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ABSTRACT  

Information criterion is an important factor for model structure selection in system identification. It 

is used to determine the optimality of a particular model structure with the aim of selecting an 

adequate model. There had not been, or scarcely have been, any loss function that evaluates 

parsimony of model structures (bias contribution) based on the magnitude of parameter or 

coefficient. The magnitude of parameter could have a big role in choosing whether a term is 

significant enough to be included in a model and justifies ones' judgement in choosing or 

discarding a term/variable. This study intends to develop a new information criterion such that the 

bias contribution is related not only to the number of parameters, but mainly to the magnitude of 

the parameters. The parameter-magnitude based information criterion (PMIC2) is demonstrated in 

identification of linear discrete time model. The demonstration is tested using computational 

software on a number of simulated systems in the form of discrete-time linear regressive models of 

various lag orders and number of term/variables. It is shown that PMIC2 is able to select the correct 

the model based on all of the tested datasets. 
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1. INTRODUCTION  

System identification can be considered a regression problem, where the relationship between 

input and output variables of a dynamical system has to be estimated. This task is typically 

accomplished by minimizing a certain information criterion, which measures how well the 

estimated relationship approximates the one which truly links the available input-output data 

pairs [1]. Its basic idea is to compare the time dependent responses of the actual system and 

identified model based on a performance function, hereby referred to as information criterion, 

giving a measure of how well the model response fits the system response [2]. 

An identification procedure typically consists in estimating the parameters of different models, 

and next selecting the optimal model complexity within that set. Increasing the model complexity 

will decrease the systematic errors, however, at the same time the model variability increases 

[3].A model accuracy and model parsimony known as variance and bias: f(J)=Var(J)+Bias(J) is 

an important consideration in selecting a model structure [1]. Hence, selecting a model with 

smallest variance is not a good idea because when the number of parameters increase, the 

variance will continue to decrease but will present a complex model. At a certain complexity, the 

additional parameters no longer reduce the systematic errors but are used to follow the actual 

noise realization on the data [3]. Often, in order to deal with the bias-variance trade-off, the 

information criterion is augmented with a penalty term intended to guide the search for the 

“optimal” relationship penalizing undesired regressors, where regressors refer to possible terms 

and variables. Regularized estimation has been widely applied in the context of system 

identification [4]. 

In this paper, the effectiveness of parameter magnitude-based information criterion (PMIC2) will 

be studied by testing on five simulated dynamic models in the form of discrete-time difference 

equations model. These models are linear autoregressive models with exogenous input (ARX). 

The next sections are as follows: Section 2 introduces system identification; Section 3 explains 

about information criterions; Section 4 explains the simulated models; Section 5 provides results 

and discussion and lastly Section 6 concludes the paper along with recommendation of future 

works. 
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2. SYSTEM IDENTIFICATION 

System identification is the field of building models from measured data. This may be thought of 

as the inverse of physical modelling in which models are built to simulate data. While physical 

modelling can enhance the general understanding of physiologic systems, system identification 

can provide tools for diagnosis and monitoring on an individualized basis [5]. The more accurate 

the mathematical model identified for a system, the more effective will be the controller designed 

for it [6].  

Several strategies have been proposed to avoid over-parameterization while utilizing all the data 

for training the model [7]. The most popular strategy is to minimize a theoretically derived 

formula or criterion, which includes a goodness-of-fit index and a penalty factor for model 

complexity [5]. System identification can be framed as an optimization problem: 

𝜃  =  arg 
𝑚𝑖𝑛

𝜃
𝐽ி  (θ, 𝐷ே) 

where 𝐽ி (θ, 𝐷ே) measures how well the model described by parameter θ describes the measured 

data. A widely used variation of the estimation criterion includes a so-called ‘regularization term’ 

in the loss function to be minimized, that is: 

𝜃  =  arg 
𝑚𝑖𝑛

𝜃
𝐽ி  (θ, 𝐷ே)  +   𝐽ோ (θ, 𝑛) 

In this case, θ is estimated by trading-off the data fitting term 𝐽ி (θ, 𝐷ே) and the regularization 

term 𝐽ோ  (θ,n) which act as a penalty to penalize certain parameter vectors θ which describe 

‘unlikely’ systems [1]. 

In today’s literature, various types of models are proposed for system modelling such as linear 

autoregressive with exogenous input (ARX) model and nonlinear autoregressive with exogenous 

input (NARX) model [1]. 

 

3. INFORMATION CRITERIONS 

Model complexity selection is the sub-problem of model selection [8]. Parsimony, working 

hypotheses, and strength of evidence are three principles that regulate the ability to make 

inferences [9]. An information criterion can be designed to estimate an expected overall 

discrepancy, a quantity which reflects the degree of similarity between a fitted approximating 

model and the generating or ‘true model’ [10]. 
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This so-called model order selection problem is considerably more difficult than parameter 

estimation problem. To solve the model order selection problem, one must first establish a set of 

candidate models (usually models with the same structure but different order) and then determine 

the best model in the set [5]. 

In [11], the typical behavior of the test error and training error are presented, as model 

complexity is varied. The training error tends to decrease whenever the model complexity 

increases, because the model fits the data harder. If the model is too complex, the test error is 

high, for the prediction model has large variance. In contrast, the model will underfit, and the 

prediction model has large bias. Therefore, it becomes an important issue in selecting the optimal 

complexity of the prediction model. 

The PMIC2 is developed from the approach of using parameter magnitude information in 

information criterion [12]. It includes a bias term or known as penalty function and here will be 

denoted as PMIC2. It is written as follows:  

𝑃𝑀𝐼𝐶2 = (𝑦(𝑡) − 𝑦ො(𝑡))ଶ + 
1

𝜃


 

where, 𝜃  is the magnitude of parameter in the model and j is the number of parameter. 

 

4. SIMULATION SETUP 

In this simulation, five ARX models are simulated using computer simulation software 

MATLAB. All models are denoted as Model 1, Model 2, Model 3, Model 4 and Model 5 and 

each model is further classified as having d.c. level and not having d.c. level. The difference 

between the two are one having the input and output average subtracted (hence has no d.c. level) 

and the other not subtracted. The following are the models written as linear regression models, its 

specifications, number of correct regressors and number of possible regressors: 

Model 1: 

𝑦(𝑡) = 0.2𝑦(𝑡 − 2) + 0.5𝑢(𝑡 − 1) + 0.8𝑢(𝑡 − 3) + 𝑒(𝑡) 

Specification: 𝑙=1, assumed maximum output order, 𝑛௬=3, assumed maximum input order, 𝑛௨=3 

Number of correct regressor = 3 out of 7 (if d.c. level is assumed present) or 6 (if d.c. level is 

assumed absent) 

Number of possible model = 127 (with d.c. level) or 63 (without d.c. level) 
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Model 2: 

𝑦(𝑡) = 0.1𝑦(𝑡 − 2) − 0.4𝑦(𝑡 − 4) + 0.5𝑢(𝑡 − 1) + 0.7𝑢(𝑡 − 3) + 𝑒(𝑡) 

Specification: 𝑙=1, 𝑛௬=4, 𝑛௨=4 

Number of correct regressor = 4 out of 9 (d.c. level present) or 8 (d.c. level absent) 

Number of possible model = 511 (with d.c. level) or 255 (without d.c. level) 

 

Model 3: 

𝑦(𝑡) = 0.2𝑦(𝑡 − 2) − 0.3𝑦(𝑡 − 4) + 0.6𝑢(𝑡 − 1) + 0.8𝑢(𝑡 − 5) + 𝑒(𝑡) 

Specification: 𝑙=1, 𝑛௬=5, 𝑛௨=5 

Number of correct regressor = 4 out of 11 (d.c. level present) or 10 (d.c. level absent) 

Number of possible model = 2047 (with d.c. level) or 1023 (without d.c. level) 

 

Model 4: 

𝑦(𝑡) = 0.1𝑦(𝑡 − 2) + 0.2𝑦(𝑡 − 5) − 0.3𝑦(𝑡 − 6) + 0.2𝑢(𝑡 − 2) + 0.3𝑢(𝑡 − 5) + 𝑒(𝑡) 

Specification: 𝑙=1, 𝑛௬=6, 𝑛௨=6 

Number of correct regressor = 5 out of 13 (d.c. level present) or 12 (d.c. level absent) 

Number of possible model = 8191 (with d.c. level) or 4091 (without d.c. level) 

 

Model 5: 

𝑦(𝑡) = 0.1𝑦(𝑡 − 2) + 0.2𝑦(𝑡 − 5) − 0.3𝑦(𝑡 − 7) + 0.2𝑢(𝑡 − 3) + 0.3𝑢(𝑡 − 5) + 𝑒(𝑡) 

Specification: 𝑙=1, 𝑛௬=7, 𝑛௨=7 

Number of correct regressor = 5 out of 15 (d.c. level present) or 14 (d.c. level absent) 

Number of possible model = 32767 (with d.c. level) or 16383 (without d.c. level) 

 

The input 𝑢(𝑡) is generated from a random uniform distribution in the interval [-1, 1] to represent 

white signal, while noise 𝑒(𝑡) is generated from a random uniform distribution [-0.01, 0.01] to 

represent white noise. Least squares was used as parameter estimation method. Five hundred data 

points are generated for each model. All models are penalized by PMIC2 in order to select the 

correct model.  
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5. RESULTS AND DISCUSSION 

Based on the results, PMIC2 was able to select the correct models for all simulated models and 

either with or without d.c. level. Only the true regressors were selected and these regressors bear 

the same parameter values as the simulated models. To further illustrate such ability, Table 1 lists 

the possible regressors and the selected (true) regressor. Models with d.c. level are denoted as 

Model 1a, Model 2a, Model 3a, Model 4a and Model 5a while models without d.c. level are 

denoted as Model 1b, Model 2b, Model 3b, Model 4b and Model 5b. 

 

Table 1. Selected Regressor and Parameter Values of PMIC2 

 Model 

1a 

Model 

1b 

Model 

2a 

Model 

2b 

Model 

3a 

Model 

3b 

Model 

4a 

Model 

4b 

Model 

5a 

Model 

5b 

d.c. 

level 

          

y(t

− 1) 

          

y(t

− 2) 

0.2 0.2 0.1 0.1 0.2 0.2     

y(t

− 3) 

          

y(t

− 4) 

  -0.4 -0.4 -0.3 -0.3     

y(t

− 5) 

      0.2 0.2 0.2 0.2 

y(t

− 6) 

      -0.3 -0.3   

y(t

− 7) 

        -0.3 -0.3 

u(t

− 1) 

0.5 0.5 0.5 0.5 0.6 0.6     
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u(t

− 2) 

      0.2 0.2   

u(t

− 3) 

0.8 0.8 0.7 0.7     0.2 0.2 

u(t

− 4) 

          

u(t

− 5) 

    0.8 0.8 0.3 0.3 0.32 0.32 

u(t

− 6) 

          

u(t

− 7) 

          

 

Table 2 shows the value of PMIC2 for variance term, bias term and total of both terms for the 

selected models. Note that the minimum values of PMIC2 among the possible models become 

the selected model. It is shown that the bias value is bigger than variance value for all models. 

Variance and bias is inversely proportional; when variance value is small, the bias value is big 

and vice versa. Despite such difference, a fine balance between the two enables PMIC2 to select 

the model which is the same as the given model. 
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Table 2. The value of PMIC2 

Models Variance Bias Total 

Model 

1a 
0.21830 8.20378 8.42209 

Model 

1b 
0.2614 8.2530 8.5144 

Model 

2a 
0.19912 15.95503 16.15416 

Model 

2b 
0.2310 15.9671 16.1981 

Model 

3a 
0.18292 11.22241 11.40533 

Model 

3b 
0.3693 11.2401 11.6093 

Model 

4a 
7.3267 15.7241 23.0508 

Model 

4b 
6.8731 16.0015 22.8746 

Model 

5a 
2.6445 16.0503 18.6947 

Model 

5b 
2.4508 16.2546 18.7054 

 

6. CONCLUSION 

From the observation, the PMIC2 proved that it can perform well when selecting the correct 

model in linear discrete time model. The use of parameter magnitude as basis for bias measure 

places the criterion at a highly potential position among other information criterions. Further 

study will be concentrated on comparing it with other information criterions and on non-linear 

autoregressive models with exogenous input (NARX). 

 

 



 M. F. Abd Samad et al.             J Fundam Appl Sci. 2018, 10(3S), 345-354            353 

ACKNOWLEDGEMENT 

The authors would like to acknowledge all the support from UniversitiTeknikal Malaysia Melaka 

and Ministry of Higher Education Malaysia for research grant 

FRGS/1/2015/TK03/FKM/02/F000271. 

 

REFERENCES  

[1]  L. Ljung, System Identification: Theory for the User, 2nd ed., Prentice Hall, Upper Saddle 

River(1999). 

[2]  A. Alfi, and M. M. Fateh, Parameter identification based on a modified PSO applied to 

suspension system, Journal of Software Engineering & Applications, 3, (2010) 221-229. 

[3]  F. D. Riddef', R. Pintelon, J.Schoukens, and D. P. Gillikinb, Modified AIC and MDL model 

selection criteria for short data records, IEEE Transactions on Instrumentation and Measurement, 

54 (2004)144-150. 

[4]  G. Prando, G. Pillonetto and A. Chiuso, “The role of rank penalties in linear system 

identification,” IFAC-Papers online, 48(28) (2015) 1293-1300. 

[5]  X. Xinshu, L. Ying, and R. Mukkamala, A model order selection criterion with applications 

to cardio-respiratory-renal systems, IEEE Transactions on Biomedical Engineering, 52(3) (2005) 

445-453. 

[6]  Z. Zibo and F. Naghdy, Application of genetic algorithms to system identification, IEEE 

International Conference, 2, (1995) 777-782. 

[7]  H. Akaike, A new look at the statistical model identification, IEEE Transactions on 

Automatic Control, 19(6)(1974). 

[8]  K.Kristinsson and G. A. Dumont, System identification and control using genetic algorithms, 

IEEE Transactions on Systems, Man, and Cybernetics, 22(5) (1992)1033-1046. 

[9]  L. Xiaoyong, F. Huajing and C. Zhaoxu, A novel cost function based on decomposing 

least-square support vector machine for Takagi-Sugeno fuzzy system identification, IET Control 

Theory & Applications, 8(5) (2013)338-347. 

[10]  A. K. Seghouane and S. I. Amari, The AIC Criterion and Symmetrizing the 

Kullback–Leibler Divergence, IEEE Transactions on Neural Networks, 18(1)(2007)97-106. 



 M. F. Abd Samad et al.             J Fundam Appl Sci. 2018, 10(3S), 345-354            354 

[11] Y. X. Geng and W. Wu, A Bayesian Information Criterion Based Approach for Model 

Complexity Selection in Speaker Identification, International Conference on Advanced Language 

Processing and Web Information Technology, 1 (2008)264-268. 

[12]  M.F. Abd Samad, H. Jamaluddin, R. Ahmad, M.S. Yaacob and A.K.M. Azad, Effect of 

penalty function parameter in objective function of system identification, International Journal of 

Automotive and Mechanical Engineering (IJAME), 7(2013)940-954. 

 

 

How to cite this article: 
Abd Samad M F, Nasir A R M. Performance of parameter-magnitude based information criterion 
in identification of linear discrete-time model. J. Fundam. Appl. Sci., 2018, 10(3S), 345-354. 
 

 

 


