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Abstract 
The requirement for reduction of post-harvest losses increased production, and cost-effectiveness of foods are driving continuous 
food process investigations. In this study, Response Surface Methodology (RSM) was utilized to understand, model, and optimize 
the effect of selected process factors on the moisture content (MC) of convectively dried unripe plantain fruit. For technical         
accuracies, Multi Gene Genetic Programming (MGGP) was also used to model the process and both MGGP and RSM models were 
statistically compared. Furthermore, Monte Carlo Simulation (MCS) was used to conduct sensitivity analysis of unripe plantain’s 
MC to each selected process factor. Results showed that increased sample thickness increased the MC while increased drying      
temperature and drying time decreased the MC of unripe plantain. RSM model had Chi-square, MBE, t-value, RMSE and R2 values 
of 15.2131, 0.7531, 7.6170, 0.9193 and 0.9674, respectively; while MGGP model had 3.0415, 0.2563, 2.6871, 0.4111 and 0.9956, 
respectively. Sensitivity analysis showed that sample thickness, drying temperature and drying time had +89.5 %, -10.2 % and -0.3 
% contribution to the variances of MC, respectively. These results are useful in unripe plantain drying process prediction,             
optimization, and product standardization. 
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Introduction 
Plantain is an herbaceous plant of the genus Musa (Ashaolu and 
Akinbiyi, 2015) and forms part of human diet. In Africa,    
plantain provides more than 25% of the carbohydrate           
requirements for over seventy (70) million people (Oke et al., 
1998). Plantain contains 67.30 g of water, 116 kcal of energy, 
and 31.15 g of carbohydrate (Satimehin et al., 2010); and it is 
rich in phosphorus, potassium, vitamin C and vitamin A.    
Plantain also contains traces of lipids, zero cholesterol and low 
sodium content (Oke et al., 1998; Satimehin et al., 2010). The 
health benefit of plantain in human diet is an important factor 
that assist its increased consumption. Plantain is consumed raw 
or processed in ripe and unripe stages of maturity. In Nigeria 
for instance, ripe plantains are mostly fried, while unripe ones 
are converted into flour for making solid foods                 
(Tunde-Akintunde, 2014; Inyang et al., 2018). However,     
despite the versatility of plantain as food, it is one of the highly 
perishable fruits and its post harvests losses especially in     
developing countries are alarming. Therefore, a means of    
plantain preservation for storage and shelve stability through 
the application of suitable postharvest technology is important. 
An easily implemented postharvest technology is drying, giving 
food products the advantage of low weight, longer shelf life,  
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low transportation cost, smart packaging, and smart market 
display (Tunde-Akintunde, 2014). 

Hot air drying is identified as a simple, easily    
adoptable, and economic way of drying fruits and vegetables 
(Johnson et al., 1998) especially in developing countries. Hot 
air-drying removes moisture content from materials up to    
acceptable limits that lowers the water activities, inhibits     
microorganism’s growth, and reduces the occurrence rate of 
enzymic and non-enzymic reactions (Inyang et al., 2018;   
Johnson et al., 1998). In Nigeria, the abundantly free solar   
energy enables the practice of sun drying in open spaces,    
however, the dwindling solar energy radiation, weather       
fluctuation, susceptibility to poor hygiene through animal and 
human infestation, non-availability of control mechanism and 
contamination through sandy breeze amongst others, render 
open sun drying method unacceptable in today’s modern world. 
Therefore, an easy-to-implement drying technology that     
overcomes the deficiencies of open sun drying such as hot air 
oven is desirable. The concept of active drying technologies 
such as hot air oven as against passive open sun drying ensures 
quick drying process, product optimization, standardization, 
and reproducibility.  

Drying is a dual process that involves inward         
penetration of heat energy and outward moisture diffusion of 
the concerned material (Adeyi et al., 2018). Therefore, when a 
product undergoes drying, the internal moisture is migrated to 
the surface and vaporized to the atmosphere by dehumidified 
hot air that surrounds the product’s surface. Amongst the drying 
indicators (which includes moisture content, moisture ratio, 
effective moisture diffusivity and activation energy) for       
analysing the drying characteristics of any product, moisture 
content remains the fundamental on which other indicators are 
based and thus remains the most important even in real life  
drying processes and drying process controller design.      
Therefore, preliminary investigations can be built around   
moisture content of a product, which is one of the concepts of 
this study. The technical requirements in hot air drying are to 
understand the phenomena involved, prediction of the process, 
establishment of moisture distribution in the material and    
understanding the influence of processing variables on drying 
characteristics (Johnson et al., 1998).  
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These backgrounds will assist the optimization and 
control of the process, which is necessary to avoid unwanted 
product and destruction of micronutrients (Tunde-Akintunde, 
2014; Adeyi et al., 2018). However, scientific investigation 
leading to the technical understanding should involve sound 
experimental design for model development (Buxton, 2007). 
Such model represents the process and can be applied for    
process and product adjustment and troubleshooting prior to 
commercialization (Punyapriya, 2012). Optimized process will 
also ensure process economic in terms of energy usage. To  
facilitate these technical understanding, this study applied   
Response Surface Methodology (RSM), Multi Gene Genetic 
Programming (MGGP) and Monte Carlo Simulation (MCS) 
tools to investigate the oven drying processing of unripe     
plantain. 

MGGP is a machine leaning method with the         
capability for mathematical modelling (data mining) and     
prediction using historical data. MGGP is a method that mimics 
the biological evolution through population of computer      
programs to solve a task of interest (Searson et al., 2010). The 
individual member of the population has a tree structure      
representation called gene. The structure and parameters of the 
empirical mathematical representation of a process data set can 
be evolved using the intrinsic symbolic regression capabilities 
of MGGP (Jabeen and Baig, 2010). The mathematical        
identification of process model by MGGP as against structured 
network architecture process identification is an important   
consideration when compared to other artificial intelligent 
methods such as neural networks, adaptive neuro fuzzy        
inference system, fuzzy logic, regression tree and support    
vector machine and others. Apart from the difficulty to unravel 
technical information in a network structure, specialized      
programmes are also desirable for its deployment in a typical 
controller design. On the contrary, availability of mathematical 
model hastens economic process development and analysis.  

More also, it is important to understand the sensitivity 
of drying indicator to the drying process factors. It is believed 
that when the degree of sensitivity is determined, improved 
understanding of the governing mechanism is possible (Adeyi 
et al., 2018). A method for determining sensitivity and certainty 
analysis is the MCS. MCS is a risk analysis tool for predictive 
modelling, forecasting, and optimization (Hoffman and      
Hammonds, 1994). It gives insight into the critical factors   
affecting a risk. As against the traditional probabilistic analysis, 
MCS presents quantitative and qualitative information about 
the realism of a particular forecast or prediction (Rai et al., 
1996).  

The requirement for increased production, reduction of 
postharvest losses, further standardization of products,         
development of precise, flexible, and cost-effective processes 
and products are some of the requirements that are driving   
increased food process research. Amongst researchers of note, 
Rahmawati et al. (2020), Ikrang and Umani (2019) and     
Pe´rez-Francisco et al. (2008) applied RSM to model, predict 
and optimize drying processes in their respective studies and 
achieved promising results. It is a fact that a number of        
researchers (Famurewa and Adejumo, 2015; Ekeke et al., 2019) 
have investigated the drying kinetics of unripe plantain using 
statistical, empirical and semi-empirical modelling methods. 
However, the application of MGGP to investigating the drying 
process in general and the evaluation of the sensitivity of each 
drying factor to the MC characteristic of unripe plantain      
specifically, are scarce in the literature. Therefore, the aim of 
this study is to fill these vacancies. This will enable better   
technical insight (that are useful for relevant engineering or 
physical data useful for equipment design, process design,   
analysis, control and commercialization) into the drying process 

of unripe plantain. The specific objectives were to (1) model 
and optimize the effect of selected drying factors on the MC of 
unripe plantain using RSM, (2) comparatively model the unripe 
plantain drying process using MGGP and (3) apply the most 
effective model between RSM and MGGP to evaluate the    
sensitivity of the unripe plantain’s MC characteristic to drying 
factors using MCS. 

 
Materials and Methods 
Materials 
Freshly harvested unripe plantain stalk (Musa AAB) was the 
experimental material and sourced from a farmland in          
Ogbomoso Oyo State Nigeria. Stangas convective oven 
equipped with a temperature regulator, 3.0 kW heating element 
and timer was used for the drying experiment. A digital   
weighing balance (0.001 g accuracy) was employed for samples 
weights measurements. A hollow cylindrical ring tool was used 
to create samples with constant diameters and shape. Vernier 
calliper was used for sample dimensional confirmation. 
 
Experimental design  
The choice of drying factors to be investigated on the drying 

characteristic of unripe plantain (Musa AAB) and their ranges 

were established through literature survey and preliminary   

experimental trials. The selected drying factors were the sample 

thickness (X1), drying temperature (X2) and drying time (X3). 

The percentage moisture content (Y) of unripe plantain (Musa 

AAB) in wet basis (% w.b) was selected as the drying          

characteristic of interest. Using the selected drying factors as 

the inputs and the selected drying characteristic as the output, 

Design Expert Software version 8.0.0 (Stat-Ease, Inc.,        

Minneapolis, USA) was used to design the experiment using 

RSM’s D-optimal design. RSM’s D-optimal is useful for small 

and effective experimental runs. The inputs (drying factors) 

considered were defined as numeric (values that varies at will). 

The design resulted in eighteen (18) experimental runs coded at 

three (3) levels of -1, 0 and +1 as shown in Table 1. 

 

Table 1 D-optimal experimental design  

Sample preparation and determination of initial moisture 
content   
The unripe plantain fingers were harvested from the stalk, 
washed with distilled water to remove sand and dirt, and hand 
peeled. Plantain pulp sample’s thicknesses were prepared in 
accordance with the experimental design earlier described in 
Table 1. Once the thicknesses are cut out with knife, a hollow 
cylindrical ring of internal diameter 30 mm was used to give a 
constant diameter to the samples by pressing the ring against 
the samples as was done by Inyang et al. (2018).  

Drying  
Factor 

Unit Factor   Level   

    Represen-
tation 

-1 0 1 

Sample 
Thickness 

mm 

 

5 7.5 10 

Drying 
Temperature 

oC 

 

60 70 80 

Drying 
Time 

min 

 

100 130 160 
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The samples thicknesses and diameter were confirmed by    
Vernier calliper. The initial moisture content of unripe plantain 
(Musa AAB) was determined using oven drying method at 105 
oC for 24 h (Fadeyibi et al., 2021).  
 
Drying experimental procedure 
The drying experiment was conducted in accordance with the 
experimental design. Each experimental run was designed to 
investigate the effect of a peculiar drying process factors    
combination on the weight loss of the samples. Prior to the 
commencement of an experimental run, the dryer was allowed 
to work for twenty (20) min to achieve an equal temperature 
distribution throughout the oven. Before and after the         
completion of an experimental run, digital weighing balance 
was utilized to measure the weight of the sample, followed by 
recording and determination of percentage moisture content (% 
w.b). The percentage moisture content (MC) was established 
using Eqn. (1) (Ekeke et al., 2019). 

 
Where M1 and M2 are the initial and instantaneous weight of 
the sample, respectively. 
 
RSM modelling and optimization 
Statistical analysis comprising of regression modelling,    
graphical effects and analysis of variance (ANOVA) were   
performed in the Design Expert Software. The effectiveness of 
the model and the  significance of the individual model term 
were established at 5 % significant level in accordance with the 
work of Singh et al. (2018). Thereafter, the optimum          
combination of drying factors’ parameters that best minimizes 
the moisture content during drying of unripe plantain (Musa 
AAB) slabs was determined.  

In the regression model development, a second order 
quadratic statistical equation was fitted to the experimental  
observations to investigate the effect of each input drying    
parameter and their interactions. A typical quadratic model 
used in this study is represented in Eqn. (2): 
 

 
 
Where Y is the estimated response parameter; equation        
coefficients were represented by a (constant term), ai  (linear 
factor effect), aii  (quadratic factor effect) and aij  (interaction 
factor effect). Xi  and Xj are input factors parameters, and k is 
the number of parameters investigated in the experimental 
study.  

To achieve unripe plantain drying process              
optimization, the drying factors (sample thickness, drying    
temperature and drying time) were set to be within the range of 
the observed experimental values while drying characteristic 
(MC) was set to be minimized. The input and output factors 
were giving the same weight to signify equal importance during 
optimum solution finding process. Thereafter, solutions with 
their individual level of desirability were determined. 
 
Experimental validation of the optimum drying condition 
The RSM derived optimum unripe plantain drying process  
condition was experimentally validated by conducting the same 
drying procedure as previously stated using the RSM specified 
optimum input factors parameters for the sample thickness, 
drying temperature and drying time. Three validation           
experiments were conducted, and their average is reported for 
statistical significance. The percentage error between the RSM 
theoretical optimum and its experimental validation was      

expressed using Eq. (3): 
 

     
Where α is the percentage validation error, Va is the MC of the 

validation experiment and Ve is theoretical MC derived from 

RSM optimization. 

 
MGGP modelling 
MGGP works with the evolution of computer programs to solve 
a particular task. This computer programs are called genes and 
are composed of tree structures. A typical MGGP gene is    
represented in Figure 1. The genes are built incrementally to 
strengthen the model stiffness by minimizing the model sum of 
square error just like in curve fitting. This result in a model 
fortified with weights and bias that adequately capture the   
existing relationship of a data set.  

Figure 1 Typical MGGP tree structure 
 
The independent variables of the model structure are            
represented by X1, X2 and X3 as in Figure 1, and are connected 
by mathematical node functions that include subtraction,     
cosine, tan and addition. An MGGP regression model is          
mathematically represented as in Eqn. (4): 
 

 
 
Where d0  is the model constant or bias term, d1, …,dm are the 
gene coefficient or weights and subscript m is the number of 
genes presented in the current or ith set of input. 

The workability of genetic programming starts from 
striving to minimize the fitness function represented by the 
mean square error of a dataset. This is done by generating set of 
solutions called population. The fitness metrics is performed on 
the individual solution within the population to select fitter  
individuals using a specified type of selection mechanism 
(reproduction or elitism, crossover, and mutation) for           
generational progress. The algorithm is organized to supply the 
simulation process with modelling requirements that enables 
the determination of optimum solution. The iteration of the 
genetic programming continues until an optimum solution is 
derived and or a termination criterion is met. At this point, the 
genetic programming returns the best individual solution 
throughout the generations within the simulation process 
(Orove and Osegi, 2005). 

MGGP toolbox was employed using MATLAB 
R2017b software to model and predict the experimentally    
derived MC of unripe plantain. The data were partitioned  
equally into training and testing data set. Both population and 
generation selection affect the efficiency of MGGP algorithm 
(Özkan et al., 2019), therefore, in this study, a constant         
population of 500 and constant generation of 200 were used 
throughout the MGGP simulation process. Coefficient of     
determination (R2) and root mean square error (RMSE)       
depicted in Eqn. (5) and (6) were used to determine the        
effectiveness of the MGGP developed model.  

(1) 

(2) 

(3) 

(4) 
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Where Pred,i is the ith predicted value, Exp,i is the ith            
experimental value and Averaged Exp is the average of all the 
experimental values. N represents the number of observations. 
Table 2 represents the parameter settings of MGGP used in this 
study. 

Table 2 Parameter setting of MGGP 

 

Comparison of the RSM and MGGP 
The performance of the models developed by RSM and MGGP 

methods was established using statistical criteria that included 

chi-square (χ2), mean bias error (MBE), t -value, root mean 

square error (RMSE), and coefficient of determination (R2). 

The highest values of R2 and the lowest values of χ2, RMSE, 

MBE and t-values signify a good model performance (Silva et 

al., 2014). The statistical criteria are defined based on the    

following mathematical representation (Silva et al., 2014; 

Adewale et al., 2015). 

 
 

 
      

  
        
Where Pred,i is the ith predicted value, Exp,i is the ith         
experimental value and AveragedExp is the average of all the 
experimental value. N represents the number of observations. 
 
 
 

Sensitivity analysis 
Sensitivity analysis of the output process response (MC) to  
input process factors (drying temperature, drying time and  
sample thickness) was investigated using MCS. The inputs  
process factors were declared as the assumptions with their 
respective experimental range of values while output process 
response was defined as the forecast. Twenty thousand (20,000) 
iterations were done to ensure accuracy in the result. Table 3 
shows the MCS settings used. 
 
Table 3 Input variables used for sensitivity analysis 

Results and Discussion  
Effect of drying parameters on the moisture content of   
unripe plantain 
The initial moisture content of unripe plantain used in this study 
was determined to be 58.05 % (w.b). This relatively high initial 
moisture content shows that unripe plantain is prone to high 
water activity consequently making it highly perishable. High 
moisture content also reduces shelf stability of agricultural 
products. The results of the drying factors effect on the MC of 
unripe plantain samples are shown in Table 4.  
 
Table 4 Results of drying experiment 

R2=1-( )      (5) 

RMSE=        (6) 

Parameter Value 

Population size 500 

Number of generations 200 

Tournament size 4 

Elitism fraction 0.25 

Termination value 0.001 

Maximum gene 6 

Node Functions 
times, minus, plus, rdivide, 
psqroot, plog, square, tanh, 
pdivide, iflte, sin, cos, exp 

x2 = (7) 

MBE =  (8) 

t – Value =  (9) 

Input variables Distribution Range of variables 

Thickness (mm) Uniform 5 – 10 

Temperature (oC) Uniform 60 – 80 

Time (min) Uniform 100 – 160 

S/N 
Sample 
Thickness 
(mm) 

Drying Tem-
perature (oC) 

Drying 
Time 
(min) 

Moisture 
Content  
(%w.b) 

1 7.50 60.00 130.00 31.0932 

2 5.00 80.00 160.00 17.8876 

3 10.00 60.00 160.00 37.0009 

4 5.00 80.00 100.00 20.6078 

5 10.00 80.00 160.00 28.7845 

6 7.50 70.00 100.00 27.8975 

7 5.00 60.00 100.00 21.9909 

8 5.00 60.00 160.00 22.0126 

9 10.00 80.00 160.00 28.6754 

10 10.00 70.00 130.00 38.5632 

11 5.00 80.00 100.00 20.9008 

12 5.00 60.00 160.00 22.2346 

13 10.00 80.00 100.00 33.9812 

14 10.00 60.00 100.00 35.0987 

15 7.50 70.00 160.00 25.1114 

16 7.50 80.00 130.00 24.0098 

17 5.00 70.00 130.00 23.9987 

18 5.00 80.00 160.00 20.1209 
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Table 4 showed that the highest MC of 38.5632 % w.b.       
occurred at drying factors combination of 10 mm sample    
thickness, 70 oC drying temperature and 130 min drying time 
while the least MC of 17.8876% w.b. occurred at 5 mm sample 
thickness, 80 oC drying temperature and 160 min drying time. 
This showed that moisture migrated quicker from sample’s core 
to its surface at higher temperature and lower sample thickness 
than lower temperature and higher thickness. This can be     
related to increase in partial pressure of water molecule in fruits 
at higher temperature and shorter migration distance as samples 
became thinner. The relatively longer drying time observed at 
least MC value could be related to casehardening phenomenon, 
which occurred at extreme temperatures during drying.        
Buttressing this observation further, the individual and         
interaction effect of the input drying factors on the MC of    
unripe plantain samples are represented in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 Individual and interaction effect of (a) drying        
temperature (b) sample thickness and (c) drying time on MC 

The essence of drying is to develop a moisture stable 
product through reduction of the MC to a safe level, therefore, 
the choice of drying parameters that reduced MC is desirable. 
Figure 2 (a) showed that increment in drying temperature from 
60 to 80 oC reduced the MC of the samples. This is attributed to 
decreasing relative humidity of the circulating drying air in the 
oven as drying temperature increased thereby making air to be 
more efficient in removing moisture from the samples. Figure 2 
(b) showed that increments in sample thickness from 5 to 10 
mm increased the samples MC. This is attributed to sample’s 
bulk density, which changed as the sample thickness changed. 
Figure 2 (c) showed that sample’s MC initially increased   
slightly from 100 min until 115 min, reached a constant period 
from 115 min until 130 min and then got to a falling period 
from 130 min until 160 min. The initial increment in the MC is 
attributed to high relative humidity (at low drying temperature) 
of the air entering the dryer through the vent. The constant  
period as time increase is attributed to poor moisture diffusion 
as a result of collapsed microstructure and casehardening     
phenomenon in the product’s surface. The falling period is  
attributed to increased temperature that sufficiently reduced the 
relative humidity of the intake air. In related study on drying of 
catfish by Ikrang and Umani (2019), the effects of temperature 
and drying time were reported to be more pronounced on the 
MC reduction than the sample thickness and salt concentration. 
Likewise, Ekeke et al. (2019) reported that drying temperature 
and slice thickness decreased the drying rate and MC profile of 
unripe Musa paradisiaca slices. 

 
RSM modelling and analysis 
The quadratic equation fitted to the experimental observation in 
RSM in terms of drying factors effect and drying factors      
interactions of unripe plantain is presented in Eqn. (10). 
 

 
 
Where X1 is sample thickness, X2 is drying temperature and X3 
is the drying time. 
 
 The analysis of Eqn. (10) for its efficiency to           
investigate the experimental space in terms of individual factor 
effect and combined factors interaction effect and overall    
prediction of the experimental data is represented in Table 5. 
 
In Table 5, the 38.39 F-value indicated that the model is      

significant. This means that there is only 0.01% chance that a 

model F-value that is this large could be induced by noise 

(impaired data). Prob > F lesser than 0.0500 means that the 

model terms are significant. Therefore, model terms X1, X2, 

X1X2, etc, are significant as can be seen from Table 5. The Lack 

of Fit of 4.93 have only 7.58% chance of being noisy. Model’s 

significant lack of fit is not desirable because a fitted model is 

important for an accurate design, what-if analysis and control of 

process and equipment.  

(a) 

(b) 

(c) 

(10) 
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RSM optimization and its experimental validation 
The optimization procedure was undertaken to identify the  
optimum drying factors parameter combination that mimimizes 
the MC of unripe plantain drying. The developed model was 
used for this purpose. In the optimization setting, all input   
parameters are set to be within the range of the investigated 
experimental data and the MC is set to be minimized. The   
solutions were found and the best out of the array of solutions 
that minimized the MC of unripe plantain slices is represented 
in Figure 3.  
 

 
 
Figure 3 Optimum solution 
 
 Figure 3 showed that the optimum MC of 18.1957 % w.b. 
is achievable at 5.00 mm sample thickness, 80OC drying      
temperature and 160 min drying time with a desirability of 
0.9850. The high desirability implies that the result of the    

optimization is reliable. The desirability is represented in     
Figure 4. Figure 4 showed how well each factor satisfies the 
optimization criteria. Values greater than 0.80 are good and 
desirable (Oke et al., 2020). In this case, all the variables are 
greater than 0.90.   
 

Figure 4 Desirability  
 
 
The validation experiment was carried out by subjecting a 5 
mm thick unripe plantain sample to drying at 80 OC for 160 
mins (being the RSM derived optimum drying condition) in the 
same Stangas oven used for the previous experimental         
procedure.  

Sample Thickness = 5.00

5.00 10.00

Drying Temperature = 80.00

60.00 80.00

Drying Time = 160.00

100.00 160.00

Moisture Content  = 18.1957

17.8876 38.5632

Desirability = 0.985

Source   
Sum of 
Squares 

DF 
Square 

Mean Val-
ue 

F 
Prob > F 

  
  

Model 
  

656.98 9 73.00 38.39 < 0.0001 Significant 

  

 
537.09 1 537.09 282.44 <0.0001   

  

 
50.97 1 50.97 26.80 0.0008   

  

 
6.99 1 6.99 3.67 0.0916   

  

 
12.98 1 12.98 6.83 0.0310   

  

 
5.35 1 5.35 2.81 0.1321   

  

 
15.79 1 15.79 8.30 0.0205   

  

 
6.95 1 6.95 3.66 0.0922   

  

 
1.16 1 1.16 0.61 0.4576   

  

 
10.58 1 10.58 5.57 0.0460   

Residual   15.21 8 1.90       

Lack of Fit 
  

12.65 4 3.16 4.93 0.0758 Non Significant 

Pure Error 
  

2.57 4 0.64       

Cor Total 
  

672.19 17         

Table 5 Analysis of variance (ANOVA) for the developed model 
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The validation experiment was conducted three times and the 
mean of the triplicate experiment gave an MC of 18.3003 ± 
0.0010 % w.b. Comparing the MC values of the validated and 
the RSM optimized MC, it can be established that a percentage 
error of 0.5749 % occurred. This error is low and can be      
attributed to the uncontrolled laboratory conditions. Therefore 
the RSM derived optimum drying condition for the unripe plan-
tain is reliable. 
 
MGGP modelling  
The MGGP method was comparatively used to develop model 
for the drying process to investigate possible increased       
modeling and prediction accuracy. MGGP structure was trained 
and tested with the experimental dataset in Table 4. In MGGP, 
models are developed with interested dataset through structure 
training, testing and validation. The training of MGGP structure 
in this study is represented in Figure 5 where it is shown that 
the fitness (root mean square error) significantly decreased, 
occasionally increased slightly and finally reached minimum 
towards the end of the training process. This showed that 
MGGP encountered and overcame local minimums before it 
finally settled to a global minimum during the course of its  
solution finding. 

 
Figure 5 Training process of MGGP 

 
In addition, Figure 6 showed the set of possible model 

solutions that has capability to represent and predict the drying 
process. Amongst the possible model solutions, the most     
efficient one should have the least fitness (i.e., lowest root 
mean square error and highest coefficient of determination) and 
least complexity. In the results displayed in Figure 6, the blue 
coloured model solutions are ones with unacceptable model 
complexity (measured with number of node in the genetic   
programming tree) while the green coloured model solutions 
are ones with acceptable model complexity. The only model 
solution with red and green coloration is the best model 
amongst the pareto fronts. This model had the least fitness   
coupled with acceptable complexity. It is therefore designated 
as the MGGP model solution for this study. 

 

 
Figure 6 Parent front 
 
The mathematical model of the Pareto front with the green and 
red coloration is represented in Eqn. (11). 

  
Where X1 = Sample thickness, X2 = Drying temperature and X3 
= Drying time 
 
Usually, the structure of artificial intelligent models are      
composed of weights and bias. Eqn. (11) composed of four 
genes (weights) and a bias (constant) as shown in Figure 7, 
which depicts the intrinsic multi gene characteristics of the 
MGGP. 

 

Figure 7 Model structure 
 
The multigene approach is a linear combination of smaller low 
depth trees and often gives simpler models than single gene 
approach. Figure 7 also showed that the genes in the MGGP 
model are of high significance judging from their P-values (see 
diagram title) and model reduction in terms of unperforming 
gene elimination is not necessary. The p-value of bias is the 
highest, implying its low significance to the model                
effectiveness. The efficiency of Eqn (11) to predict drying   
process is represented in Figure 8. 

 

Figure 8 Parity plot 
 

Figure 9 showed that the prediction accuracy of MGGP is close 

to unity (1). Adewale et al., (2015) remarked that the closer the 

R2 value of a model to unity, the better the prediction capability 

of such model. Oke et al. (2020) also remarked that a model is 

only reliable if the R2 value is greater than 0.8000. Therefore, 

this MGGP model is reliable.   

Comparison of RSM and MGGP models 
The prediction performance of RSM and MGGP used in this 
study is represented in Figure 8 and the statistical performance 
criteria for each of the two developed model is also listed in 
Table. 6.  
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Figure 8 Performance of RSM and MGGP modeling methods 

 

Table 6 Efficiency of RSM and MGGP modeling methods 

 
 
The comparatively lower Chi-square, MBE, t – value and 
RMSE and comparatively higher R2 shows a better predictive 
model performance (Adewale et al., 2015). It can therefore be 
established that MGGP model performed better than RSM 
model for the representation and prediction of the drying     
process of unripe plantain in this study. Therefore, the next 
analysis (sensitivity analysis) was conducted using the MGGP 
model representation depicted in Eqn. (11). 
 
Sensitivity analysis of the unripe plantain drying process   
factors 
The degree of importance of each drying factor to the variances 
in the MC of unripe plantain during drying process is           
represented in Figure 9.  

 
Figure 9 Sensitivity analysis of the drying factors to the  
changes in MC of unripe plantain 
 
Figure 9 showed that sample thickness had a positive           
contribution (+89.5 %) to the MC while drying temperature and 
drying time had negative contributions (-10.2 and -0.3 %) to the 

MC of unripe plantain. Since MC minimization is the target of 
drying processing, it negative contribution to variance of MC is 
desirable. This result shows that relatively lower sample    
thickness with relatively higher drying temperature and drying 
time will facilitate the drying process of unripe plantain. This 
result is in agreement with the result obtained under the       
optimization study section and can be used as a guide for     
process monitoring and decision making.  
 

Conclusion  
Improved technical understanding of unripe plantain drying 
process was investigated using Response Surface Methodology 
(RSM), Multi Gene Genetic Programming (MGGP) and Monte 
Carlo Simulation (MCS). Results from the RSM study showed 
that the selected drying factors including sample thickness,  
drying temperature and drying time had significant effect on the 
moisture content (MC) of unripe plantain. RSM theoretical  
optimization also showed that minimum moisture content of 
18.19 % w.b. is achievable with 5 mm thick sample, 80 OC  
drying temperature and 160 min drying time. The                 
experimentally validated optimum gave MC of 18.30 % w.b. 
The Chi-square, MBE, t-Value, RMSE and R2 value of RSM 
and MGGP models were 15.21, 0.75, 7.61, 0.91 and 0.96; and 
3.04, 0.25, 2.68, 0.41 and 0.99, respectively; showing that 
MGGP model performed better in this study. Sample thickness, 
drying temperature and drying time had +89.5 %, -10.2 %  and 
-0.3 % contributions to the changes in MC, respectively. It can 
be concluded that the methods used in this study enhanced a 
better technical understanding of the drying process and the 
developed mathematical model can be utilized for process     
design, troubleshooting and control while the optimum drying 
factor parameters could be useful for economic drying         
processing and product standardization.  
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