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Abstract 

Accurate and current Land Use and Land Cover (LULC) maps are important for planning purposes and to monitor the alterations to 
the environment mostly caused by humans activities. The increased utilization of land resources due to population growth have led to 
loss of biodiversity and urban planning issues such as flooding and pollution. This study analysed LULC changes over the Kpeshie 
lagoon Basin of the Greater Accra Region of Ghana and made prediction to the year 2030. Random Forest (RF) classifier was      
employed to classify the LULC over the study area using Landsat image for four different time-steps (1991, 2002, 2013 and 2020). 
LULC change analysis was performed for consecutive years (1991 – 2002, 2002 – 2013 and 2013 – 2020) and for the entire period 
(1991 – 2020). Subsequently, a prediction of LULC was done the year 2030 using a combination of artificial neural network (ANN) 
and cellular  automata (CA) simulations. The LULC classification produced 92.68 %, 84.35 %, 84.41 % and 89.93 % overall       
accuracies and kappa statistics of 0.87, 0.87, 0.84 and 0.91 for the time-steps respectively. Over the study period, significant LULC 
changes were observed, as the Kpeshie Lagoon Basin which was predominantly covered by vegetation (69.33 %) in 1991 had     
transformed into a major built-up area (50.50 %) in 2020. The spatial prediction estimated built-up covers 60.15 % in 2030, followed 
by bare land (32.39 %), vegetation (6.97 %) and waterbody (0.49 %). The study revealed that LULC within the Kpeshie Lagoon  
Basin has been immensely impacted due to urbanization and non-enforcement of regulations. Continuation of the current LULC 
trend, where vegetation and waterbody decrease while built-up area increases would make the Kpeshie Lagoon basin vulnerable to 
the challenges of climate change. 
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Introduction  
Historically, land cover on the earth’s surface has seen         
significant changes (Dewan and  Yamaguhi, 2009). There are 
both natural (volcanic eruptions, tsunamis, earthquakes, etc) 
and human-induced causes attributed to these changes.        
Utilisation of land resources by humans for residential and  
socio-economic activities has been the main cause of land cover 
changes (Yadav et al., 2012). Land Use and Land Cover 
(LULC) changes have led to the loss of biodiversity (OECD, 
2019) which has been influenced by increasing population,  
urbanisation, forest conversion and agricultural expansion 
(Zurqani et al., 2018). However, effective spatial planning can 
control these LULC changes to protect biodiversity while    
catering for the needs of humans.  

Accurate and up-to-date LULC maps are important inputs 
to biophysical and environmental assessment models required 
for decision-making and resource planning (Forkuor et al., 
2017a). The utilisation of land resources by humans for       
residential and socio-economic activities have been the main 
cause of land cover changes (Yadav et al., 2012). LULC  
changes have led to the loss of biodiversity, which is most  
driven by increasing population (Zurqani et al., 2018).  
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Water covers 71 % of the earth surface out of which 97 % 

is the ocean. Fresh water (rivers, lakes and lagoons) constitutes 
0.5 % of the earth surface and has been under the threat of   
human activities. Globally, an area of 244,000 km2 has been 
converted to built-up areas and 90,000 km2 of surface water has 
been lost (OECD, 2019). In West Africa, degraded forest, and 
gallery forest (that is, forest that forms as corridors along     
waterbodies) had a total net loss of 100,176 km2, or 24.6 % 
from 1975 to 2013, mainly to human settlements (Cotillon, 
2017).  

From 1950 to 2021, the population of Ghana has grown 
from about 5 million to 30.8 million (Ghana Statistical Service, 
2021), with a projection of upto 52 million in the year 2050 
(United Nations Population Division, 2019). The expansive 
growth of population in Ghana is heavily impacting the natural 
environment, LULC changes, are particularly linked to        
expansion in agriculture and urban areas (Coulter et al., 2016). 
Studies that assess the dynamics of LULC and its impacts are 
important for taking remedial measures and planning to protect 
the environment whiles catering for the needs of humans. 
LULC data are critical variables for studies in climate change, 
performance of ecosystem, hydrologic and atmospheric models 
(Gong et al., 2013).  

Despite the high diversity and dynamic of LULC in Ghana, 
the country lacks accurate and up-to-date information on 
LULC, which is essential to appropriately monitor changes and 
assess their impacts (Esteve et al., 1998; Forkuor et al., 2014; 
Poorter et al., 2004). This has resulted in the inability of      
governments to clampdown on activities which are degrading 
the environment such as illegal small-scale mining and        
indiscriminate timber logging (Merem et al., 2017; Tom-Dery 
et al., 2012). It is therefore important for researchers to provide 
current and timely geo-spatial information on LULC for      
sustainable development. 

ORIGINAL RESEARCH 
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Currently, earth observation systems’ data undisputedly is 
the most efficient and widely used data for monitoring,       
evaluation and assessment of land features and changes because 
of its ability to produce consistent and comprehensive data both 
in time and space (Forkuor et al., 2017b). Earth observation 
data particularly, optical images has been extensively used in 
LULC studies and applications because of its availability 
(Ghansah et al., 2016; Lunetta et al., 2006; Vittek et al., 2014).  

The most popular optical satellite images are from the 
Landsat series, which started way back in 1972 (Loveland and 
Dwyer, 2012) and has been used in many terrestrial research 
ranging from agriculture (Leslie et al., 2017; Stefanski et al., 
2014; Torbick et al., 2017), forest (Onojeghuo and Onojeghuo, 
2015; White et al., 2017), soil (Aksoy et al., 2009; Azabdaftari 
and Sunar, 2016; Nawar et al., 2014), water (Hellweger et al., 
2004; Laili et al., 2015), and human settlements (Hu et al., 
2016; Lu et al., 2008), among others. The datasets, which are 
stored in the United States Geological Surveys (USGS)       
database, can be downloaded free of charge via internet from 
any part of the world (Roy et al., 2017). However, issues of 
cloud and cloud shadow cover especially in tropical regions 
and errors in some of the data (Landsat 7 SLC-off images) still 
remains a challenge (Asare et al., 2020) for acquiring the    
needed data for LULC classification.  

Recent methods in LULC classification employ             
pixel-based image classification using spectral and/or textural 
properties are frequently applied to extract LULC information 
(Hu et al., 2016). Classification algorithms such as maximum 
likelihood, k-means and decision tree have given way to      
machine learning classifiers such as random forest (RF),      
stochastic gradient boosting (SGB) and support vector         
machines (SVM) (Breiman, 2001; Friedman,  2002;         
Mountrakis et al., 2011).  

Rapid urbanisation has caused waterbodies to suffer     
immensely (EEA, 2008) especially in urban centres. Human 
pressures on land resources have influenced land use changes, 
which has impacted on waterbodies (Ayivor and Gordon, 
2012). In Ghana, it can be observed that some waterbodies 
within urban areas are virtually non-existent while others have 
diminished into gutters and storm drains. Poor management of 
water resources, uncontrolled urbanisation and residential   
development in flood-prone areas are causes of flooding in  
Accra (Amoako and Boamah, 2015). Studies within the  
Kpeshie Lagoon have delved into water quality (Apau et al., 
2012), sanitation (Quarshie, 2015) and the influence of the 
Kpeshie Lagoon on flooding (Amoako and Boamah, 2015).  

In the Kpeshie lagoon basin where this study was          
undertaken, the availability of a comprehensive information on 
LULC changes remains a challenge. Although several studies 
(Coulter et al., 2016; Yeboah et al., 2017) have used satellite 
data to identify LULC  changes in the Greater Accra Region, 
most of them focused on large areas (across basins), making it 
difficult to capture the small changes that occur within some 
important basins. The present study aims at analysing the 
LULC changes within the Kpeshie Lagoon Basin over the last 3 
decades (1991 - 2020) using Landsat images. Specifically, 
LULC maps were produced for four time-steps (2001, 2002, 
2013 and 2020). The rate of LULC change was also             
determined. Finally, a prediction was made to the year 2030 for 
the purposes of interventions. This study is relevant because the 
area has gone through  rapid urbanization within the last three 
decades. The basin is characterized by prominent features, high 
class residential and commercial facilities and it is a high    
security zone in the Greater Accra Region.  
 
Materials and Method 

Study area 

Kpeshie Lagoon Basin is located in the Greater Accra Region 
of Ghana between latitude 5.55o  to 5.68o North and longitudes 
0.10o to 0.19o West with a land area of about 57.34 km2 (Figure 
1). The basin lies within the capital of Ghana, Accra 
(administrative and commercial hub). The area is mostly urban. 
Other LULC within the basin include, waterbodies (lagoon and 
rivers), vegetation (vegetable crop farms, open woodland,  
mangroves and parks/gardens) and sandy beach. The built-up 
areas comprise of high-class residential communities (East 
Legon, Spintex and Cantonment), commercial, educational and 
recreational facilities. 

Mangroves, comprising of two dominant species 
(Rhizophora and Avicennia) and salt tolerant grass species are 
found around the Kpeshie lagoon and the tidal zone of the   
estuaries (Boampong, 2020). The soil is mostly infertile for 
crop production, but there are pockets of small-scale            
agricultural activities where farmers mostly grow vegetables 
and fruits for both consumption and commercial purposes. The 
northern part of the basin is covered by Savannah grass with 
scattered Neem trees (Ghana Statistical Service, 2014). 

The geology of the basin is broadly made up of             
Precambrian Dahomeyan schists, granodiorites, granites gneiss 
and amphibolites to late precambrian togo series comprising 
mainly quartzite, phillites, phylitones and quartz breccias. The 
entire basin is underlain by Precambrian rocks of the           
Dahomeyan formation. The coastline of the basin has a series 
of resistant rock outcrops, platforms and sandy beaches near the 
mouth of the Kpeshie lagoon (Boampong, 2020).  

Figure 1 Map of study area 

 

Materials, data and pre-processing  

The materials used for the study has been grouped into data and 
softwares for processing as shown in Table 1. The Landsat  
images and Shuttle Radar Topograhy Mission (SRTM) Digital 
Elevation Model (DEM) used in this study were obtained from 
the United States Geological Survey (USGS) Earth Explorer; 
the study area falls within path 193 and row 056 with the 
worldwide Reference System (WRS). Due to the span of the 
study, the satellite images were acquired from different Landsat 
sensors (Table 2). All the Landsat images used were            
collection-2 level-2 (C2L2) surface reflectance product; that is, 
they have been atmospherically corrected. Image-to-image  
registration were performed to ensure the alignment of        
corresponding pixels.  
      The scanline errors in the 2013 Landsat 7 EMT+ images 
were corrected  through a gap-filling process (Asare et al., 
2020). The gap-filling process was done using Exellis ENVI 
5.0. The Landsat images and DEM were at a resolution of 30m. 
The DEM used for the hydrologic analysis was acquired on 11th 
November 2010.  
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For the purpose of classification, training/validation data 
for the years were obtained from google earth engine, existing 
maps and through field visits. For this study, four main LULC 
types (Built-up, Bare land, waterbody and vegetation) were 
identified in the study area. A total of 200 Ground Control 
Points (GCPs) were taken, 140 (70 %) for training and the other 
60 (30 %) for validation.  
 

Method  
Delineation of study basin 
The boundary of the Kpeshie Lagoon Basin was delineated 
using the DEM to show the catchment area for the study. The 
process was carried out using the spatial analyst tool in ArcMap 
10.5 software. Before the delineating process began, an       
estimated size of the DEM covering a wider area than the 
Kpeshie Lagoon Basin was sub-set using the ‘Clip’ tool in the 
‘Image Analyst’ package in Arc Map 10.5 software. The sub-set 
DEM was filled to remove the sinks to ensure proper           
delineation of the basin as it will avoid the drainage network 
from being discontinuous. The flow direction and accumulation 
were then derived, after which the watershed (basin) within the 
interest area was delineated. The output raster image was then 
converted into a polygon shapefile to describe the extent of the 
study area.  
 
Image classification and accuracy assessment  
Supervised Image classification was done using a                  
non-parametric Random Forest (RF) classification algorithm 

(Breiman, 2001). RF belongs to the family of ensemble       
machine learning algorithms that predicts a response from a set 
of predictors by creating multiple Decision Trees (DTs) and 
aggregating their results. Each tree in the forest is                 
independently constructed using a unique bootstrap sample of 
the training (Forkuor et al., 2017b). The advantage of RF over 
the other machine learning algorithms is its ability to choose the 
best split from a randomly selected sub- set of predictors 
(Breiman, 2001). The training data obtained from Google Earth 
Engine (GEE), existing maps and field visit aided in the      
selection of ground truth points of the various LULC types (for 
each year) to train the RF classifier. The training/validation data 
were split into 70% training and 30 % validation using a      
stratified random sampling approach. The number of GCPs for 
each LULC class is shown in Table 3.  In running the algo-
rithm, the number of trees (ntrees) was set to 500 and the num-
ber of predictors to be tried (ntry) set at 5.  

To assess the performance of the RF classifier, the        
independent 30 % validation data were used. A confusion    
matrix which provides information on the correct and incorrect 
prediction made by a classification algorithm by comparing a 
classified map with ground information was used in calculating 
the overall accuracy (OA) and the kappa (k) statistics. The OA 
is the ratio of correctly classified pixels to all pixels considered 
in the evaluation, whereas k measures the agreement between 
the classification by assessing if there is a significant difference 
between the confusion matrix and a random result (Congalton, 
1991; Smits et al., 1999).  
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Data Software 

i. Landsat Satellite Imagery (1991, 2002, 2013 and 2020) 
ii. Shuttle Radar Topograhy Mission (STRM) Digital Ele-

vation Model (DEM) 
iii. Training and Validation Data 

i) ESRI ArcGIS 10.5 (ArcMap) 
ii) Exellis ENVI 5.0 
iii) QGIS 2.18 
iv) Microsoft Excel 2016 
v) Google Earth Engine (GEE) 

Table 1 Materials for the study 

Table 2 Landsat used for the study 

Image ID Satellite Sensor 
Acquisition 

Date 

LT41930561991010XXX03 Landsat 5 Thematic Mapper (TM) 10-01-1991 

LE71930562002360EDC00 Landsat 7 Enhanced Thematic Mapper (ETM+) 26-12-2002 

LE71930562013358ASN00 Landsat 7 Enhanced Thematic Mapper (ETM+) 24-12-2013 

LC81930562020226LGN00 Landsat 8 Operational Land Imager (OLI)            
Thermal Infrared Sensor (TIRS) 

13-08-2020 

Table 3 Training and validation data for LULC classes 

LULC Class Training % Validation % Total % 

Built-up 45 32.14 20 33.33 65 32.50 

Vegetation 45 32.14 20 33.33 65 32.50 

Bare land 35 25.00 10 16.67 45 22.50 

Waterbody 15 10.72 10 16.67 25 12.50 

Total 140 100 60 100 200 100 
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Post-classification analysis and change detection  
Based on the classified LULC maps (1991, 2002, 2013 and 
2020), LULC statistics were computed for all the LULC      
classes. Furthermore, statistics of changes in LULC between 
years (1991-2002, 2002-2013, 2013-2020 and 1991-2020) and 
their corresponding change maps were generated and analysed. 
The analysis gave values of LULC area distribiution for each 
time-step and estimates of change between two time-steps. In 
the change analysis, the idea is to identify what has change 
‘from’ – ‘to’. This will produce a change matrix to track the 
trajectories of each pixel between two time-steps to determine 
the trade-offs between the LULC classes within the basin.  

The rate of change was then determined considering the 
number of years between the consecutive years and the        
corresponding land area change. The formula (Equation 1) was 
adopted for determining the rate of change for the consecutive 
time-steps and then the entire study period. 

 
Where a1 and a2 are the start and end years data respectively 
and  ո  is the number of years (Pandit, 2011).  
 

Spatial prediction 
Based on the LULC trends from 1991 to 2020, future LULC 
was predicted to the year 2030. A QGIS version 2.0 plugin 
‘MOLUSCE’ (Modules of Land Use Change Simulations)   
developed by NextGIS (NextGIS, 2013) was used for the    
spatial prediction. In the spatial prediction process, the 
MOLUSCE tool analyses the statistics of changes between land
-use classes and simulates the ‘change map’ using artificial 
neural network (ANN). Subsequently, with the change map as 
an input, a cellular  automata (CA) simulation was carried out 
to predict a LULC map for the year 2030. Before the prediction 
to the year 2030, the model was validated with the LULC map 
of 2020. The detailed process carried out in the spatial         
prediction to obtain the predicted LULC map can be found in 
(Aneesha et al., 2020; Kamaraj and Rangarajan, 2022). 
 

Results 
 
Classified land use/land cover 
Land use/cover within the Kpeshie Lagoon Basin changed   
over the study period (Figure 2). Vegetation covered majority 
of the total land area within the basin in 1991 and 2002, that is, 
a total land area of 39.754 km2 (69.33 %) and 21.284 km2 

(37.12 %) respectively. Built-up covered almost half (48.86 %) 
of the total land area in 2013 and half (50.50%) in 2020, that is, 
land areas of 28.013 km2 and 28.957 km2 respectively.         
Waterbody was the least land cover throughout the study period 
covering land areas of 0.744 km2 (1.30 %) in 1991, 0.350 km2 
(0.61 %) in 2002, 0.342 km2 (0.60 %) in 2013 and 0.340 km2 
(0.59 %) in 2020. The details of land area for each LULC class 
and their proportions (Table 4).  
 
Accuracy assessment of image classification 
Accuracy of the LULC classification for all (1991, 2002, 2013 
and 2020) satellite images were assessed using the error 
(confusion) matrix. The overall accuracy for 1991, 2002, 2013 
and 2020 classification were 92.68 %, 84.35 %, 84.41 % and 
89.93 % and the kappa statistics were 0.87, 0.87, 0.84 and 0.91 
respectively.  
 
LULC change analysis 
LULC change analysis was done to determine the land cover 
changes between the years. Figure 3 shows the spatial          
distribution map of the change analysis of LULC for the      

consecutive time-steps and the entire period. Tables 5 – 8 show 
the details of the change analysis for the time-steps.  
      From 1991 to 2002 (Table 5), a total land area of 25.129 
km2 (43.82 %) remained unchanged. Built-up maintained    
almost half (49.98 %) of its land area, that is, 4.341 km2.     
Vegetation maintained the highest land area, that is, 17.189 km2 
while  waterbody was the least representing 0.320 km2. Most 
(34.22 %) vegetation cover were converted to built-up         
representing a total land area of 13.605 km2. The least LULC 
trade-off was between built-up to waterbody as only 0.007 km2 
(0.08 %) of waterbody was converted to built-up. Overall, bare 
land gained the most land area, that is, 11.221 km2, a           
percentage change of 137.6 % while vegetation lost the most 
land area, that is, 18.470 km2, a percentage change of 46.46%. 
Built-up experienced an increase in land area from by 7.643 
km2, a percentage change of 88 %. More than half (52.96 %) of 
waterbody land area was lost representing 0.394 km2.  

Figure 2 Classified land use/cover of Kpeshie lagoon basin 
 

Figure 3 LULC Conversions within Kpeshie lagoon basin 

(1) 
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LULC Class 
1991 2002 2013 2020 

Area 
(km2) 

% 
Area 

(km2) 
% 

Area 
(km2) 

% 
Area 

(km2) 
% 

Waterbody 0.744 1.30 0.350 0.61 0.342 0.60 0.340 0.59 

Vegetation 39.754 69.33 21.284 37.12 17.639 30.76 8.014 13.98 

Bare Land 8.155 14.22 19.376 33.79 11.344 19.78 20.027 34.93 

Built-Up 8.685 15.15 16.328 28.48 28.013 48.86 28.957 50.50 

Total 57.338 100.00 57.338 100.00 57.338 100.00 57.338 100.00 

Table 4 Summary of land area of LULC for the various time-steps 

  

LULC Class 

1991   2002 

Total Waterbody Vegetation Bare land Built-up 

(km
2
) % (km

2
) % (km

2
) %  (km

2
) % (km

2
) 

2002 

Waterbody 0.320 42.93 0.015 0.04 0.008 0.10 0.007 0.08 0.350 

Vegetation 0.293 39.42 17.189 43.24 1.895 23.24 1.907 21.96 21.284 

Bare land 0.062 8.34 13.605 34.22 3.279 40.21 2.430 27.98 19.376 

Built-up 0.069 9.31 8.945 22.50 2.973 36.45 4.341 49.98 16.328 

1991 Total 0.744 100.00 39.754 100.00 8.155 100.00 8.685 100.00 57.338 

Total LULC Change -0.394 -52.96 -18.470 -46.46 11.221 137.60 7.643 88.00  

Total Unchanged LULC 25.129 km2 (43.82%) 
  

Table 5 LULC conversion from 1991 to 2002  

 

LULC Class 

2002   2013 
Total Waterbody Vegetation Bare land Built-up 

(km2) % (km2) % (km2) %  (km2) % (km2) 

2013 

Waterbody 0.304 86.89 0.005 0.02 0.014 0.07 0.019 0.12 0.342 

Vegetation 0.004 1.03 14.877 69.85 2.210 11.40 0.558 3.42 17.639 

Bare land 0.016 4.63 1.178 5.54 7.794 40.23 2.356 14.42 11.344 

Built-up 0.026 7.45 5.234 24.59 9.358 48.30 13.395 82.04 28.013 

2002 Total 0.350 100.00 21.284 100.00 19.376 100.00 16.328 100.00 57.338 

Total LULC Change -0.008 -2.31 -3.645 -17.13 -8.032 -41.46 11.685 71.57 
 

Total Unchanged LULC 36.370 km2 (63.43%)   

Table 6 LULC conversion from 2002 to 2013 

 

LULC Class 

2013   2020 
Total Waterbody Vegetation Bare land Built-up 

(km2) % (km2) % (km2) %  (km2) % (km2) 

2020 

Waterbody 0.248 72.37 0.050 0.29 0.009 0.08 0.033 0.12 0.340 

Vegetation 0.058 17.10 4.579 25.96 1.606 14.15 1.771 6.32 8.014 

Bare land 0.016 4.74 7.167 40.63 4.391 38.71 8.453 30.18 20.027 

Built-up 0.020 5.79 5.843 33.12 5.338 47.06 17.756 63.38 28.957 

2013 Total 0.342 100.00 17.639 100.00 11.344 100.00 28.013 100.00 57.338 

Total LULC Change -0.002 -0.53 -9.625 -54.56 8.683 76.55 0.944 3.37 
 

Total Unchanged LULC 26.974 km2 (35.39%) 
  

Table 7 LULC conversion from 2013 to 2020 



 

 

A total land area of 38.370 km2 remained unchanged from 2002 
to 2013 (Table 6), representing 63.42 %. From the total       
unchanged land area, most (40.89 %) vegetation remained   
unchanged with a land area of 14.877 km2 while waterbody 
was the least (0.01 %) with a total land area of 0.304 km2. The 
highest land area trade-off was from bare land to built-up, that 
is, bare land lost a land area of 9.358 km2 (48.3 %) to built-up. 
About a quarter (24.59 %) of vegetation land area was         
traded-off to built-up representing 5.234 km2. In general,     
built-up was the only LULC class to record an increase in land 
area by 11.685 km2, representing a percentage change of 71.57 
%. All other LULC classes experienced a decrease in land area. 
Bare land decreased the most (41.46 %) by 8.032 km2 while 
waterbody experienced the least (2.31 %) by 0.008 km2.     
Vegetation decreased marginally (17.13 %) by a land area of 
3.645 km2.  

From 2013 to 2020 (Table 7), the total unchanged land 
area was 26.974 km2 (35.39 %). Out of the unchanged land 
area, most (65.83 %) built-up remained unchanged, that is, a 
total land area of 17.756 km2 while waterbody had the least 
(0.01%) representing 0.248 km2. Bare land gained the most 
from land cover conversions over the period, as built-up and 
vegetation lost land areas of 8.453 km2 and 7.167 km2 to bare 
land, representing 30.17 % and 40.63 % respectively. Bare land 
traded off a land area of 0.009 km2 to waterbody, which is the 
least (0.08 %) trade off within the 7-year period. Overall, bare 
land and built-up recorded increase in land area. Bare land  
increased by 8.683 km2, representing a percentage increase of 
76.55 % and built-up increased by 0.944 km2, representing a 
percentage increase of 3.37 %. Vegetation and waterbody    
experienced a decrease in land area by 9.625 km2 and 0.002 
km2, representing a percentage decrease of 54.56 % and 0.53 % 
respectively.  

Over the entire 29-year (1991-2020) period, a total land 
area of 15.104 km2 (26.34 %) remained unchanged (Table 8). 
Out of the total unchanged LULC, vegetation had the most 
(41.48 %) land area remaining the same (i.e., 6.265 km2) while 
waterbody had the least (0.01 %) land area (i.e., 0.298 km2). 
The LULC class which lost most land area was vegetation, 
trading-off land areas of 18.921 km2 (47.59 %) and 14.537 km2 
(36.57 %) to built-up and bare land respectively. Other        
significant land cover changes experienced were from bare land 
to built-up and vice versa. That is, bare land traded off a total 
land area of 4.347 km2 (53.30 %) to built-up as built-up      
traded-off a total of land area of 2.389 km2 (27.50 %) to bare 
land within the same period. The least land area trade-offs   
experienced was from built-up (0.005 km2 (0.06 %)) and bare 
land (0.007 km2 (0.08 %)) to waterbody. Waterbody traded-off 
land area to all other LULC classes, losing land areas of 0.198 
km2 (26.60 %) to vegetation; 0.149 km2 (20.07 %) to built-up; 
and 0.099 km2 (13.30 %) to bare land. Overall, built-up and 

bare land recorded gains in land area by 20.272 km2 and 11.872 
km2, representing increase of 233.41 % and 145.58 %          
respectively. However, vegetation and waterbody experienced 
decreases in land area by 31.740 km2 and 0.404 km2,           
representing a decrease of 79.84 % and 54.29 % respectively. 
 
LULC trends analysis  
Over the 29-year period, the trend analysis on land cover 
changes within the Kpeshie Lagoon Basin revealed changes in 
all 4 LULC classes. Overall, built-up and bare land recorded 
massive gains in land area increasing by 20.272 km2 (233.41 %) 
and 11.872 km2 (145.58 %) respectively. In contrast, vegetation 
and waterbody experienced decreases in land area by 31.739 
km2 (79.84 %) and 0.404 km2 (54.29 %) respectively over the 
same period.  
            For the various time-steps, bare land gained the most 
land area between 1991 to 2002 and 2013 to 2020, that is, land 
areas of 11.221 km2 (137.6 %) and 8.683 km2 (76.55 %)      
respectively while built-up gained the most (71.57 %) land area 
between 2002 to 2013, that is a land area of 11.686 km2.     
Conversely, waterbody suffered the most loss of land area   
losing more than half (52.96 %) of its land area between 1991 
to 2002, that is, a land area of 0.394 km2; then lost a land area 
of 0.008 km2 (2.31 %) between 2002 to 2013; and 0.002 km2 
(0.53 %) from 2013 to 2020. Table 9 shows the gain and loss of 
LULC classes for the different time-step.  

Overall, built-up experienced a rise in the total land area 
from 8.685 km2 (15.15 %) to 28.957 km2 (50.50 %). However, 
vegetation decreased constantly from 39.754 km2 (69.33%) to 
8.014 km2 (13.98 %). Waterbody also decreased from 0.744 
km2 (1.30%) to 0.340 km2 (0.59 %). Bare land was undulating 
starting from 8.155 km2 (14.22 %) in 1991 and ending at 
20.027 km2 (34.93 %) in 2020. Built-up and bare land dominat-
ed majority of the land area in 2020 as previously dominated by 
vegetation in 1991. Waterbody covered less land area but also 
reduced constantly over the period. Figure 4 shows graphical   
representations of LULC trend analysis from 1991 to 2020. 

Figure 4 LULC trend analysis of the Kpeshie lagoon basin 

from 1991 to 2020 
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LULC Class 

1991   2020 

Total Waterbody Vegetation Bare land Built-up 

(km2) % (km2) % (km2) %  (km2) % (km2) 

2020 

Waterbody 0.298 40.03 0.031 0.08 0.007 0.08 0.005 0.06 0.340 

Vegetation 0.198 26.60 6.265 15.76 0.799 9.80 0.752 8.67 8.014 

Bare land 0.099 13.30 14.537 36.57 3.002 36.82 2.389 27.50 20.027 

Built-Up 0.149 20.07 18.921 47.59 4.347 53.30 5.539 63.77 28.957 

1991 Total 0.744 100.00 39.754 100.00 8.155 100.00 8.685 100.00 57.338 

Total LULC Change -0.404 -54.29 -31.740 -79.84 11.872 145.58 20.272 233.41  

Total Unchanged LULC 15.104 km2 
  

Table 8 LULC Conversion from 1991 to 2020 
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LULC Class 
1991-2002 2002-2013 2013-2020 1991-2020 

km2 % km2 % km2 % km2 % 

Waterbody -0.394 -52.96 -0.008 -2.31 -0.002 -0.53 -0.404 -54.29 

Vegetation -18.470 -46.46 -3.645 -17.13 -9.625 -54.56 -31.740 -79.84 

Bare Land 11.221 137.60 -8.032 -41.46 8.683 76.55 11.872 145.58 

Built Up 7.643 88.00 11.685 71.57 0.944 3.37 20.272 233.41 

Table 9 Gain and loss of LULC classes for the different time-step 

LULC Class 
1991-2002 

(%) 

2002-2013 
(%) 

2013-2020 
(%) 

1991-2020 
(%) 

Waterbody -6.63 -0.21 -0.08 -2.66 

Vegetation -5.52 -1.69 -10.66 -5.37 

Bare Land 8.19 -4.75 8.46 3.15 

Built-Up Area 5.91 5.03 0.47 4.24 

Table 10 Rate of change of LULC classes between 1991 and 2020 

LULC Class Area (km2) % 

Waterbody 
0.282 0.49 

Vegetation 
3.998 6.97 

Bare Land 
18.573 32.39 

Built-Up Area 
34.485 60.15 

Total 57.338 100.00 

Table 11 Predicted land area for 2030 

LULC Class 
2020 

(km2) 
2030 

(km2) 
Area Change 

(km2) 
Percentage Change 

(%) 

Waterbody 
0.340 0.282 -0.058 -17.02 

Vegetation 
8.014 3.998 -4.016 -50.11 

Bare Land 
20.027 18.573 -1.454 -7.26 

Built-Up Area 
28.957 34.485 5.528 19.09 

Table 12 Predicted LULC area and percentage changes from 2020 to 2030 

Rate of change 
Over the 29-year period, built-up recorded the highest rate of 
change at a rate of 4.24 % while vegetation experienced the 
worse at a rate of -5.37 %. Within the same period, bare land 
recorded a positive rate of change at 3.15 % and waterbody 
recorded a negative rate of change at -2.66 %. The worse rate 
of change was experienced by vegetation between 2013 to 2020 
at a rate of -10.66 % while bare land recorded the highest rate 
of change at 8.46 % in the same period of time. Other high rate 
of change was recorded by bare land between 1991 to 2002 at a 
rate of 8.19%. Built-up recorded high rate of change between 

1991 to 2002 and 2002 to 2013 at rates of 5.91 % and 5.03 % 
respectively. The rate of change of LULC classes between 1991 
and 2020 is as presented in Table 10. 
 
Spatial prediction 
The predicted LULC map (Figure 5) for the year 2030 showed 
that majority (60.15 %) of the total land area will be built-up 
constituting 34.485 km2 while waterbody will cover the least 
(0.49 %) covering a land area of 0.282 km2.  Bare land will 
cover a land area of 18.573 km2 representing 32.39%. Less than  



 

 

one-tenth (6.97 %) of the total land area will be covered by 
vegetation, that is, a land area of 3.998 km2 (Table 11).  

The spatial predictions showed that vegetation and        
waterbody will continue to decrease. About 50.11 % of the land 
area of vegetation in 2020 will be lost; i.e., decreasing from 
8.014 km2 to 3.998 km2, representing a land area of 4.016 km2. 
Waterbody will decrease from 0.340 km2 in 2020 to 0.282 km2 
by 2030; i.e., a decrease in land area of 0.058 km2 representing 
a percentage decrease of 17.02 %. Interestingly, the spatial  
prediction estimates that bare land will decrease from 20.027 
km2 in 2020 to 18.573 km2 by 2030. Thus, a decrease in land 
area of 1.454 km2, representing a percentage decrease of 7.26 
% (Table 12). 

Figure 5 Predicted LULC Map for 2030 
 
Discussion 
Within the Kpeshie Lagoon Basin, vegetation was initially the 
dominant LULC class as it covered majority (69.33 %) of the 
total land area but overtime built-up area dominated, covering 
about half (50.50 %) of the total land area of the basin. Bare 
land also followed suit, increasing from covering 14.22 % of 
the total land area in 1991 to 34.93 % by 2020. Vegetation and 
waterbody were identified to be the most vulnerable LULC 
classes losing 79.84 % and 54.29 % of their initial land area 
respectively. Consequently, built-up area and bare land gained 
233.41 % and 145.58 % of their initial land area respectively. 
The increase in built-up and bare land coupled with the sharp 
decline of vegetation and waterbody indicates a high intensity 
of human activities within the basin affirming the assertion on 
the trend of vegetation and waterbody being at risk of depletion 
due to human activities (Yeboah et al., 2017). Over the study 
period, vegetation covered areas owned by institutions namely 

Burma Camp, Teshie Military Training School and University 
of Ghana, thereby preserving vegetation within their            
jurisdiction. Land use planning and development control of 
most parts of the basin is undertaken by various MMDAs 
prompting the issues of coordination and sustainability amongst 
governmental institutions (Odame-Ababio, 2003).  

Vegetation was mainly observed along the waterbodies but 
the massive depletion of vegetation has exposed the waterbody 
thereby leaving it vulnerable to human activities such as waste 
disposal into the waterbodies (Quarshie, 2015). This is shown 
in Figure 2 as bare land and built-up had drawn close to the 
waterbodies. The massive conversion from vegetation to     
built-up area can be attributed to the influx of people into the 
basin due to the pressure for land spaces within Accra and   
Tema. Similar to many cities and urban areas, Accra and Tema 
has experienced rapid urbanisation and population growth 
which are major drivers of LULC changes (Morshed et al., 
2017) causing a spill over into neighbouring communities,  
including Teshie, East Legon and Spintex within the Kpeshie 
Lagoon Basin, as these communities fall between Accra and 
Tema. Although these communities are planned, they face the 
challenge of effective implementation (Eduful and  Shively, 
2015; GWRC, 2012)  causing the incidence of flooding in East 
Legon, Spintex and Teshie communities in recent times. From 
the 2021 population and housing census (Ghana Statistical  
Service, 2021), it is evident that there is population growth 
within the study area. Therefore, it can be concluded that 
LULC changes within the basin has been influenced by        
population growth. Since the introduction of Ghana’s Zoning 
Guidelines and Planning Standards (2011) and Riparian Buffer 
Zone Policy (2013), LULC trends have behaved differently 
(Table 13). Thus, cumulatively the vulnerable LULC classes, 
that is, vegetation and waterbody traded off a total land area of 
22.5171 km2 with built-up areas and bare land before the     
regulations (1991 – 2013) and 9.6282 km2 after the regulations 
(2013 – 2020). However, the percentage decrease of vegetation 
for both were similar, that is, 55.63 % before the regulations 
and 54.56 % after, that is, above half of vegetation was lost 
within both eras.  

Although built-up area continued increasing, the           
percentage increase for the period after the introduction of the 
regulations was far less than before the introduction, that is, 
222.55 % before and 3.37 % after the regulation. Comparing 
the rate of change before and after the introduction of these 
water-related regulations, waterbody and built-up area were 
positively impacted while vegetation and bare land were      
negatively impacted (Table 13). Interestingly, vegetation     
decreased at a higher rate (-10.66 %) after the introduction of 
the regulations than it was before (-3.63). Similarly, bare land 
increase at a higher rate (8.46 %) than before (1.51%).       
Challenges of enforcement of regulations and ensuring       
compliance of policies has hindered the implementation of   
water-related policies (GWRC, 2012; MWRWH, 2014). 

The LULC trends observed within the basin revealed that 
the increase in bare land signals a subsequent increase in     
built-up areas. Thus, when an area converts to bare land it is 
most probably in readiness to be  built-up.  Therefore, it is   
envisaged that bare land massively gaining a land area of 8.683 
km2 between 2013 to 2020 will propel an increase of built-up 
by 2030. Thereby, spatial predictions indicate that built-up area 
will increase by a land area of 5.528 km2 by 2030.  
 
Conclusion 
Image classification made it possible to determine LULC for 
the Kpeshie Lagoon Basin over a 29-year period (i.e., 1991, 
2002, 2013 and 2020). The image classification revealed that 
vegetation dominated the Kpeshie Lagoon in 1991, covering a 
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land area of 39.754 km2 (69.33 %). By 2020, approximately 
half (50.50 %) of the land area (i.e., 28.957 km2) was coverted 
to built-up. The massive changes in LULC classes over the 
study period can be attributed to rapid urbanization due to   
population growth coupled with LULC policy implementation 
challenges.  

Continuation of the current LULC trend, where vegetation 
and waterbody decrease while built-up area increases, will  
expose the vulnerability of the basin to the challenges of      
climate change. Recommendations for the introduction of    
Integrated Water Resource Management (IWRM) plans by 
some researchers to manage water resources yielded results 
with the introduction of several water related policies and    
regulations. However, implementation of these policies has not 
been effective as there are incidents of the negative effects of 
human activities on waterbodies and vegetation.  
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