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ABSTRACT 
Nonlinear conjugate gradient methods (CG) are prominent iterative techniques 

widely used for solving large-scale unconstrained optimization problems. Their 

wide application in many fields is due to their simplicity, low memory 

requirements, computationally less costs and global convergence properties. 

However, some of the CG methods do not possess the sufficient descent 

conditions, global convergence properties and good numerical result. To 

overcome these drawbacks, numerous studies and modification have been 

conducted to improve on these methods. In this research, a modification of a 

new Conjugate gradient parameter that posses sufficient descent conditions and 

global convergence properties is presented. The global convergence result is 

established using the Strong Wolf Powell condition (SWP). Extensive 

numerical experiment was conducted on a set of standard unconstrained 
optimization test functions.  The results show that the method outperforms 

some well-known methods in terms of efficiency and robustness. 
 

 

 
 

 

 

 
 

 

 

 

 

INTRODUCTION 
Consider the unconstrained minimization problem 

min
𝑥∈𝑅𝑛

   𝑓(𝑥)      (1) 

that is widely used for solving large-scale unconstrained 

optimization problem, where 𝑓: ℝ𝒏 → ℝ is continuously 

differentiable function and n is the dimension of x, which 

is assume to be large. The iterate of the conjugate gradient 

methods are obtain by  

𝑥𝑘+1 =  𝑥𝑘 + 𝛼𝑘𝑑𝑘     (2) 

where 𝛼𝑘 > 0, is a step length and usually computed via 

different line search methods. The search direction 𝑑𝑘   is 
computed as follows: 

𝑑𝑘 =  {
−𝑔𝑘                             𝑖𝑓 𝑘 = 0
−𝑔𝑘 + 𝛽𝑘𝑑𝑘−1          𝑖𝑓 𝑘 > 0

  (3) 

Where 𝑔𝑘  is the gradient of 𝑓(𝑥) at the point 𝑥𝑘 ,  𝛽𝑘 𝜖 𝑅 is 

a scalar known as CG parameter.  

There are several choices of the conjugate gradient 

parameter 𝛽𝑘    in the literature each yielding to a different 

CG method. Some of the well known CG coefficients are 

as follows:  

 

𝛽𝑘
𝐻𝑆 =   

𝑔𝑘+1
𝑇(𝑔𝑘+1−𝑔𝑘)

(𝑔𝑘+1−𝑔𝑘)𝑑𝑘
    (4)

  
 

 

 

 

 

 

 

 

𝛽𝑘
𝐹𝑅 =   

𝑔𝑘+1
𝑇𝑔𝑘+1

||𝑔𝑘||2

            (5) 

 

𝛽𝑘
𝑃𝑅𝑃 =  

𝑔𝑘+1
𝑇(𝑔𝑘+1−𝑔𝑘)

||𝑔𝑘||2

           (6) 

  

𝛽𝑘
𝐶𝐷 =  

−𝑔𝑘+1
𝑇𝑔𝑘

𝑑𝑘
𝑇𝑔𝑘

             (7) 

  

𝛽𝑘
𝐿𝑆 =   

𝑔𝑘+1
𝑇(𝑔𝑘+1−𝑔𝑘)

−𝑑𝑘𝑔𝑘
           (8) 

 

𝛽𝑘
𝐷𝑌 =  

𝑔𝑘+1
𝑇𝑔𝑘

(𝑔𝑘+1−𝑔𝑘)𝑑𝑘
           (9) 

The above formulae are known as Hestenes-Stiefel 

(1952) (HS), Fletcher-Reeves (1964) (FR), Polak-

Ribiere-Polayak (1969) (PRP), Conjugate Descent 

(1987) (CD), Liu-Storey (1991) (LS) and Dai-Yuan  

(1999) (DY). These formulas for conjugate gradient  
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method  have been categorized into two groups :  The first 

group include PRP (1969), HS (1952), and LS (1991), 

they are considered among the most efficient CG 

algorithms for the solution of unconstrained optimization 

problems particularly the large scale, because they 

possess an inbuilt automatic restart feature that helps 

prevent them from jamming. But yet, their convergence 

properties are still now not established under certain 

inexact line search condition. The other group includes 

the FR (1964), CD (1987), and DY (1999) Methods. 

Though these methods possesses strong convergence 

properties, but are often considered very poor in terms of 

numerical performance due to their jamming phenomena  

(Hager and Zhang 2006).

 

The above mentioned drawbacks inspired researchers to 

revise and propose numerous modification of the 

conjugate gradient method with the aim of overcoming 

these drawbacks. 

The global convergence properties of CG techniques are 

the most researched and well-known. The referenced 

study by zotendjik (1970),  proved the global convergence 

of FR method using the exact line search. This was later 

refuted by Powell (1977) by giving a counter example. 

Many researchers believe that the PRP method is the most 

reliable CG method, but it is also known not to possess 

global convergence properties, as shown by Powell 

(1984). Powell (1986) has also shown that FR method is  

superior method when compared with the others. In 

addition, other researchers such as A-lBaali (1985), 

Touati-Ahmed and Storey (1990), Gilbert and Nocedal 

(1992), have further analysed the global convergence of 

algorithm related to the FR method using the inexact line 

search with a strong wolf condition.  

Andrei (2011) has classified the CG method in three 

different groups, the classical CG method, the scaled CG 

method and lastly the hybrid CG method . The classical 

CG method is the most simplest and yet easy to applied. 

Formulas (4) to (9)  are regarded as classical CG 

formulas.  However to find and produce a new CG 

method of this type is quite difficult. Therefore, 

researchers usually come out with the scaled or hybrid 

CG method.  

Among the earliest hybrid CG algorithm is 
TS

k  

developed by Touati-Ahmed and Storey (1990) with 

the formula defined as follows: 

 

𝛽𝑘
𝑇𝑆 =  {

𝛽𝑘
𝑃𝑅𝑃       𝑖𝑓 0 < 𝛽𝑘

𝑃𝑅𝑃 ≤ 𝛽𝑘
𝐹𝑅

𝛽𝑘
𝐹𝑅                       𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

          (10) 

Also some of the best research on this type of CG 

method has been conducted are by Wei et al. (2006), 

Yuan et al. (2010). However it is obvious that to find 

the formula for these types is quite difficult and 

complicated to understand. Thus base on this reason, 
this paper only concentrated on the classical formulas 

of CG methods.  

In recent years much effort has been place on 

developing and constructing a new and simple formula 

for CG methods with good numerical performance and 

global convergence properties (see refs. Alhawarat et al 

(2017), Salih Y.et al (2018), Aini N. et al (2019), Saleh 

N.A et al (2020), Auwal A.M et al (2023) and Kabiru 

A. et al (2024) ).     

New conjugate gradient parameter 
In an attempt to overcome some of the drawbacks 
discussed above, Rivaie et al, (2012) proposed a new 

CG coefficient known as 
RMIL

k . This coefficient is 

known to fulfill the sufficient descent condition and 

also possess global convergence properties.  

This 𝛽𝑘
𝑅𝑀𝐼𝐿

  is denoted as: 

  

 𝛽𝑘
𝑅𝑀𝐼𝐿 =   

𝑔𝑘+1
𝑇(𝑔𝑘+1−𝑔𝑘)

||𝑑𝑘||2             (11)

       
Based on Rivaie et al (2012), Revaie et al (2015) also 

has proposed RMIL  conjugate gradient method 

whose coefficient k  is defined as  

𝛽𝑘
𝑅𝑀𝐼𝐿+

=   
𝑔𝑘+1

𝑇(𝑔𝑘+1−𝑔𝑘−𝑑𝑘)

||𝑑𝑘||2            (12) 

And has shown that RMIL  is globally convergent 

and gives good numerical results under the exact line 
search.  

Motivated by these findings we develop a new  

conjugate gradient parameter k  known as ANN 

(Aliyu, Nasiru and Najib)  This formula retained the 

original numerator of RMIL  but maintained the 

Fletcher and Reeves (FR) denominator. The formula is 

defined as 

𝛽𝑘
𝐴𝑁𝑁 =   

𝑔𝑘+1
𝑇(𝑔𝑘+1−𝑔𝑘−𝑑𝑘)

||𝑔𝑘||2        (13)     
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where || ∙ || is the Euclidean norm of vectors. 

We employed the inexact line search which include wolf 

and strong wolf line search to compute the step length  

(𝛼𝑘) defined below: 
 

𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) ≤ 𝑓(𝑥𝑘) + 𝛿𝛼𝑘𝑔𝑘
𝑇𝑑𝑘           (14) 

and  

   |𝑔(𝑥𝑘 + 𝛼𝑘𝑑𝑘)𝑇𝑑𝑘|  ≤  −𝜎𝑔𝑘
𝑇𝑑𝑘  

             (15) 

 

where 0 < 𝛿 < 𝜎 < 1 are two constant and 𝑔𝑘+1 =
𝑔(𝑥𝑘 + 𝛼𝑘𝑑𝑘) 

 
 

Algorithm   

Step 1: Initialization. Given 𝑥0 ∈ 𝑅𝑛 select some positive 

value for 𝛿 and set 𝑘 = 0 

Step 2: Compute 𝛽𝑘  based on (13) 

Step 3: Compute 𝑑𝑘based on (3). If 𝑔𝑘 = 0, then stop. 

Step 4: Compute 𝛼𝑘based on (14)-(15) 

Step 5: Updating new point based on (2) 

Step 6: Convergent test and stopping criteria. 

 If𝑓(𝑥𝑘+1) < 𝑓(𝑥𝑘) and ||𝑔𝑘|| <  𝜀  then stop. 

 Otherwise go to step 1 with 𝑘 = 𝑘 + 1 

 

MATERIALS AND METHODS 

Convergence Analysis 
In this section, we will provide the proofs of the sufficient 

descent properties and the global convergence of ANN 

method when it applied under strong wolfe line search of 
equation (14) and (15).  

 Sufficient descent condition 
 

This condition is defined as: 

𝑔𝑘
𝑇𝑑𝑘  ≤  −𝑐||𝑔𝑘||2   for 𝑘 ≥ 0 and 𝑐 > 0.   (16) 

Also the inequality below would be use for the proofs of 

the sufficient descent property (16) and the global 

convergence properties when it applied under the strong 

wolf e line search. 

  0 ≤ 𝛽𝑘
𝐴𝑁𝑁 ≤

||𝑔𝑘+1||2

||𝑔𝑘||2 , ∀𝑘 ≥ 1  

Lemma 1: Assume that 𝑔𝑘  and 𝑑𝑘  are obtained by 

Algorithm with 𝜎 ≤
3

2
 then  ∀𝑘 ≥ 1, we get 

||𝑔𝑘|| < 2 ||𝑑𝑘|| 

  ||𝑔𝑘||2 < 4 ||𝑑𝑘||2 

   −||𝑑𝑘|| < −
||𝑔𝑘||

2
   (17)

       

 

Proof.  The proof of this lemma would be by induction. It 

is obvious that for k = 0, the result holds true. Suppose 

(16) holds true for some k > 0. Then we have  

 ||𝑔𝑘+1 + 𝑑𝑘+1||2 =  (𝑔𝑘+1 + 𝑑𝑘+1)𝑇(𝑔𝑘+1 +
𝑑𝑘+1) 

         = ||𝑔𝑘+1||2 + ||𝑑𝑘+1||2 + 2𝑔𝑘+1
𝑇𝑑𝑘+1        (18)

 
 

 

From (3) we have that 

 

𝑔𝑘+1
𝑇𝑑𝑘+1 =  −||𝑔𝑘+1||2 + 𝛽𝑘+1

𝐴𝑁𝑁𝑔𝑘+1
𝑇𝑑𝑘 ,

      (19)
 

Substituting (19) into (18) we get 

||𝑔𝑘+1 + 𝑑𝑘+1||2 =  ||𝑔𝑘+1||2 + ||𝑑𝑘+1||2

− 2||𝑔𝑘+1||2 + 2𝛽𝑘+1
𝐴𝑁𝑁𝑔𝑘+1

𝑇𝑑𝑘 

    ||𝑔𝑘+1 + 𝑑𝑘+1||2 ≤ ||𝑑𝑘+1||2 − ||𝑔𝑘+1||2 +

2|𝛽𝑘+1
𝐴𝑁𝑁||𝑔𝑘+1

𝑇𝑑𝑘|,
  

 

Applying (14) and (15) conditions and noting that 

𝛽𝑘+1
𝐴𝑁𝑁 ≥ 0  

 ||𝑔𝑘+1 + 𝑑𝑘+1||2 ≤ ||𝑑𝑘+1||2 − ||𝑔𝑘+1||2 +

2𝜎𝛽𝑘+1
𝐴𝑁𝑁|𝑔𝑘+1

𝑇𝑑𝑘|, 

Since  0 ≤ 𝛽𝑘+1
𝐴𝑁𝑁 ≤

||𝑔𝑘+!||
2

||𝑔𝑘||2   and applying Cauchy-

Schwartz inequality we get 

 ||𝑔𝑘+1 + 𝑑𝑘+1||2 ≤ ||𝑑𝑘+1||2 − ||𝑔𝑘+1||2 +

2𝜎
||𝑔𝑘+1||2

||𝑔𝑘||2
||𝑔𝑘|| ||𝑑𝑘||  

   ||𝑔𝑘+1 + 𝑑𝑘+1||2 ≤ ||𝑑𝑘+1||2 − ||𝑔𝑘+1||2 +

2𝜎||𝑔𝑘+1||2 ||𝑑𝑘||

||𝑔𝑘||
  

 

Applying (17) we get  

 ||𝑔𝑘+1 + 𝑑𝑘+1||2 ≤ ||𝑑𝑘+1||2 − ||𝑔𝑘+1||2 −

2𝜎 (
−||𝑔𝑘||

2||𝑑𝑘||
) ||𝑔𝑘+1||2  

  ||𝑔𝑘+1 + 𝑑𝑘+1||2 ≤ ||𝑑𝑘+1||2 + (𝜎 −
1)||𝑔𝑘+1||2 

 

Hence 

||𝑔𝑘+1 + 𝑑𝑘+1||2 + (1 − 𝜎)||𝑔𝑘+1||2 ≤ ||𝑑𝑘+1||2, 
Since(1 − 𝜎) > 0  we obtain  

 (1 − 𝜎)||𝑔𝑘+1||
2

≤ ||𝑑𝑘+1||
2

, 

    ||𝑔𝑘+1||2 < (
1

1−𝜎
) ||𝑑𝑘+1||2  

 

Hence    ||𝑔𝑘+1||2 ≤ 4 ||𝑑𝑘+1||2 whenever 𝜎 ≤
3

4
 then 

            ||𝑔𝑘|| < 2 ||𝑑𝑘||  
Which implies that (16) holds for k+1. Therefore the 

proof is completed. 

 

Using Lemma 1. We get the relationship between 𝑔𝑘  

and 𝑑𝑘 below, when 𝑑𝑘  and 𝑔𝑘 are generated by our 

Algorithm with 𝜎 ≤
3

4
  , that is  

||𝑔𝑘||2

4
<

||𝑑𝑘||2

1
 or  

1

||𝑑𝑘||2 <
4

||𝑔𝑘||2      for all 𝑘 ≥ 0    (20) 

 

The following theorem establishes the sufficient 

descent property and will be used to prove the global 

convergence.  

Theorem 1. Let the sequence {𝑔𝑘} and {𝑑𝑘} be 

generated by our algorithm  with 𝜎 ≤
3

4
  then for all 
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𝑘 ≥ 0  Then 

 

 
−1

1−𝜎
<

𝑔𝑘
𝑇𝑑𝑘

||𝑔𝑘||2 <
2𝜎−1

1−𝜎                         (21)  

  

Hence the condition (16) holds  

 

Proof: From (16) the result is obvious for k = 0.  
Now consider k > 0. From (3), we have 

 𝑔𝑘+1
𝑇𝑑𝑘+1 = −||𝑔𝑘+1||2 + 𝛽𝑘+1

𝐴𝑁𝑁𝑔𝑘+1
𝑇𝑑𝑘  


 

𝑔𝑘+1
𝑇𝑑𝑘+1

||𝑔𝑘+1||2 = −1 + 𝛽𝑘+1
𝐴𝑁𝑁 𝑔𝑘+1

𝑇𝑑𝑘

||𝑔𝑘+1||2 

  
= −1 + 𝛽𝑘+1

𝐴𝑁𝑁 ||𝑔𝑘||2

||𝑔𝑘+1||2 ∙
𝑔𝑘+1

𝑇𝑑𝑘

||𝑔𝑘||2

 (22)
 

From Strong Wolf Powell condition, we have  

 
𝜎𝑔𝑘

𝑇𝑑𝑘 ≤ 𝑔𝑘+1
𝑇𝑑𝑘 ≤ −𝜎𝑔𝑘

𝑇𝑑𝑘   

 
Which together with that 𝛽𝑘

𝐴𝑁𝑁 ≥ 0  

𝜎𝛽𝑘+1
𝐴𝑁𝑁𝑔𝑘

𝑇
𝑑𝑘 ≤ 𝛽𝑘+1

𝐴𝑁𝑁𝑔𝑘
𝑇𝑑𝑘 ≤ −𝜎𝛽𝑘+1

𝐴𝑁𝑁𝑔𝑘
𝑇𝑑𝑘   

 
      (23)

 

Dividing through equation (23) by ||𝑔𝑘+1||2  

𝜎𝛽𝑘+1
𝐴𝑁𝑁 𝑔𝑘

𝑇𝑑𝑘

||𝑔𝑘+1||2 ≤
𝑔𝑘+1

𝑇𝑑𝑘

||𝑔𝑘+1||2 ≤ 𝜎𝛽𝑘+1
𝐴𝑁𝑁 𝑔𝑘

𝑇𝑑𝑘

||𝑔𝑘+1||2  

is the same as  

𝜎𝛽𝑘+1
𝐴𝑁𝑁 ||𝑔𝑘||2

||𝑔𝑘+1||2 ∙
𝑔𝑘−1

𝑇𝑑𝑘−1

||𝑔𝑘||2 ≤
𝑔𝑘+1

𝑇𝑑𝑘

||𝑔𝑘+1||2 ≤

−𝜎𝛽𝑘+1
𝐴𝑁𝑁 ||𝑔𝑘||2

||𝑔𝑘+1||2 ∙
𝑔𝑘

𝑇𝑑𝑘

||𝑔𝑘||2        

and   

   −1 + 𝜎𝛽𝑘
𝐴𝑁𝑁 ||𝑔𝑘||2

||𝑔𝑘+1||2 ∙
𝑔𝑘

𝑇𝑑𝑘

||𝑔𝑘||2 ≤
𝑔𝑘+1

𝑇𝑑𝑘

||𝑔+1𝑘||2 ≤ −1 −

𝜎𝛽𝑘+1
𝐴𝑁𝑁 ||𝑔𝑘||2

||𝑔𝑘+1||2 ∙
𝑔𝑘

𝑇𝑑𝑘

||𝑔𝑘||2    

 

By (21) and the condition 𝛽𝑘
𝐴𝑁𝑁 ≥ 0   

−1 − 𝜎𝛽𝑘+1
𝐴𝑁𝑁 (

𝜎

1−𝜎
)

||𝑔𝑘||2

||𝑔𝑘+1||2 <
𝑔𝑘+1

𝑇𝑑𝑘

||𝑔𝑘+1||2 <

−1 + 𝜎𝛽𝑘+1
𝐴𝑁𝑁 (

𝜎

1−𝜎
)

||𝑔𝑘||2

||𝑔𝑘+1||2   

Substituting (21) in to the above we get  

   
−1

1−𝜎
<

𝑔𝑘
𝑇𝑑𝑘

||𝑔𝑘||2 <
2𝜎−1

1−𝜎
  

Hence the result holds for k and the proof is complete. 

 

 Global convergence analysis 

The assumptions defined below are very necessary in the 

study of global convergence of the CG algorithm. 

 

Assumption 1 

(i) 𝑓(𝑥)is bounded from below on the level set and is 

continuous and differentiable in a neighborhood 𝑁 of the 

level set 𝜏 = {𝑥 ∈ 𝑅𝑛\𝑓(𝑥) ≤ 𝑓(𝑥𝑜)}  where 0x  is the 

starting point and f  is smooth in a neighborhood N of 

the level set  𝜏. 

(i) (ii) 𝑔(𝑥) is Lipchitz continuous in 𝑁, so  ∃ 𝑙 > 0 

(constant) such that  

   ||𝑔(𝑥) − 𝑔(𝑦)|| ≤ ||𝑥 − 𝑦|| for any 𝑥, 𝑦 ∈ 𝑁. 

The following lemma is necessary in the study of 

global convergence of the CG algorithm. 

Lemma 2: Suppose that assumption 1 holds. For any 

CG algorithm defined on (2)-(4) where the step length 

𝛼𝑘 is computed by the strong wolf line search. Then 

the following condition known as the zountendijk 

condition will be satisfied  
∑ ||𝑔𝑘||2∞

𝑘=0 𝑐𝑜𝑠2𝜃𝑘 < ∞.             (24) 

 

Where 𝜃𝑘 is the angle between 𝑑𝑘  and −𝑔𝑘   which is 

given by  

𝑐𝑜𝑠𝜃𝑘 =  
−𝑔𝑘

𝑇𝑑𝑘

||𝑔𝑘||||𝑑𝑘||
              (25) 

 

Lemma 3: Let the sequence {𝑥𝑘}  be produce by our 

Algorithm with 𝜎 ≤
3

4
 .Then for all 0k   we have

 ∑
||𝑔𝑘||4

||𝑑𝑘||2 < ∞∞
𝑘=0 .  

Proof.  Multiplying (21) by 
||𝑔𝑘||

||𝑑𝑘||
  and using (25) we get  

 𝑐2
||𝑔𝑘||

||𝑑𝑘||
< 𝑐𝑜𝑠𝜃𝑘 < 𝑐1

||𝑔𝑘||

||𝑑𝑘||
 for all 0k            (26) 

Where 𝑐1 =
1

1−𝜎
  and 𝑐2 =

2𝜎−1

1−𝜎
 

Since 𝑐2 > 0  when 0 < 𝜎 <
3

4
, then 𝑐𝑜𝑠𝜃𝑘 > 0. 

Hence, 

 𝑐2
2 ||𝑔𝑘||2

||𝑑𝑘||2 < 𝑐𝑜𝑠2𝜃𝑘. 

This implies 

 𝑐2
2 ∑

||𝑔𝑘||4

||𝑑𝑘||2
∞
𝑘=0 < ∑ ||𝑔𝑘||2∞

𝑘=0 𝑐𝑜𝑠2𝜃𝑘 

From (24) and (25) together, it follows that 

 ∑
||𝑔𝑘||4

||𝑑𝑘||2
∞
𝑘=0 < ∞. 

 Hence the proof is complete. 

 

Theorem 2:  Let the sequence {𝑥𝑘}  be produce by our 

algorithm where 𝜎 ≤
3

4
  and suppose Assumption 1 

holds. Then, 

 lim
𝑘→∞

𝑖𝑛𝑓||𝑔𝑘|| = 0. 

Proof.  Let the opposite of the theorem be true, hence 

∃𝜇 > 0  and the integer 𝑘, such that  

 ||𝑔𝑘|| ≥ 𝜇,   ∀𝑘 > 𝑘1  

Hence  
1

||𝑔𝑘||2 <
1

𝜇2  for all 𝑘 > 𝑘1  and ||𝑔𝑘|| ≠ 0            (27) 

Now rewrite (3) as 𝑑𝑘 + 𝑔𝑘 = 𝛽𝑘
𝐴𝑁𝑁𝑑𝑘−1, then square 

it both side  

 ||𝑑𝑘||2 + ||𝑔𝑘||2 + 2𝑔𝑘
𝑇𝑑𝑘 =

(𝛽𝑘
𝐴𝑁𝑁)2||𝑑𝑘−1||2 

 ||𝑑𝑘||2 = −||𝑔𝑘||2 − 2𝑔𝑘
𝑇𝑑𝑘 +

(𝛽𝑘
𝐴𝑁𝑁

)2||𝑑𝑘−1||2 
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Applying theorem 1 we obtain 

 ||𝑑𝑘||2 < −||𝑔𝑘||2 + (
2

1−𝜎
) ||𝑔𝑘||2 + (𝛽𝑘

𝐴𝑁𝑁
)2||𝑑𝑘−1||2 

 

This leads to  

||𝑑𝑘||2 < (
1+𝜎

1−𝜎
) ||𝑔𝑘||2 + (𝛽𝑘

𝐴𝑁𝑁)2||𝑑𝑘−1||2            (28) 

Now since 𝛽𝑘
𝐴𝑁𝑁 ≤

||𝑔𝑘||2

||𝑔𝑘−1||2, then we get  

||𝑑𝑘||2 < (
1+𝜎

1−𝜎
) ||𝑔𝑘||2 +

||𝑔𝑘||2

||𝑔𝑘−1||2 ||𝑑𝑘−1||2             (29) 

Now we multiply both side of (29) by 
1

||𝑔𝑘||4  to get  

||𝑑𝑘||2

||𝑔𝑘||4
< (

1 + 𝜎

1 − 𝜎
)

1

||𝑔𝑘||2
+

||𝑑𝑘−1||2

||𝑔𝑘−1||4
 

       

= (
1+𝜎

1−𝜎
)

1

||𝑔𝑘||2 +
||𝑑𝑘−1||2

||𝑔𝑘−1||4
(

1

||𝑔𝑘−1||2
)             (30) 

 

By substituting (17) into (30) we get  

 
||𝑑𝑘||2

||𝑔𝑘||4 < (
1+𝜎

1−𝜎
)

1

||𝑔𝑘||2 + (
1

4 ||𝑔𝑘−1||2
)             (31) 

Combining (27) and (31) together we have 

 
||𝑑𝑘||2

||𝑔𝑘||4 < (
1+𝜎

1−𝜎
+

1

4
)

1

𝜇2 , ∀ 𝑘 ≥ 𝑘1 + 1 

This means that  

 
||𝑑𝑘||2

||𝑔𝑘||4 >
(4−4𝜎)𝜇2

5−3𝜎
,   ∀𝑘 > 𝑘1 + 1  

           (32)
 

Since (32) holds ∀𝑘 > 𝑘1 + 1, then 

   ∑
||𝑔𝑘||4

||𝑑𝑘||2
𝑛
𝑘=0 > ∑

||𝑔𝑘||4

||𝑑𝑘||2
𝑛
𝑘=𝑘1+1 >

∑
(4−4𝜎)𝜇2

(5−3𝜎)
= [(

(4−4𝜎)𝜇2

(5−3𝜎)
)]𝑛

𝑘=𝑘1+1    

          (33) 
From (33) we get  

 ∑
||𝑔𝑘||4

||𝑑𝑘||2
∞
𝑘=0 > ∑

||𝑔𝑘||4

||𝑑𝑘||2
∞
𝑘=𝑘1+1   

      

 lim
𝑛→∞

∑
||𝑔𝑘||4

||𝑑𝑘||2
𝑛
𝑘=𝑘1+1

>

lim
𝑛→∞

∑ [(
(4−4𝜎)𝜇2

(5−3𝜎)
)] (𝑛 − 𝑘1)𝑛

𝑘=𝑘1+1
= ∞ 

And thus, contradict lemma 3. So the proof is 

complete. 

 

RESULTS AND DISCUSSION 

Results 

In this section we present the numerical result from 
experiments conducted applied in testing the 

performance and proficiency of 
New

k . A comparison 

was made with the other CG methods, which involve 

FR and RMIL+ Some standard benchmark problems 

were considered with different dimension as 

summarized in Table 1. The performance was based on 

CPU time and the number of iteration (NI) and under 

Strong Wolf Powell line search. 

All problems and formulas are coded and run on the 

same Matlab programs and for all algorithm the 

stopping criterion was set as 
610kg , different 

initial guess are used in the computations with the 

variable dimension 2 2000 n . The performance 

was also analyzed via the performance profile 

developed by Dolan and More (2002) as can be seen in 

figure 1 and figure 2. 
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Table 1. Numerical Results of ANN, FR and RMIL+ 

Fletcher function (cute) 

 

 

 
 

Extended Rosenbrock 

 

 

Extended Himmelblau 

 

 

Extended Tridiagonal 1 

 

 

BIGGSB1 function (cute) 

 
 

 

Extended Maratos  

 

 

Shallow function 

 

 

 

 

Quadratic QF2 function 
 

 

Edensch function  

 

 

Dixon and price function 

 

 

 

Sphere function 

 

 
Extended freudenstein 

 

NONSCOMP function 

 

 

 

Generlized Tridiagonal 1 

 

 

Generlized Tridigonal 2 

 
 

 

Extended quadratic 

penalty   (QP1) 

 

(3,3…) 

(5,5…) 

(-5,-5…) 

(8,8…) 
 

(-0.4,-0.4) 

(1,1…) 

 

(0.2,0.2...) 

(4,4…) 

 

(8,8…) 

(0.3,0.3...) 

 

(0.1,0.1...) 

(1.2,1.2...) 
(0.5,0.5...) 

 

(1.4,1.4...) 

(0.2,0.2...) 

 

(1,1…) 

 

(1,1…) 

(6,6…) 

 

(1.5,1.5...) 
(0.1,0.1...) 

 

(1.5,1.5...) 

(1.6,1.6...) 

 

(1.2,1.2...) 

(0.6,0.6...) 

(0.2,0.2...) 

 

(1.3,1.3...) 

(2,2…) 

 
(0.1,0.1...) 

 

(8,8…) 

(-2,-2…) 

(8,8…) 

 

(1.5,1.5...) 

(8,8…) 

 

(-1,-1…) 

 
(-3.4,-3.4.) 

 

(-1.7,-1.7) 

(3.2,3.2...) 

 

100 

200 

500 

1000 
 

50 

100 

 

40 

100 

 

4 

10 

 

10 

50 
500 

 

80 

800 

 

50 

 

500 

1000 

 

50 
100 

 

60 

100 

 

10 

20 

100 

 

200 

500 

 
10 

 

500 

1000 

2000 

 

200 

600 

 

50 

 
100 

 

1000 

2000 

 

838 

2906 

164 

8525 
 

- 

1 

 

57 

329 

 

248 

325 

 

- 

- 
- 

 

- 

- 

 

1 

 

1 

446 

 

459 
1158 

 

12 

- 

 

228 

211 

866 

 

1 

1 

 
- 

 

- 

2058 

- 

 

43 

- 

 

1 

 
40 

 

- 

- 

 

2.2903 

12.0284 

1.3434 

82.2137 
 

- 

8.01E-04 

 

0.1567 

1.0406 

 

0.4359 

0.5747 

 

- 

- 
- 

 

- 

- 

 

7.45E-04 

 

0.002 

4.722 

 

1.2506 
4.0945 

 

0.4126 

- 

 

0.4597 

0.4963 

3.1405 

 

0.0073 

0.0104 

 
- 

 

- 

21.3426 

- 

 

0.3506 

- 

 

7.34E-04 

 
0.161 

 

- 

- 

 

2631 

- 

86 

- 
 

- 

1 

 

18 

10 

 

28 

10 

 

- 

- 
- 

 

- 

- 

 

1 

 

1 

32 

 

99 
163 

 

31 

46 

 

102 

197 

296 

 

1 

1 

 
37 

 

- 

63 

- 

 

23 

- 

 

1 

 
- 

 

21 

- 

 

6.713 

- 

0.7152 

- 
 

- 

8.01E-04 

 

0.0378 

0.0378 

 

0.0591 

0.0309 

 

- 

- 
- 

 

- 

- 

 

7.40E-04 

 

0.0019 

0.3911 

 

0.199 
0.541 

 

0.1912 

0.3454 

 

0.2187 

0.4205 

0.9303 

 

0.0071 

0.0103 

 
0.1223 

 

- 

0.6995 

- 

 

0.1591 

- 

 

8.06E-04 

 
- 

 

0.5052 

- 

 

47 

10 

11 

9 
 

12 

1 

 

13 

20 

 

28 

10 

 

18 

18 
19 

 

10 

13 

 

1 

 

1 

13 

 

79 
151 

 

12 

11 

 

92 

197 

289 

 

1 

1 

 
11 

 

9 

62 

11 

 

35 

67 

 

1 

 
10 

 

8 

8 

 

0.2257 

0.5183 

0.7663 

0.9057 
 

0.258 

9.82E-04 

 

0.0637 

0.1388 

 

0.0718 

0.0964 

 

0.4059 

0.4983 
1.2885 

 

0.3228 

1.0335 

 

6.42E-04 

 

0.002 

1.1706 

 

0.307 
0.6341 

 

0.3699 

0.4869 

 

0.2714 

0.4077 

0.8991 

 

0.0068 

0.0104 

 
0.1714 

 

0.5669 

0.6765 

1.6616 

 

0.3313 

1.9293 

 

7.03E-04 

 
0.3008 

 

0.8947 

1.5447 
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Figure 1:  Performance profile base on the number of iteration (NI) 
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Figure 2: Performance profile base on the CPU time in seconds 

 

Discussion of the Result 

The performance profile is employed to evaluate and 

compares the performance of the methods on a set of  

standard test problems. All of the test problems are from 

Andrei (2009) . To show the robustness, test problems 

have been implemented under low, medium, and high 

dimensions, as, 2, 4, 10, 50, 100, 500, 1000, and 2000. 

Furthermore, for each dimension two or more different 

initial points are used one of which is the initial point  
suggested by Andrei (2011). The comparison is based on 

the number of iteration (NI) and the cpu time (in 

seconds).  In Table 1 a method is considered to fail if  and 

we report “-“ if the number of iterations exceed 2000 and 

CPU time exceeded 10 min (600s).  

In Table 1, FR and RMIL+ failed to sole 17 problems 

while ANN solves all the problems. In figure 1 and 2 a 

solver with the high values of pr(x) or at the top right of 

the figure are considered to be the best solver. ANN has  

 

the best performance since it can solve all the test 

problems. Considering both figures we can see that 

ANN outperforms both of the two methods as we can 

observe on the arrow indicating each solver on the both 

figures.  

These show that the ANN algorithm is efficient and 

robust in solving large scale unconstrained 

optimization problems. 

 

CONCLUSION 

In this paper, we have modified a new and simple 

nonlinear conjugate gradient co-efficient, and also we 

have provide proof  for the sufficient descent property 

and the global convergence properties and lastly we 

present the numerical result which suggest that ANN 

algorithm has the best performance when compared 

with FR and RMIL+. 
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