
COMPARATIVE EVALUATION OF GENETIC ALGORITHM-BASED TEST CASE

OPTIMIZATION

I. M. Ismail*, W. M. N. Wan-Kadir, R. Hassan

Department of Software Engineering Faculty of Computing Universiti Teknologi Malaysia

Published online: 01 February 2018

ABSTRACT

Software testing is a crucial phase in software development process although it consumes

more time and cost of software development. Researchers have proposed several approaches

focusing on helping software testers to reduce the execution time and cost of the testing

process. Test case optimization is a multi-objective approach that has become one of the best

solutions to overcome these problems. Test case optimization focusing on reducing the

number of test cases in the test suite that may reduce the overall testing time, cost and effort

of software testers especially in regression testing. This paper presents the comparative

evaluation between test case optimization techniques that are based on Genetic Algorithm

(GA). The evaluation is based on five criteria i.e. technique objectives, applied fitness

function, contributions, the percentage of the reduced test cases, fault detection capability,

and technique limitations. The evaluation results able identify the gaps in the existing GA-

based test case optimization approaches and provide insight in determining the potential

research directions in this area.

Keywords: Test case optimization, regression testing, multi-objectives, genetic algorithm,

software testing.

Author Correspondence, e-mail: izwan4@live.utm.my

doi: http://dx.doi.org/10.4314/jfas.v10i2s.7

Journal of Fundamental and Applied Sciences

ISSN 1112-9867

Available online at http://www.jfas.info

Research Article

Special Issue

Journal of Fundamental and Applied Sciences is licensed under a Creative Commons Attribution-NonCommercial 4.0
International License. Libraries Resource Directory. We are listed under Research Associations category.

I. M. Ismail et al. J Fundam Appl Sci. 2018, 10(2S), 74-90 75

1. INTRODUCTION

Software testing is one of the important phases of software development. Its main objective

is to identify defects and faults occur in software under development hence ensure the

correctness of the product itself [1]. In addition, it is also needed to ensure that the product

meets customer’s specific requirements as well as free from bugs. Due to inevitable changes

in software systems, it is important to retest the changed software. This type of testing is

called regression testing. It aims at retesting the entire software once changes occurred in the

software such as modification of GUI, insertion of new function or removal of any function

from previous version [2]. It is important to ensure that the modification in the software did

not affect other parts of the software. However, due to cost and time-consuming factors

which resulted from a redundant and large amount of test cases that need to be re-tested,

researchers have introduced test case selection, reduction, and prioritization in order to

manage the testing process in regression testing [3, 4]. These techniques may reduce the

overall cost and time testing process since it is the most crucial factors in regression testing

[5]. Test case reduction, which is also known as minimization or optimization, works by

eliminating test cases from test suite in regression testing [6]. The aim of test case

optimization is to reduce the number of test cases in the test suite so the execution of

regression testing for a particular software can be faster than before.

In the early introduction of test case optimization, it is treated as a single objective

optimization problem which only considering reducing the overall cost of software testing as

their main objective. However, due to multiple factors and variables, it can be considered as

multi-objective optimization problem which provides trade-off among solutions [7]. In a

multi objective optimization problem, it is hard to satisfy all objectives since there are many

optimal solutions for every objective [8]. Pareto optimal solution is a well-known technique

in order to solve multi objective optimization problem by finding as many optimal solutions

available in a particular problem [9]. Moreover, multi objectives optimization has been

introduced by considering multiple objectives in test case optimization such as reducing total

cost, number of test cases, number of faults detected and time taken for overall software

testing life cycle (STLC) [10].

This study presents a comparative analysis of several selected test case optimization

techniques with different approaches and concepts focusing on techniques that implemented

I. M. Ismail et al. J Fundam Appl Sci. 2018, 10(2S), 74-90 76

the concept of genetic algorithm (GA). This comparative analysis and evaluation are needed

to identify the most effective and suitable technique in solving the test case optimization

problem in software testing. This paper is divided into several sections as follow. Section 2

describes the overview of test case optimization and several techniques that have been

introduced by researchers. Section 3 briefly explains the concept of test case optimization

technique with genetic algorithm approach implemented in each method. Section 4 is

divided into two subsections which explaining comparison criteria which describing the

criteria to evaluate each technique in this study in the first part. Discussion on the evaluation

results is explained in the second part of Section 4. Lastly, Section 5 concludes the result of

this study and describes future work.

2. TEST CASE OPTIMIZATION

Generally, test case optimization works by eliminating redundant test cases in a test suite

and also finding the best set of test cases by considering the coverage of the test cases. Full

coverage of software testing with less number of test cases has become a major concern in

test case optimization technique. In addition, test case optimization purposes to find the

subset from the set of test cases which contain the most optimized set of test cases by

eliminating redundancy in test cases and selecting the best and have good criteria declared in

particular test suite [11]. The problem concept of test case optimization can be derived as T

= {T1, T2, T3,….Tn}, where T is the original test suite consists of a larger number of test

cases. Meanwhile, T’ = {T1’, T2’, T3’,….Tn’}, where T’ consist of the most efficient test

cases that optimized from original test suite [9]. Throughout the years, many researches have

been conducted in order to help software testers to fully optimize their test cases in software

testing by implementing multiple types of algorithms and framework. Several popular

algorithms such as Simplified Swarm Optimization (SSO), Artificial Bee Colony (ABC),

Cuckoo Search (CS) Algorithm, and Genetic Algorithm (GA) has been implemented as

optimization algorithm for test cases minimization and reduction.

2.1. Simplified Swarm Optimization (SSO)

Simplified Swarm Optimization (SSO) algorithm is an enhancement from the conventional

Particle Swarm Optimization (PSO). The main objective of this algorithm is to overcome

convergence speed problem in GUI testing as the speed is decreasing whenever number of

I. M. Ismail et al. J Fundam Appl Sci. 2018, 10(2S), 74-90 77

iteration in testing process increase [12]. This approach focusing on GUI testing procedure

that has a larger test suite size when it uses conventional PSO. SSO is combined with

Covering Array (CA) to produce an effective test case for s particular software under test

(SUT). The advantages of this algorithm are increasing convergence speed in GUI testing for

particular SUT as the number of iteration increase. It also overcomes non-deterministic (NP)

problem and increasing the rate of fault detection for particular SUT. However, the results of

this study are arguable since the number of the case study is relatively small. In addition, the

algorithm itself is complex since it consists of many steps and combination with CA

increases its complexity for an optimization technique.

2.2. Artificial Bee Colony (ABC)

Artificial Bee Colony (ABC) is one of the most popular optimization algorithms that

supports test case optimization. This algorithm is based on the natural behaviour of bee

which constantly looking for their food source in the best way. It was introduced by Dervis

Karaboga in 2005. In general, there are three main types of bees in ABC algorithm namely

scout bees, onlooker bees and employee bees [13]. The purpose of scout bees is to look for

the best path and food source which are then presented to onlooker bees. Onlooker bees will

calculate the possibility of the food source then pass back the information to scout bees

which mean the food source can be used for further exploration. The employee bees search

for new food source by doing an exhaustive search. ABC algorithm provides rapid test data

generation and fault detection which contribute much to software testing process. The

behaviour of this algorithm increases efficiency and effectiveness of the whole software

testing process. It is also found that test suite generated and optimized using ABC achieves

complete coverage and able to maintain the consistency in the testing process [14].

2.3. Cuckoo Search (CS) Algorithm

Cuckoo Search (CS) algorithm, which is based on the natural behaviour of cuckoo birds, has

been introduced to overcome complex optimization problem [15]. The combination of CS

with Covering Array (CA) and Levy Flight algorithms may optimize test cases by reducing a

number of test cases in a particular SUT. This combination still unable to overcome the

inherent non-deterministic problem in test case optimization. Therefore, CS algorithm may

be better than conventional PSO but still not the best solution for test case optimization. It is

I. M. Ismail et al. J Fundam Appl Sci. 2018, 10(2S), 74-90 78

also due to many loops involves in the iteration to calculate the fitness values which causes

some delay in producing the results.

2.4. Genetic Algorithm (GA)

Genetic Algorithm (GA) is one of the available techniques in order to find the most

optimized set of test cases. The basic approach of GA in optimizing test cases start with

random generation of chromosomes that represent the population. Next, the fitness value of

each chromosome in the population is calculated in order to continue with the selection,

crossover and mutation operators to generate new population which more fit and optimized

[16]. Stopping criteria are applied to the population to determine whether the new population

is achieved targeted fitness value.

3. GENETIC ALGORITHM-BASED TEST CASE OPTIMIZATION

Genetic Algorithm (GA) is one of the most popular meta-heuristic algorithm implemented to

solve the optimization problem. It is also based on the natural behaviour of chromosomes

that in any living body. GA is all about the population of chromosomes which consist of

parents and children produced for the next generation and also about finding the fittest

chromosomes in particular population [1]. In term of test case optimization, population

represents test suite while chromosomes represent test cases in the test suite [17]. The

genetic algorithm consists of three main operations that responsible for the generation of the

new population. The operations are selection, crossover, and mutation. Selection operation

will be executed first in the algorithm in order to choose the chromosomes that have the

probability and capability for surviving in the current population [18]. Next, the crossover

operation will take place by combining two chromosomes from the selected list to generate a

new population. Finally, mutation operation is applied to the new population as a mutant to

produce the fittest and high surviving rate of chromosomes in the population. The final

number of chromosomes in the population will become the powerful chromosomes

compared to the previous population. This iteration will continue same as a human being

that continues reproducing their next population as shown in Figure 2.

I. M. Ismail et al. J Fundam Appl Sci. 2018, 10(2S), 74-90 79

Fig.2. Basic Operation of Genetic Algorithm

Multiple researches have been conducted in order to implement and prove the effectiveness

of GA in helping minimize the number of test cases in software testing process. Throughout

the years, implementation of GA in test case optimization has been improved by

implementing different type of fitness function and even hybridization of GA with another

optimization algorithms. This section discusses various implementation of GA in test case

optimization.

3.1. Simple Genetic Algorithm

One of the works conducted was using an improvised version of conventional GA to find the

most optimize test cases in the test suite. The experiment conducted starting by the

generation of a random population of test cases then applying some mutants to the

population. The purpose of the mutants is to find the most optimize test cases in the test suite

as the mutants itself contain some errors [17]. Next, stopping criteria is applied whereas if

the number of test cases with errors found is less than the minimum number of mutants, then

it is failed to find errors and vice versa. This research didn’t consider the important

evaluation metric for optimizing test cases such as number of reduced test cases, execution

time and overall fault detection capability thus make it harder to study the overall efficiency

of GA implementation.

In addition, Genetic Algorithm also has been implemented in safety critical control testing

process to find optimize test cases and also overcome benchmark problem [19]. The

implementation of GA in the research purposes to find errors and faults in the code by

injecting the mutants in the code to achieve most optimize block coverage metrics. The

authors using conventional GA provided in MATLAB tools and defined several parameters

I. M. Ismail et al. J Fundam Appl Sci. 2018, 10(2S), 74-90 80

to find the fitness function such as population size, population range, elite count, generation,

stopping criteria and plot functions. The result shows that fitness value decreasing as number

of generation increase after a single run of the experiment. In addition, implementation of

GA also seems to be effective since minimum test case with 100% test coverage can be

achieved which increase the effectiveness of software testing.

3.2. Weight-Based Genetic Algorithm (WBGA)

In this approach, the weight-based concept is used to evaluate fitness function of test cases

whereas WBGA is a fixed weight of test cases which is predefined by the user for particular

test cases in test suite [20]. Several parameters have been considered in order to show the

optimization of test cases which are feature pairwise coverage and fault detection capability.

The output of the experiment conducted in this research shows that the fault detection

capability for particular test suite after optimized using WBGA is lower compared to another

algorithm. Fixed-weight algorithm performance is less than a dynamic-weight algorithm

which is Random Weighted Genetic Algorithm (RWGA) hence shows that WBGA is not the

best algorithm for test case optimization.

Moreover, Genetic Algorithm also has been applied for test case reduction alongside with

Weighted Control Flow Graph (CFG) as its fitness function evaluation [21]. The main

objectives of this research are minimizing test cases and also finding the most critical

solution for particular SUT. In order to do so, authors used weighted CFG and Fitness

Scaling to calculate fitness function for chromosomes and to reduce premature convergence

of the fitness value itself [21]. By using this hybrid approach, authors claimed that the fitness

value of chromosomes has increased significantly and reducing the premature convergence

problem from simple GA implementation. This research also concluded that implementation

of fitness scaling can overcome the problem from simple GA. It shows that fitness scaling

technique can be implemented in variants of Genetic Algorithm in order to help in

optimizing a number of test cases and overall testing process.

3.3. Fuzzy-Based Genetic Algorithm

Genetic Algorithm also has been implemented with fuzzy logic approach resulting Fuzzy-

Based Age Extension of Genetic Algorithm (FAexGA) [22]. In this research, the fuzzy aging

approach has been implemented to chromosome’s probability by dividing it into three stages,

young, old and middle-aged. This algorithm used to generate effective test cases focusing on

I. M. Ismail et al. J Fundam Appl Sci. 2018, 10(2S), 74-90 81

GUI of particular system under test hence becoming one of their limitation since effective

testing process should cover external and internal structure of SUT. In this approach,

crossover probability of particular chromosomes is controlled by Fuzzy Logic Controller

(FLC) which consist of age and lifetime of parents and the current population of

chromosomes. The result of this research shows that FAexGA performs higher in term of

runs with solution compared to another algorithm. In addition, FAexGA found more number

of solutions for test cases after injected with mutants compare to simple GA. The overall

performance of FAexGA is also much better if it is compared to other GA-based technique.

However, FAexGA’s performance decreasing in term of the final generation of test cases

and test data which may not be good to overall testing process. Another drawback of

FAexGA is the implementation of the fuzzy technique in the algorithm require many

variables which make it more complicated to implement to the small and medium size of test

suite but can be efficient for the large-scale test suite.

3.4. Non-dominated Sorting Genetic Algorithm (NSGAII)

Non-dominated Sorting Genetic Algorithm (NSGAII) is one of the variants in GA. Pareto

ranking and crowding distance approach also implemented in the research to choose a

possible solution of test cases [1]. The implementation starting with the generation of

random test cases which indicates as the chromosomes. Next, the test cases are organized in

a non-dominated form which ranked by minimum test cases and maximum branch coverage.

Based on the experiment conducted, authors claimed that entire software testing’s time

execution reduced to 4 hours and an average of 15% efficiency compared to original test

cases in the experiments [1]. This result shows that implementation of GA can help finding

the most optimized test cases in software testing process. In another research conducted

using NSGAII, the result obtained shows that the percentage of test cases reduction is 20%

from original test cases and 84% of fault detection capability which seems that reduction of

test cases didn’t perform well and the test cases cannot detect more fault in the application

[9]. This technique can be improvised by implementing mutation hypothesis to the algorithm

as it is the common technique and more accurate result of the optimization process.

I. M. Ismail et al. J Fundam Appl Sci. 2018, 10(2S), 74-90 82

4. COMPARATIVE EVALUATION

This paper presents the comparative evaluation in test case optimization techniques focusing

on GA-based techniques. This section describes the evaluation criteria and evaluation results

of each technique presented in the previous section.

4.1. Evaluation Criteria

This paper evaluates each test case optimization technique based on GA according to several

criteria. Each criterion used in the evaluation is briefly described in this section.

a. Objectives of Proposed Technique: This criterion refers to overall purpose and

concept applied in each technique since it is differed from each other.

b. Fitness Function: Fitness function is needed in optimization algorithm especially in

each technique to assign the fitness value and determining divergence and inequality of test

cases in particular test suite [23]. This criterion describes a different type of fitness function

applied to each technique to determine the impact of optimized test cases in the optimization

process. Different fitness function may give a different result depending on the

implementation of each technique.

c. Contributions: It refers to the overall achievement of the technique proposed in term

of effectiveness in optimizing number of test cases.

d. Percentage of Reduced Test Cases: This criterion refers to optimized number of

test cases after optimization process occurs in term of percentage reduced from the original

number of test cases. It is also can be considered as the result of experiments in each

technique proposed.

e. Fault Detection: This criterion refers to the capability of fault detection in an

optimized set of test cases between each technique which also may know as the capability of

the proposed technique in optimizing the overall software testing process.

f. Limitations: It refers to drawbacks and disadvantages of each proposed technique

which can reduce the effectiveness of optimizing a particular set of test cases.

4.2. Evaluation Result

Table 1 shows the summary of test case optimization techniques based on Genetic

Algorithm.

I. M. Ismail et al. J Fundam Appl Sci. 2018, 10(2S), 74-90 83

Table 1.Comparison of Test Case Optimization Techniques

Criteria

Approach

Objective
Fitness

Function
Achievement

Percentage

of

Reduced

Test Cases

Fault

Detection
Limitation

Conventional

Genetic

Algorithm

[17], [19]

Better

optimization

approach,

overcome

benchmark

problem



Well

optimized

test cases

during test

cases

generation

55% of

original

test cases 

Focusing

more on test

case

generation,

no

additional

fitness

function

WBGA [20],

[24]

Applying

weight to

test cases to

find

optimize set

of test

cases,

reduce pre-

mature

convergence

problem

Fitness

Scaling

WBGA

threshold did

not achieve,

Fitness value

increase,

convergence

problem

decreases

22%

reduced

from

original

test cases

0.85

below

threshold

Performance

of WBGA

(fixed-

weight) less

than RWGA

(random

weight)

Fuzzy-based

Genetic

Algorithm

[22]

Find most

optimize set

of test cases

by applying

fuzzy aging

technique

Fuzzy

Aging

Number of

runs increase

but

decreasing of

final

generation of

0.99 %

solution in

final set of

test cases

Higher

compared

to simple

GA

Focusing on

test cases

for GUI

I. M. Ismail et al. J Fundam Appl Sci. 2018, 10(2S), 74-90 84

test cases and

data

NSGAII [1],

[9]

Minimized

and

optimized

test cases in

test suite

Pareto

ranking

and

crowding

distance

Execution

time of

testing

process

reduce,

efficiency

slightly

increase

Overall 29

test cases,

82% of

original

test cases



Redundant

technique

for selection

of test cases,

basic

operation of

GA, small

size of case

study

Based on Table 1, each technique implemented different concepts of optimization technique.

A previous study in [17, 19] aiming in better optimization approach and also reducing

number of test cases in safety critical control system which consists of many redundant and

unnecessary test cases during regression testing. Furthermore, it is also aiming to overcome

benchmark problem since this study is implementing Taguchi method’s experiment, which

requires the concept of benchmarking between two algorithms. On the other hand, WBGA

implemented in [20, 24] proposed the concept of weight of particular value to each test cases

in the test suite to obtain the optimized set of test cases. The weight assigned to each test

case has a close relationship with fitness function in each technique. In addition, another aim

of [24] is to overcome premature convergence problem which resulted from selection of a

powerful set of test cases. In another research, fuzzy aging is applied to each test cases in the

set to obtain the optimized set of test cases [22]. This approach applies the fuzzy-based

technique to get test cases that are more efficient.

In term of the fitness function, proposed techniques in [17, 19] did not apply any additional

fitness function. These approaches only depending on pure genetic algorithm operation such

as selection, crossover, and mutation to select the most optimize test cases from the large set

of chromosomes. The continuous operation in basic GA may take a longer time to obtain the

optimized set of test cases. Meanwhile, weight-based test cases and fitness scaling is applied

in [20, 24] respectively. WBGA is a fixed weight applied to the test cases and the selection

of potential test cases to be in the optimized set is depending on the higher value of weight

I. M. Ismail et al. J Fundam Appl Sci. 2018, 10(2S), 74-90 85

while fitness scaling is applied alongside with Weighted Control Flow Graph (CFG) to assist

the selection of an optimized set of test cases [24]. The main purpose of fitness scaling is to

scale fitness values in each test cases to avoid premature convergence. Another study applied

fuzzy aging techniques as their fitness function [22]. Fuzzy aging technique introduces three

stages to each test cases and classifies them to ‘young’, ‘old’ and ‘middle-aged’. Test cases

with ‘young’ and ‘middle-aged’ have a higher potential to be chosen as the optimized set of

test cases since it has more efficiency in software testing. Next, Pareto ranking and crowding

distance are applied in NSGAII as its fitness function [1, 9]. Combination of these two-

fitness function produces higher efficiency in the set of test cases after undergoing a basic

operation in GA.

The overall result and achievement in most of the proposed techniques show that a set of

optimized test cases can be achieved. In conventional GA, the final set of test cases

generated is a well-optimized test case. However, a proposed technique in [20] cannot

achieve threshold that is set at the beginning of an experiment that shows a final set of

optimized test cases cannot be achieved. Meanwhile, the fitness value of test cases in [24]

increase and premature convergence problem is decreasing due to the implementation of

CFG and Fitness Scaling as its fitness function. The final set of test cases produced is more

efficient and reliable to continue with the entire testing process. The result from [22] shows

that number of runs is increasing but the final generation of test cases and data to obtain final

set is decreasing which may affect the overall efficiency of software testing. In another

research, it shows that execution time of the testing process is reduced and the efficiency of

software testing is slightly increasing [1, 9]. It shows that implementation of NSGAII really

helping in optimizing test cases and increase the efficiency of entire software testing process.

The details of experimental result can be justified in term of reduced number of test cases.

Implementation of basic GA in [17, 19] shows that almost half of the initial number of test

cases is reduced and eliminated. The number of test cases is still large and it may affect the

time taken to complete the testing process if depending on this set of test cases. Likewise, a

number of reduced test cases in [20, 24] shows that only 22% decreasing of test cases. it is

clearly shown that implementation of weight-based GA did not produce a good set of test

cases although it overcoming pre-mature convergence problem. In a different study, fuzzy-

based GA seems to have higher number of solutions in the final set of test cases compared to

I. M. Ismail et al. J Fundam Appl Sci. 2018, 10(2S), 74-90 86

other proposed technique which proven that implementation of fuzzy aging technique

contributes more in optimizing test cases [22]. However, the authors did not specifically

mention the reduced number of test cases in their discussion. Another research conducted

using NSGAII shows that the reduced number of test cases is up to 82% from 29 test cases.

The final set produced is very small since it is only applied and tested to a small case study.

Next criterion in this comparative evaluation is fault detection capability. Fault detection

capability or coverage is used to measure the error and bugs detected in particular software

testing by using optimized set of test cases. Theoretically, large coverage and a higher

number of fault detected by using a reduced set of test cases indicate that a particular

algorithm and technique is reliable to optimize overall software testing process. Based on

Table 1, authors in [1, 9, 17, 19] did not mention specifically the result of fault detection

based on optimize test cases. the authors may not consider the importance of fault detection

capability in their experiment which may lead to inefficient testing process. Meanwhile,

faults detected in [20, 24] only 0.85 below the threshold which means it did not achieve

threshold set since WBGA’s performance is slightly lower compared to random-weight GA.

Next, fault detection capability in fuzzy-based GA is higher compared to simple GA

although the final generation of test cases is decreasing [22]. Authors claimed that FaexGA

is maintaining the diversity in test cases generation which makes the fault detection is higher.

Finally, several limitations and drawbacks of each proposed technique are listed. Firstly,

conventional GA more focusing on test cases generation with less optimizing it. It also has

no additional fitness function which makes optimizing process more accurate [17, 19].

Secondly, the drawback of WBGA is the performance of fixed -weight GA is less compared

to random-weight GA (RWGA). Based on the experiment conducted in [20, 24], random-

weight is more efficient and applicable to genetic algorithm since it suits the concept of GA

itself, which is the random population at the beginning of the experiment. Thirdly, the

authors in [22] only focusing on optimizing test cases for black box testing which only

considering on GUI parts of the software. It is needed for test case optimization technique to

be applicable to the black box and white box testing to produce better testing process. Lastly,

multiple techniques in selecting test cases and small case study has become drawback and

limitation in NSGAII [1, 9]. Although NSGAII is proven as one of good optimization

I. M. Ismail et al. J Fundam Appl Sci. 2018, 10(2S), 74-90 87

technique in the various field, it still can be improved in term of implementation of the

different fitness function to give a variety of approaches in NSGAII.

5. CONCLUSION AND FUTURE WORK

This paper presented a comparative evaluation of test case optimization techniques based on

genetic algorithm. The evaluation is based on six criteria i.e. technique objectives, fitness

function, contributions, the percentage of reduced test cases, fault detection, and limitations

of each technique.

Variety of GA-based optimization techniques shows that implementation of correct and

suitable fitness function is compulsory to support the general operation in the genetic

algorithm itself. The result of a final set of optimized test cases can be more accurate and

reliable in optimizing the overall testing process by reducing the total cost and time taken for

the entire testing process. Based on discussion stated previously, authors need to consider

the usage of the fitness function and also considering several evaluation variables such as a

number of reduced test cases, execution time and fault detection capability. These evaluation

variables are needed since test case optimization is a multi-objective problem which it can

show the trade-off between variables in optimizing the test cases and entire testing process.

Besides that, these evaluation variables also can become experimental results to show the

efficiency and effectiveness of particular optimization algorithm.

A genetic algorithm is a good optimization and emerging technique which require more

researches and study to make it better compared to existing techniques. The basic operation

of the genetic algorithm is reliable to produce a good set of optimized test cases but with the

addition of fitness function, it makes the overall operation more accurate and produces a

better result. Potential future work of this study is to conduct deeper study including

empirical experiments and evaluation on each genetic algorithm-based for test case

optimization techniques stated in this paper to provide more concrete evidence as in this

paper limited due to time constraint. In addition, comparative evaluation between available

techniques also can be conducted to obtain more specific and concrete result for most

efficient techniques in test case optimization.

I. M. Ismail et al. J Fundam Appl Sci. 2018, 10(2S), 74-90 88

6. ACKNOWLEDGEMENTS

The authors would like to express their deepest gratitude to Ministry of Higher Education

Malaysia (MOHE) and Universiti for their financial support under Fundamental Research

Grant Scheme (Vot number Q.J130000.2528.16H73 and Q.J130000.2516.11H71).

7. REFERENCES

[1] S. Jeyaprakash and K. Alagarsamy, A distinctive genetic approach for test-suite

optimization, Procedia Computer Science., vol. 62, pp. 427–434 (2015).

[2] S. Elbaum, G. Rothermel, and J. Penix, Techniques for improving regression testing in

continuous integration development environments, Proc. 22nd ACM SIGSOFT Int. Symp.

Found. Softw. Eng. (FSE 2014), pp. 235–245, (2014) 16-21 November; Hong Kong

[3] S. Yoo and M. Harman, Regression testing minimization, selection and prioritization: A

Survey, Softw. Test. Verif. Reliab., 24, 8, pp. 591–592 (2014).

[4] M. Rava and W.M.N. Wan-Kadir, A review on prioritization techniques in regression

testing, International Journal of Software Engineering and its Applications, 10, 1, p. 221-232

(2016)

[5] A. Schwartz and H. Do, Cost-effective regression testing through Adaptive Test

Prioritization strategies, J. Syst. Softw., 115, C, pp. 61–81 (2016).

[6] P. Kandil, S. Moussa, and N. Badr, Regression Testing Approach for Large-Scale

Systems, 2014 IEEE Int. Symp. Softw. Reliab. Eng. Work., pp. 132–133, (2014) November

3-6; Naples, Italy

[7] V. Savsani and M. A. Tawhid, Non-dominated sorting moth flame optimization (NS-

MFO) for multi-objective problems, Eng. Appl. Artif. Intell., 63, pp. 20–32 (2017).

[8] L. Cheng, C.-S. Tsou, M.-C. Lee, L.-H. Huang, D. Song, and W.-S. Teng, “Tradeoff

analysis for optimal multiobjective inventory model,” J. Appl. Math., vol. 2013, no. i (2013).

[9] N. Chaudhary and O.P. Sangwan, Multi Objective Test Suite Reduction for GUI Based

Software Using NSGA-II, I.J. Information Technology and Computer Science, 8, 8, pp. 59–

65 (2016).

[10] W. Zheng, R. M. Hierons, M. Li, X. Liu, and V. Vinciotti, Multi-objective optimisation

for regression testing, Inf. Sci. (Ny)., vol. 334, pp. 1–16, (2016).

[11] R. Singh, Test Suite Minimization using Evolutionary Optimization Algorithms:

I. M. Ismail et al. J Fundam Appl Sci. 2018, 10(2S), 74-90 89

Review, 3, 6 pp. 2086–2091 (2014).

[12] B. S. Ahmed, M. A. Sahib, and M. Y. Potrus, Generating combinatorial test cases using

Simplified Swarm Optimization (SSO) algorithm for automated GUI functional testing, I.J.

Eng. Sci. Technol., 17, 4, pp. 218–226 (2014).

[13] S.S.B. Lam, H.P. Raju, U. Kiran, Swaraj, and P.R. Srivastav, Automated Generation of

Independent Paths and Test Suite Optimization Using Artificial Bee Colony, Procedia Eng.,

30, pp. 191–200 (2012).

[14] AdiSrikanth, N. J. Kulkarni, K. V. Naveen, P. Singh, and P. R. Srivastava, Test Case

Optimization Using Artificial Bee Colony Algorithm, Adv. Comput. Commun., 333031, pp.

570–579, (2011).

[15] B. S. Ahmed, T. S. Abdulsamad, and M. Y. Potrus, Achievement of minimized

combinatorial test suite for configuration-aware software functional testing using the Cuckoo

Search algorithm, Inf. Softw. Technol., vol. 66, pp. 13–29 (2015).

[16] A. Singhal, S. Chandna, and A. Bansal, Optimization of Test Cases Using Genetic

Algorithm 1, 2, 3, pp. 367–369 (2012).

[17] A. Mateen, Optimization of Test Case Generation using Genetic Algorithm (GA), 151,

7, pp. 6–14 (2016).

[18] T. L. Holst, Genetic Algorithms Applied to Multi-Objective Aerospace Shape

Optimization, J. Aerosp. Comput. Information, Commun., 2, 4, pp. 217–235 (2005).

[19] K. Samatha, S. Chokkadi, and J. Yogananda, A Genetic Algorithm Approach for Test

Case Optimization of Safety Critical Control, Procedia Eng., 38, pp. 647–654 (2012).

[20] S. Wang, S. Ali and A. Gotlieb, Minimizing test suites in software product lines using

weight-based genetic algorithms, 15th Genet. Evol. Comput. Conf., pp. 1493–1500 (2013).

[21] G. Kumar and P. K. Bhatia, Software testing optimization through test suite reduction

using fuzzy clustering, CSI Trans. ICT, vol. 1, no. 3, pp. 253–260 (2013).

[22] M. Last, S. Eyal, and A. Kandel, “Effective Black-Box Testing with Genetic

Algorithms,” pp. 134–148, (2006).

[23] C. Sharma, S. Sabharwal, and R. Sibal, “A Survey on Software Testing Techniques

using Genetic Algorithm,” Int. J. Comput. Sci. Issues, vol. 10, no. 1, pp. 381–393, (2013).

[24] G. Kumar and P. K. Bhatia, “Software Test Case Reduction using Genetic Algorithm :

A Modified Approach,” vol. 3, no. 5, pp. 349–354, (2016).

I. M. Ismail et al. J Fundam Appl Sci. 2018, 10(2S), 74-90 90

How to cite this article:
Ismail I M, Wan-Kadir W M N, Hassan R. Comparative evaluation of genetic algorithm-
based test case optimization. J. Fundam. Appl. Sci., 2018, 10(2S), 74-90.

