)                                                                                 (b) 

Figure 4: Sub-pixel distribution of AGB (t/ha) for (a) Natural forest and, (b) Single specie plantation 

using models 2 and 3 

 

The images in figure 4 are the outputs of the 

simulation exercises from model 2 and 3 in table 

3. Figure 4a is an AGB distribution map of Omo 

biosphere. The dark green colour shows areas of 

high biomass with colour red as areas of low 

biomass or no biomass (compared with land cover 

in figure 2). The same is applicable to figure 4b as 

dark green has higher biomass while the red areas 

are areas of low or no biomass. The new pixel 

values of biomass extracted from Omo Biosphere 

and forest plantation (figure 4) after the simulation 

and data from forest canopy analysis were 

compared with the calculated data of the 20 plots 

set aside for validation and the results is in table 4. 

 

Table 4: Mean Estimated Carbon of Selected Plots  

Location  Density 

 

Volume  m
2 

Calculated 

Carbon 

Estimated 

Carbon by VI  

Estimated 

Carbon by 

Canopy  area 

Natural forest 2.71 12.44 33.72 70.07 32.71 

Plantation 4.2 11.87 49.84 61.18 - 

 

The calculated carbon in the natural forest was 

33.72  t/plot and the derived carbon based on 

vegetation index was 70.07 t/plot. The estimation 

of carbon based on canopy area gives a closer 

value of 32.71 t/plot. Applying the same indices in 

a single tree ecosystem, derived carbon was closer 

to calculated value especially with modified soil 

adjusted vegetation index as shown in table 4.  

 

DISCUSSION 

Integration of the plot measurements with remote 

sensed data was used to developed regression 

models for estimating AGB over the whole study 

area. However, the use of vegetation indices over 

estimates AGB in the study area while the high 

resolution image gives a closer result to the 

calculated. The inconsistences with the use of 

vegetation indices could be as result of the 

mixture of spectral component such as trees, soil, 

and shade in a pixel of an image which is captured 

as signature or one pixel. The limitation of pixed-

based vegetation indices or reflectance values for 

estimating AGB was addressed using canopy 

based model. The high resolution image of 1m 

used in the canopy based model was able to 

differentiate clearly forest and non-forest, thereby 

enhancing the accuracy of the estimation.  

Plantation forest was added mainly for the 

assessment and verification of model from the 

natural forest. The P-value of .004, reveal that 
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there are no statistically significant differences 

between the AGB field data surveyed and the 

AGB data estimated using model 1.  Other 

models, especially the VI overestimates the AGB 

of both forest reserves, though more unpredictable 

in natural forest.  As important as forest carbon 

measurement is, applying the method that reduces 

error is necessary for proper monitouring and 

management of the forest.  

CONCLUSION 

This study showed that spectral records from 

satellite radiometry are an important source of 

input to estimate the aboveground biomass of each 

site. MSAVI22 is the index that best explains the 

relationships between AGB and vegetation 

reflectance. The most reliable remote sensing 

technique to estimate AGB in a natural forest is by 

using forest canopy cover from high resolution 

image rather than vegetation index. The model 

selected for a single tree forest based on modified 

soil adjusted vegetation index can to some extent 

improve AGB estimation detail and proper 

monitoring of such data.  
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