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ABSTRACT

This paper will introduce the Ito’s lemma used in the stochastic calculus to obtain the Ito-Taylor
expansion of a stochastic differential equations. The Euler-Maruyama and Milstein’s methods of
solving stochastic differential equations will be discussed and derived. We will apply these two
numerical methods to the Black-Scholes model to obtain the values of a European call option of a
stock at discretized time intervals. We will use a computer simulation to approximate while using
the Ito’s formula to obtain the exact solution. The numerical approximations to the exact solution
to infer on the effectiveness of the two methods.

Keywords: Stochastic differential equations; Euler-Maruyama method; Milstein method; Black-

Scholes equation; Call option.
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1. INTRODUCTION
Stochastic differential equations (SDES) play a standard role in modeling stochastic processes such
as finance, biology, medicine, mechanics and population dynamics [1]. Unlike deterministic

models, solutions to SDEs are stochastic processes [5]. Interestingly, SDEs are derived by adding
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random effects known as the noise term to the deterministic model. Stochastic differential

equations are defined as:
dX = u(t,X)dt + o(t,X)dB (D

where X is a stochastic process, u is the drift term of the process, o is the diffusion term, t is the
time and B is a Brownian motion. Notice that (1) is defined in a differential form unlike the

derivative form of the deterministic model.

In the 1960’s, Fisher Black and Myron Scholes explored the geometric Brownian motion in order
to derive the Black-Scholes SDE [5]. They replaced the drift 4 and diffusion, ¢ in (1) with the risk-

free interest rate and volatility respectively. As such, the Black-Scholes SDE is defined as:
dX =r(t,X)dt + o(t,X)dB (2)

In this paper, we will present without proof the Ito’s lemma [4]. The lemma will help us to derive
the Ito-Taylor expansion for an SDE [4]. This Ito-Taylor expansion is analogous to the Taylor
expansion in the Taylor expansion for the deterministic model. We will obtain the Euler-Maruyama
and Milstein’s numerical approximation methods of an SDE as proposed by [3], [6] and [5] by
truncating the Ito-Taylor expansion. Finally, we will apply the two methods to a Black-Scholes
SDE by using MATLAB to simulate the numerical solutions while comparing their solutions to
the analytic solution of a Black-Scholes SDE presented by [3] and [2]. This comparison will enable
us to infer on the effectiveness of the two methods.

2. DEFINITION OF TERMS

Definition 2.1. Stochastic process

This is a set of random variables x; indexed by real numbers t > 0.

Definition 2.2 Call Option

This is an option to buy a security on or before a specified time known as exercise date
Definition 2.3. European Call Option

This is an option to buy a security on a specified exercise date.
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Definition 2.4. Brownian Motion B, 0 <t <T
This is a set of random variables, one for each value of the real variable t in the interval [0, T]

which possess the following properties:
1. B, iscontinuous in the parameter t, with B, = 0.++6-09+

2. For each t >s > 0,B; — B is normally distributed with E(B;) =0, Var(B;) =t and

independent of each other.

3. For each t and s, the random variables B;,; — B; and B, are independent. Moreover
Var(Byys — Bg) = t.

The above states the properties which Brownian motion must possess and respected when using
computer simulation to model a Brownian motion. Property 3 says that B;,¢ — Bg IS a normal

random variable. Hence, a realization of B, can be obtained by multiplying a standard normal

random variable by ,/t; — t, ie

N(O0,t) = /t; — t,N(0,1)

and add the resultant value to the preceding value. In general, the increment of a Brownian motion

is the square root of the time multiplied by a standard normal random number [5].

3. STOCHASTIC TAYLOR EXPANSION

LEMMA 3.1. (Ito’s Lemma)

Let f(t, X;) be a stochastic process which satisfies the stochastic differential equation in (1), if B,
is a standard Brownian motion and f is twice differentiable, then f(t, X;) is also a stochastic

process with its differential given by:

df (t, Xe) = |u(t, X) o f(t Xe) + 102(t Xc) 0 zf(t Xe) [ dt + u(t, Xc) f(t X)dB,

3.1. Ito-Taylor expansion
Given an SDE defined as:

dX(t) = a[X(D)]dt + b[X(£)]dB(¢) (3)
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By Ito’s Lemma, we have:

d 1 ik
dfix(®)] = {a[X(t)] o /X (O] +5 b [X(®)] mf[X(t)]}dt
9]
+ DIX(O)] 75 fIX(O)]dB(®)

Defining the following operators:

LO

o 1, 0
a[X(t)]a_X-l_Eb [X(t)]m

0
LY = b[X()] 3%

=~ (4) becomes:
df[X(t)] = LOf[X(t)]dt + L1 f[X(t)]dB(t)

Integrating (5), we have:

[arm@1 = [ rofxends + | 2 Fixesnase)
t

LO f[X(s)]ds + ft£1 fIX(s)]dB(s)

to

= K@) = fIRG@] + |

to
At this point, we are going to make different choices for f(x):

(1) Choose f(x) = x; then (6) becomes:
X() = X(t) + ft :a [X(s)]ds + ft :b [X(s)]dB(s)
(2) Choose f(x) = a(x); then (6) becomes:
alX(D)] = a[X(tx)] + ft :LO alX(s)]ds + ft :Ll alX(s)]dB(s)

(3) Choose f(x) = b(x); then (6) becomes:

(4)

(5)

(6)

()

(8)

228
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BIX(D)] = bX(t,)] + f L0 blx(s)]ds + f L1 X (s)]dB(S)

to
Substituting (8) and (9) into (7), we get:
X(t) =X(t)

t S1 S1
+ f {a[X(tO)] + J. L0 a[X(sy)]ds, + f Lt a[X(sz)]dB(sz)} ds,
to to to

+ f {b[X(to)] + f51L° b[X(sy)]ds, + JSllil b[X(sz)]dB(sz)} dB(sq)

Applying our defined operator, we have:

d 1 0
Loa[X(s1)] = a[X(t)] ma[x(sﬂ] + EbZ[X(t)] aXz—(Sl)a[X(Sl)]

1
= alX(O]a'[X(s)] + 5 b*[X(O)]a"[X (s1)]

LOb[X(s)]ds; = a[X(D)]b'[X(s1)] +%b2[X(t)]b”[X(51)]

Lla[X(s))] b[X(®)]a'[X(s1)]
L1b[X(s1)] b[X(O)]b'[X (s1)]

~ X(t) =X(t0)+f a[X(tO)]d51+f f51£° a[X(s,)]ds,ds;
+[ ] " alx(s)]dB(s,)dsy + | pixceonanes
+ J j L9 b[X(s,)]ds,dB(sy) + j f L1 B[X (5,)]dB (5,)dB (sy)

= X(t,) +f alX(ty)]ds, +f b [X(ty)]dB(s;) + R

where

229

%)

(10)

(11)

(12)

(13)
(14)

(15)

(16)
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w ]to ftolﬁo a[X(s,)]ds,ds; +jto Jtoll;l a[X(s;)]dB(s;)ds,
+ J;o ftolﬁo b[X(s2)]ds,dB(s1)
+ ftf51£1 b[X(s;)]dB(sz)dB(s1) an

is the remainder.

Simplifying, (16) becomes:
X(t) = X(ty) +a[X(ty)] f ds; + b[X(ty)] f dW(s;) +R
(4) Choose f(x) = L1b[X(t)]; then (6) becomes:

LIb[X ()] = LYD[X(ty)] + JtLO L1b[X(s)]ds + Jtﬁl L1b[X(s)]dB(s) (18)

to to

Substituting [ito11] into [ito10] leads to:

R = Jt t L :1L°a[X(sz)]dszdsl + jt t ft :1£1a[X(sz)]dB(sz)dsl
+ ft t ft :11:0 b[X(s,)]ds,dB(s;)
+ jt : jt :1 {le[X(to)] + ft :ZLO L1b[X(s3)]dss + ft :21:1 le[X(sg)]dB(Sg)} dW (s,)dB(s1)
_ Jt : L :1L°a[X(sz)]dszdsl + jt : ft :1£1a[X(sz)]dB(Sz)d51
+ ft : ft :11:0 b[X(5,)]ds,dB(s;)
+ jt : jt :1L1b[X(t0)]dB(sz)dB(sl) + Jt : L :1 ft :2L° L b[X (s3)]ds3dB(sz)dB(s1)
+ ft : ft :1 Jt :2/31le[X(s3)]dB(s3)dB(Sz)dB(Sl)

Applying (14) to the 4th term leads to:
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t S1 t 1
R = L0 a[X(sy)]ds,d 1 alX(s)1dB(s)d
J;ofto a[X(s;)]ds, Sl+-[t0-fto a[X(s,)]dB(s,)ds;
t S1 £ o
+ [ [Cebixelasasey + [ b @ XCIBEBE)
to Jto tg e
t rS1 rS2
LOLYb[X ds;dB dB
¥ -fto '[;0 J;o [ (83)] 53 (82) (Sl)

t rS1 Sy
+ fto j;o J;O LY LYb[X(s3)]dB(s3)dB(s,)dB(s;)

- | t [ " L0 alx(sp)]ds, ds, + f t | "Lt a[X(s,)1dB(s,)ds,

¥ f f z:° bX (s2)]ds,dB(sy) + BIX(D)]b'[X (£o)] f j d B(s,)dB(sy)

t rS1 Sz
L0 L1b[X(s3)]ds3dB(s,)dB
+J;O J;O -fto [X(s3)]ds3dB(sz)dB(s1)
t rS1 Sy
+ fto j;o J;O LY L1b[X (s3)]dB(s3)dB(s;)dB(s1)

Substituting (19) into (16), then we have:

t t

a[X(@ds, + [ bX(E)dBGs)

to

X)) = X(t) + ft

+ b[X()]b'[X(to)] J d B(s,)dB(s;) + R (20)

to

Then the double integral in (14) is evaluated as:

[ [ aBeaasey = [ 1B dBE) = [ 186D - BE@IdBe)
- f B (s1)dB(s;) — f B (t,)dB(s)
_ 1 B(t) — B(t,)]? ! t—t
= S[B() ~ Bt 5 (t ~ to)

Then (20) becomes:
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t

X@® = X(to)+f a[X(to)ldsy + | b[X(to)]1dB(s1)

to to

1 1
+ DX X ()] {5 [B© = B - 5 & — t)} + %

“X() = X(t) +alX(t)] | ds; + b[X(ty)] J d B(s,)

to to

XD X )] 5 [BE) ~ B =5 (¢ t0)] + 5 21)

Thus (21) gives the numerical approximation of the SDE in (3) by discretizing the time 0 = ¢, <
t; <...< ty =t to obtain the following:

X(tiv1) = X (&) + a[X(t)]At + b[X(¢,)]AB; + %b[X(ti)]b’[X(tO)][(ABL')Z —At]+ R (22)

where At = t; ;1 — t;; AB; = B(t;;1) — B(t;) fori=0,1,2,...,N — 1 with X(t;y) = X,

4. NUMERICAL APPROXIMATION METHODS
4.1 EULER-MARUYAMA METHOD
This numerical scheme is analogous to the Euler’s scheme in deterministic case. It is obtained by
truncating (16) after the first order terms. Thus we have:

X(tiv1) = X (&) + a[X(t)]At + b[X(¢,)]AB; (23)
fori =0,1,2,...,N —1and X(t,) = X,
4.2 MILSTEIN METHOD

This numerical scheme is obtained by truncating (16) after the second order terms. Thus we have:
1
X(tiv1) = X (&) + a[X(t)]At + b[X (t)]AB; + S b[X (t)]b"[X (to)][(4B)? — At] (24)

fori =0,1,2,...,N —1and X(t,) = X, Notice that the Milstein scheme involves obtaining the
derivative of b[X(t;)].

5. NUMERICAL SOLUTION OF BLACK-SCHOLES SDE
The Black-Scholes SDE is defined as:
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dX(t) = rX(t)dt+ aoX(t)dB; (25)
where X (t) stock price at time ¢t
r risk-free interest rate
o volatility or standard deviation of the process
B; = Standard Brownian motion

Applying (22) to (25) leads to:
1 ~

5.1 EULER-MARUYAMA SCHEME FOR BLACK-SCHOLES SDE
Applying the Euler-Maruyama scheme to the Black-Scholes leads to:
X(tiyq) = X(t) +rX(t)At + oX(t;)AB; (27)
5.2 MILSTEIN SCHEME FOR BLACK-SCHOLES SDE
Applying the Milstein scheme for the Black-Scholes SDE leads to:

X(tiy) = X(t) + rX(t)At + oX(t)AB; + %UZX(L;-)[(ABL-)2 — At] (28)

6. APPLICATIONS

In this section, we approximated the value of an European call option of a Stock using the numerical
methods presented in (27) and (28). We also compared the values of the two methods to the analytic
solution and used the mean square error to determine the effectiveness of the two methods.
Example 1

Let us find the price of a European call option whose stock price is $130, risk-free interest rate is

6%, standard deviation of the stock is 16% and expiration is 12months.

7. SOLUTION

r = risk-free interest rate = 0.6
o volatility or stock standard deviation = 1.6
Xy = initial stock price = 130

The exact solution of Example 1 is given as:

X(t) = Xoe(r—az)t+aBt

Using the Euler-Maruyama in (27), we have the following:
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and the Milstein scheme in (28) gives:
X(tis1) = X(t) + 0.6X(t;)At + 1.6X(t;,)AB; + 1.28X(t;)[(4B;)? — At] (30)

wherei = 0,1,2,..., N — 1 and the step-size At = 1/N and the time interval is [t,, 1]

Table 1: Estimated Values for Euler-Maruyama Scheme

Step-size EM Approximation Milstein
Approximation
Value Error Value Error

28 201.1165 0.2362 202.3564 0.0032
2° 201.2016 0.1531 202.2952 | 0.0023
210 201.2564 0.0984 202.2546 0.0003
211 201.2915 0.0632 202.2106 | 0.0002
212 201.3546 0.0001 202.1561 0.0001

Table 2: Calculated mean square error for Euler-Maruyama Scheme.

Step-size Euler-Maruyama Milstein
28 0.0004E-0°2 0.0004E793
2° 0.1986E 702 0.2707E793
210 0.0620E793 0.4282E7%4
211 0.0194E~04 0.6752E70°
212 0.0061E795 0.1061E795
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In table 1, the Euler-Maruyama and Milstein approximations for the Black-Scholes SDE were
simulated for 1000 grid points for N = 28, 29,219 211 gnd 212 where the sample points of each
X is the mean of the Stock value at expiration, t = 1. In Table 2, the mean square error was

estimated using:

1000

1 . :
- j_vyJ|2
10002 | X7 = Xl

Jj=1

where X ,{, Is the estimate of the stock value at expiration for the jth sample path using N

subintervals?

280

260
240
220
200
180
160
140 |
120

100

a0

Fig.1. Exact Solution of the Black-Scholes SDE



0. O. Nwachukwu J Fundam Appl Sci. 2021, 13(1), 225-242

236
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:Exact Solution
: Euler-Maruyama

200

150
X
100
50
0 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t
Fig.2. Exact Solution and Euler-Maruyama simulation using step-size 28
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Fig.3. Exact Solution and Euler-Maruyama simulation using step-size 2°
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140 T T T T T T T T

:Exact Solution
— % —: Euler-Maruyama

120

100
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60 7

Fig.4. Exact Solution and Euler-Maruyama simulation using step-size 21° the Black-Scholes
SDE
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Fig.5. Exact Solution and Euler-Maruyama simulation using step-size 211
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Fig.6. Exact Solution and Euler-Maruyama simulation using step-size 212 the Black-Scholes

SDE
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Fig.7. Exact Solution and Milstein simulation using step-size 28
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Fig.8. Exact Solution and Milstein simulation using step-size 2° for the Black-Scholes SDE
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Fig.9. Exact Solution and Milstein simulation using step-size 21°
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Fig.10. Exact Solution and Milstein simulation using step-size 21! for the Black-Scholes SDE
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Fig.11. Exact Solution and Milstein simulation using step-size 212 for the Black-Scholes SDE

In Figure 1, the Exact solution is plotted for the 1000 grid points on the interval [0,1]. In Figure

(2) - (6), the Euler-Maruyama approximation in blue asterisks is plotted against the Exact

solution in magenta color varying N from 28 - 212 respectively. The same approach is applied in

Figure (7) - (11) for the Milstein approximation in green asterisks.
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8. CONCLUSION

We have studied the Ito-Taylor expansion in order to derive the Euler-Maruyama and Milstein
methods of approximating stochastic differential equations. We have applied these two methods
to Black-Scholes SDE to obtain the European call option values for a stock while studying the
efficiency of the two methods. We examined the two methods using a step size of

28,29,210 211 212 for a discretized interval [0,1] with 1000 grid points. From Table 1, we
noticed that as the sample increased the numerical schemes converged to the exact solution and

that the Milstein approximation converged faster than the Euler-Maruyama scheme.
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