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ABSTRACT 

In this study, the system of second kind Fredholm integral equations has been discretized by 

using the first order quadrature scheme namely trapezoidal rule in order to construct the first 

order quadrature approximation equation. Next, the quadrature approximation equation 

obtained has been used to construct a system of linear equations. Three types of iterative 

methods were used to solve the system of linear equations such as Gauss-Seidel (GS), 

Successive Over Relaxation (SOR) and Kaudd Successive Over Relaxation (KSOR). For 

comparison purpose, two problems have been considered in this study in order to analyze the 

efficiency of these three proposed iterative methods for solving the problems. Based on the 

numerical results, it can be pointed out that KSOR is similar as SOR but both of these 

iterative methods are more efficient than GS method. 

Keywords: quadrature scheme; system of Fredholm integral equations; KSOR iterative 

method. 

 

Author Correspondence, e-mail: jumat@ums.edu.my 

doi: http://dx.doi.org/10.4314/jfas.v9i5s.43   

 

 

 

Journal of Fundamental and Applied Sciences 

ISSN 1112-9867 

Available online at       http://www.jfas.info 

Research Article 

Special Issue 

       Journal of Fundamental and Applied Sciences is licensed under a Creative Commons Attribution-NonCommercial 4.0 

International License. Libraries Resource Directory. We are listed under Research Associations category. 

 

 



N. Z. F. M. Radzuan et al.         J Fundam Appl Sci. 2017, 9(5S), 609-623         610 
 

1. INTRODUCTION 

System of Fredholm integral equations is one of a family of integral equations (IEs). This 

system has a fixed integral area since the limit of integral is constant. This system has two or 

more equations in the set. System of second kind Fredholm integral equations generally can 

be defined as  

𝑦(𝑥) = 𝐹(𝑥) + ∑ ∫ 𝑘௦(𝑥, 𝑡)𝑦௦(𝑡)𝑑𝑡




௦ୀଵ            (1)   

where𝑦௦(𝑡) is an unknown function, 𝐾𝑟𝑠(𝑥, 𝑡)is a Kernel function, 𝑦(𝑥)is a known function, 

𝐹 and 𝐾௦ are continuous functions [1].   

System of Fredholm integral equations is often associated with the boundary value problem 

[2]. This system also represent many physical problems related to science and engineering 

problem. Therefore, many numerical methods being used to solve the problems of the system 

of integral equations. For example, the methods have been used such as the domain 

decomposition method [3]; the Open Newton-Cotes Formula [1] and the method of 

collocation with Legendre polynomial [4]. Furthermore, these problems have also been solved 

using Bernstein polynomial [5] and new algorithm developed by [6]. However, the main 

objective of this paper deals with the application of the KSOR iteration with the first order 

quadrature discretization scheme for solving the system of second kind Fredholm integral 

equations.  

 

2. QUADRATURE APPROXIMATION EQUATION  

In this section, the discretization process is necessary to produce the quadrature 

approximation equation to construct system of linear equations. However, this paper proposes 

discretization of problem (1) by using the first order of quadrature scheme, trapezoidal rule. 

Prior to that, consider the generally quadrature scheme as follows 

∫ 𝑦(𝑡)



𝑑𝑡 = ∑ 𝐴


ୀ 𝑦(𝑡) + 𝜀(𝑦)            (2) 

where 𝑡, 𝐴 and 𝜀(𝑦)are the quadrature point in the interval[𝑎, 𝑏], weights quadrature and 

error respectively [7]. By considering the trapezoidal rule which is known as the first order 

quadrature scheme, let the interval[𝑎, 𝑏]be divided into several sets {𝑥, 𝑥ଵ, 𝑥ଶ, … , 𝑥}with the 

number of(𝑛) subintervals of equal width, ℎఛ in which ℎఛ is defined as 
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ℎఛ =
𝑏 − 𝑎

(𝑛)
 

Fig. 1 shows the finite grid network that is used to construct the quadrature approximation 

equations where the GS, SOR and KSOR iterative methods are applied onto each interior 

node points until the iteration is converged. 

 

Fig.1. The uniformly distribution of interior node quadrature points for the solution domain 

[𝑎, 𝑏] at 𝑛 = 8 

Based on Fig. 1 and consider the set {𝑥, 𝑥ଵ, 𝑥ଶ, … , 𝑥}, then the integral function 𝐹(𝑥) on 

the interval [𝑎, 𝑏] can be expressed as follows  

∫ 𝐹(𝑥)𝑑𝑥 =  ∫ 𝐹(𝑥)𝑑𝑥
௫

௫




              (3)  

For the purpose of illustration, let𝑎 = 0, 𝑏 = 8 and 𝑖 = 0,1,2, … , 𝑛 then Equation (3) can 

be rewritten as 

න 𝐹(𝑥)𝑑𝑥
଼



= න 𝐹(𝑥)𝑑𝑥
௫భ

௫బ

+ න 𝐹(𝑥)𝑑𝑥
௫మ

௫భ

+ න 𝐹(𝑥)𝑑𝑥
௫య

௫మ

+ න 𝐹(𝑥)𝑑𝑥
௫ర

௫య

+ 

∫ 𝐹(𝑥)𝑑𝑥
௫ఱ

௫ర
+ ∫ 𝐹(𝑥)𝑑𝑥

௫ల

௫ఱ
+ ∫ 𝐹(𝑥)𝑑𝑥

௫ళ

௫ల
+ ∫ 𝐹(𝑥)

௫ఴ

௫ళ
𝑑𝑥     (4) 

 
Fig.2.The definite integral of function, 𝐹(𝑥)over the interval [𝑎, 𝑏]at 𝑛 = 8 
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Based on Fig. 2 and by applying the trapezium scheme over Equation (4), it can be obtained 

as  

∫ 𝐹(𝑥)𝑑𝑥
଼


=  

ഓ

ଶ
𝐹 +  ℎఛ𝐹ଵ + ℎఛ𝐹ଶ + ℎఛ𝐹ଷ + ℎఛ𝐹ସ + ℎఛ𝐹ହ + ℎఛ𝐹 + ℎఛ𝐹 +

ഓ

ଶ
𝐹   (5)  

From Equation (5), the weights quadrature coefficient,𝐴in Equation (2) can be defined as  












1,...,2,1,

,0,
2

1

njh

njh
A

τ

j



             

 (6)  

Let the error, 𝜀(𝑦) in Equation (2) be ignored and then consider Equation (1) with 𝑟 =

1,2and 𝑚 = 2, two equations can be formed to construct a system of second kind Fredholm 

integral equations which can be defined as  

𝑦ଵ(𝑥) = 𝐹ଵ(𝑥) + ∫ 𝐾ଵଵ



(𝑥, 𝑡)𝑦ଵ(𝑡)𝑑𝑡 + ∫ 𝐾ଵଶ




(𝑥, 𝑡)𝑦ଶ(𝑡)𝑑𝑡     (7a) 

𝑦ଶ(𝑥) = 𝐹ଶ(𝑥) + ∫ 𝐾ଶଵ



(𝑥, 𝑡)𝑦ଵ(𝑡)𝑑𝑡 + ∫ 𝐾ଶଶ




(𝑥, 𝑡)𝑦ଶ(𝑡)𝑑𝑡     (7b) 

By imposing Equation (5) into Equations (7a) and (7b), the trapezium approximation 

equations for a system of integral equations can be used to construct in the following 

approximation equations 

𝑦ଵ(𝑥) − ൬
ℎఛ

2
𝐾ଵଵ(𝑥, 𝑡)𝑦ଵ, + ℎఛ𝐾ଵଵ(𝑥, 𝑡ଵ)𝑦ଵ,ଵ + ℎఛ𝐾ଵଵ(𝑥, 𝑡ଶ)𝑦ଵ,ଶ + ℎఛ𝐾ଵଵ(𝑥, 𝑡ଷ)𝑦ଵ,ଷ

 

+ ℎఛ𝐾ଵଵ(𝑥, 𝑡ସ)𝑦ଵ,ସ + ℎఛ𝐾ଵଵ(𝑥, 𝑡ହ)𝑦ଵ,ହ + ℎఛ𝐾ଵଵ(𝑥, 𝑡)𝑦ଵ,

+ ℎఛ𝐾ଵଵ(𝑥, 𝑡)𝑦ଵ, + 

ℎఛ

2
𝐾ଵଵ(𝑥, 𝑡଼)𝑦ଵ,଼ +

ℎఛ

2
𝐾ଵଶ(𝑥, 𝑡)𝑦ଶ, + ℎఛ𝐾ଵଶ(𝑥, 𝑡ଵ)𝑦ଶ,ଵ + ℎఛ𝐾ଵଶ(𝑥, 𝑡ଶ)𝑦ଶ,ଶ + 

ℎఛ𝐾ଵଶ(𝑥, 𝑡ଷ)𝑦ଶ,ଷ + ℎఛ𝐾ଵଶ(𝑥, 𝑡ସ)𝑦ଶ,ସ + ℎఛ𝐾ଵଶ(𝑥, 𝑡ହ)𝑦ଶ,ହ + ℎఛ𝐾ଵଶ(𝑥, 𝑡)𝑦ଶ, +

ℎఛ𝐾ଵଶ(𝑥, 𝑡)𝑦ଵ, +  ഓ

ଶ
𝐾ଵଶ(𝑥, 𝑡଼)𝑦ଶ,଼ቁ = 𝐹ଵ(𝑥)         (8a) 

𝑦ଶ(𝑥) − ൬
ℎఛ

2
𝐾ଶଵ(𝑥, 𝑡)𝑦ଵ, + ℎఛ𝐾ଶଵ(𝑥, 𝑡ଵ)𝑦ଵ,ଵ + ℎఛ𝐾ଶଵ(𝑥, 𝑡ଶ)𝑦ଵ,ଶ + ℎఛ𝐾ଶଵ(𝑥, 𝑡ଷ)𝑦ଵ,ଷ

 

+ ℎఛ𝐾ଶଵ(𝑥, 𝑡ସ)𝑦ଵ,ସ + ℎఛ𝐾ଶଵ(𝑥, 𝑡ହ)𝑦ଵ,ହ + ℎఛ𝐾ଶଵ(𝑥, 𝑡)𝑦ଵ,

+ ℎఛ𝐾ଶଵ(𝑥, 𝑡)𝑦ଵ, + 
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ℎఛ

2
𝐾ଶଵ(𝑥, 𝑡଼)𝑦ଵ,଼ +

ℎఛ

2
𝐾ଶଶ(𝑥, 𝑡)𝑦ଶ, + ℎఛ𝐾ଶଶ(𝑥, 𝑡ଵ)𝑦ଶ,ଵ + ℎఛ𝐾ଶଶ(𝑥, 𝑡ଶ)𝑦ଶ,ଶ

+ ℎఛ𝐾ଶଶ(𝑥, 𝑡ଷ)𝑦ଶ,ଷ + ℎఛ𝐾ଶଶ(𝑥, 𝑡ସ)𝑦ଶ,ସ + ℎఛ𝐾ଶଶ(𝑥, 𝑡ହ)𝑦ଶ,ହ

+ ℎఛ𝐾ଶଶ(𝑥, 𝑡)𝑦ଶ, + 

ℎఛ𝐾ଶଶ(𝑥, 𝑡)𝑦ଵ, +  ഓ

ଶ
𝐾ଶଶ(𝑥, 𝑡଼)𝑦ଶ,଼ቁ = 𝐹ଶ(𝑥)         (8b) 

Furthermore, the approximate Equations (8a) and (8b) can be manipulated to form a linear 

system in matrix form generally as          

𝐾𝑦 = 𝐹                   (9)  

where 

𝐾 = 
𝐾 𝐾

𝐾 𝐾
൨, 

𝑦 = ൣ𝑦ଵ,𝑦ଵ,ଵ   𝑦ଵ,ଶ    …   𝑦ଵ,ିଵ      𝑦ଵ,𝑦ଶ,𝑦ଶ,ଵ𝑦ଶ,ଶ   …   𝑦ଶ,ିଵ𝑦ଶ,൧
்

, 

𝐹 = ൣ𝑓ଵ,𝑓ଵ,ଵ     𝑓ଵ,ଶ    …   𝑓ଵ,ିଵ       𝑓ଵ,   𝑓ଶ,     𝑓ଶ,ଵ𝑓ଶ,ଶ   …   𝑓ଶ,ିଵ𝑓ଶ,൧
்

. 

Meanwhile,𝐾, 𝐾,𝐾 and 𝐾are submatrices which are defined as follows 

𝐾 = 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡1 −

ℎఛ

2
𝐾ଵଵ(0,0) −ℎఛ𝐾ଵଵ(0,1) −ℎఛ𝐾ଵଵ(0,2) ⋯ −

ℎఛ

2
𝐾ଵଵ(0, 𝑛)

−
ℎఛ

2
𝐾ଵଵ(1,0) 1 − ℎఛ𝐾ଵଵ(1,1) −ℎఛ𝐾ଵଵ(1,2) ⋯ −

ℎఛ

2
𝐾ଵଵ(1, 𝑛)

−
ℎఛ

2
𝐾ଵଵ(2,0) −ℎఛ𝐾ଵଵ(2,1) 1 − ℎఛ𝐾ଵଵ(2,2) ⋯ −

ℎఛ

2
𝐾ଵଵ(2, 𝑛)

⋮ ⋮ ⋮ ⋮

−
ℎఛ

2
𝐾ଵଵ(𝑛, 0) −ℎఛ𝐾ଵଵ(𝑛, 1) −ℎఛ𝐾ଵଵ(𝑛, 2) ⋯ 1 −

ℎఛ

2
𝐾ଵଵ(𝑛, 𝑛)⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 

𝐾 = 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡−

ℎఛ

2
𝐾ଵଶ(0,0) −ℎఛ𝐾ଵଶ(0,1) −ℎఛ𝐾ଵଶ(0,2) ⋯ −

ℎఛ

2
𝐾ଵଶ(0, 𝑛)

−
ℎఛ

2
𝐾ଵଶ(1,0) −ℎఛ𝐾ଵଶ(1,1) −ℎఛ𝐾ଵଶ(1,2) ⋯ −

ℎఛ

2
𝐾ଵଶ(1, 𝑛)

−
ℎఛ

2
𝐾ଵଶ(2,0) −ℎఛ𝐾ଵଶ(2,1) −ℎఛ𝐾ଵଶ(2,2) ⋯ −

ℎఛ

2
𝐾ଵଶ(2, 𝑛)

⋮ ⋮ ⋮ ⋮

−
ℎఛ

2
𝐾ଵଶ(𝑛, 0) −ℎఛ𝐾ଵଶ(𝑛, 1) −ℎఛ𝐾ଵଶ(𝑛, 2) ⋯ −

ℎఛ

2
𝐾ଵଶ(𝑛, 𝑛)⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 

𝐾 = 
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⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡−

ℎఛ

2
𝐾ଶଵ(0,0) −ℎఛ𝐾ଶଵ(0,1) −ℎఛ𝐾ଶଵ(0,2) ⋯ −

ℎఛ

2
𝐾ଶଵ(0, 𝑛)

−
ℎఛ

2
𝐾ଶଵ(1,0) −ℎఛ𝐾ଶଵ(1,1) −ℎఛ𝐾ଶଵ(1,2) ⋯ −

ℎఛ

2
𝐾ଶଵ(1, 𝑛)

−
ℎఛ

2
𝐾ଶଵ(2,0) −ℎఛ𝐾ଶଵ(2,1) −ℎఛ𝐾ଶଵ(2,2) ⋯ −

ℎఛ

2
𝐾ଶଵ(2, 𝑛)

⋮ ⋮ ⋮ ⋮

−
ℎఛ

2
𝐾ଶଵ(𝑛, 0) −ℎఛ𝐾ଶଵ(𝑛, 1) −ℎఛ𝐾ଶଵ(𝑛, 2) ⋯ −

ℎఛ

2
𝐾ଶଵ(𝑛, 𝑛)⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 

𝐾 = 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡1 −

ℎఛ

2
𝐾ଶଶ(0,0) −ℎఛ𝐾ଶଶ(0,1) −ℎఛ𝐾ଶଶ(0,2) ⋯ −

ℎఛ

2
𝐾ଶଶ(0, 𝑛)

−
ℎఛ

2
𝐾ଶଶ(1,0) 1 − ℎఛ𝐾ଶଶ(1,1) −ℎఛ𝐾ଶଶ(1,2) ⋯ −

ℎఛ

2
𝐾ଶଶ(1, 𝑛)

−
ℎఛ

2
𝐾ଶଶ(2,0) −ℎఛ𝐾ଶଶ(2,1) 1 − ℎఛ𝐾ଶଶ(2,2) ⋯ −

ℎఛ

2
𝐾ଶଶ(2, 𝑛)

⋮ ⋮ ⋮ ⋮

−
ℎఛ

2
𝐾ଶଶ(𝑛, 0) −ℎఛ𝐾ଶଶ(𝑛, 1) −ℎఛ𝐾ଶଶ(𝑛, 2) ⋯ 1 −

ℎఛ

2
𝐾ଶଶ(𝑛, 𝑛)⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. 

Clearly, 𝐾, 𝑦and𝑓are known as the coefficient matrix, unknown vector and known vector 

respectively. 

 

3. DERIVATION OF PROPOSED ITERATION SCHEMES 

By referring to the system of linear equations in Equation (9), this linear system will be 

solved iteratively by using GS, SOR and KSOR iterative methods. These three iterative 

methods can be classified as a family of point iteration methods. 

3.1. GS Iteration Scheme  

Since implementations of these three iterative methods based on the point iteration approach, 

we need to consider again the coefficient matrix, 𝐾 in Equation (9). As we know, the 

coefficients matrix, 𝐾  of the linear system (9) can be manipulated to derive for the 

formulation of different iterative methods. To do this, let the coefficient matrix, 𝐾 of the 

system of linear equations (9) be decomposed as  

𝐾 = 𝐿 + 𝐷 + 𝑈                (10)   

where 𝑈, 𝐿 and 𝐷 is anupper triangular matrix, lower triangular matrix and a diagonal 

matrix. By using the definition of Equation (10), the linear systems (9) can be rewritten as  
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(𝐿 + 𝐷 + 𝑈)𝑦 = 𝐹               (11)  

By referring to the linear system (11), the general scheme of the GS iterative method can be 

stated in matrix form as  

𝑦(ାଵ) = (𝐷 − 𝐿)ିଵ𝑈𝑦() + (𝐿 − 𝐷)ିଵ𝐹          (12)  

Or, it can be shown that the formulation of this iteration scheme can be identified in point 

iteratively as 

𝑦
(ାଵ) =

ଵ



 ቆ𝐹 −  𝐾

ିଵ

ୀଵ

  𝑦
(ାଵ) −  𝐾



ୀାଵ
𝑦

()ቇ      (13)   

By referring to Fig. 1 and Equation (13), algorithm 1 shows the implementation of GS 

iterative method.   

Algorithm 1: GS scheme  

i. Set initial value 𝑦() = 0.  

ii. Calculate the coefficient matrix, 𝐾.  

iii. Calculate the vector, 𝐹.  

iv. For 𝑖 = 0,1,2, … , 𝑛, calculate 

𝑦
(ାଵ) =

1

𝐾

 ቌ𝐹 −  𝐾

ିଵ

ୀଵ

  𝑦
(ାଵ) −  𝐾



ୀାଵ

𝑦
()ቍ 

v. Check the convergence test, ቚ𝑦
(ାଵ)

− 𝑦
()

ቚ < 𝜀 = 10ିଵ . If yes, go to step (vi). 

Otherwise, go back to step (iv).  

vi. Display numerical solution. 

3.2. SOR Iteration Scheme  

To improve the convergence of the GS iterative method, SOR iterative method introduced by 

Young in [8-11] is the same as GS iterative method but the use of the relaxation parameter, ω 

is able to accelerate convergence and reduce error rates approximate solution. The most 

suitable range for the value of ω is 0 to 2 [12]. The ability of the SOR iterative method is 

shown to have a rapid rate of convergence solutions such as in [8-11, 13-14]. Generally, the 

SOR iteration scheme has the form as [15]    

𝑦
(ାଵ) = (1 − 𝜔)𝑦

()
+

ఠ


ቆ𝐹 −  𝐾

ିଵ

ୀଵ

  𝑦
(ାଵ) −   𝐾



ୀାଵ
𝑦

()ቇ  (14)  
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where 𝑖 = 0,1,2, … , 𝑛. 

Based on Equation (14), algorithm 2 describes the implementation of SOR iterative method. 

As taking 𝜔 = 1, this iteration scheme can be recognized as the standard GS iterative 

method. 

Algorithm 2: SOR scheme  

i. Set initial value 𝑦() = 0.  

ii. Calculate the coefficient matrix, 𝐾.  

iii. Calculate the vector, 𝐹.  

iv. For 𝑖 = 0,1,2, … , 𝑛, calculate 

𝑦
(ାଵ) = (1 − 𝜔)𝑦

()
+

𝜔

𝐾
ቌ𝐹 −  𝐾

ିଵ

ୀଵ

  𝑦
(ାଵ) −    𝐾



ୀାଵ

𝑦
()ቍ 

v. Check the convergence test, ቚ𝑦
(ାଵ)

− 𝑦
()

ቚ < 𝜀 = 10ିଵ . If yes, go to step (vi). 

Otherwise, go back to step (iv).  

vi. Display numerical solution. 

3.3. KSOR Iteration Scheme  

The KSOR iterative method is a new variant of SOR method that was introduced by [16]. The 

advantage of this is able to update the first component in the first equation of the first step that 

reflects the rapid convergence at the beginning [16]. Relaxation parameter, 𝜔 for KSOR 

method has a sensitivity that is less than the SOR [17]. The general formula of the KSOR 

iteration scheme can be stated as 

𝑦
(ାଵ) = 𝑦

() +
ఠ


ቌ

𝐹 −  𝐾

ିଵ

ୀଵ
𝑦

(ାଵ) −  𝐾



ୀାଵ
𝑦

()

−𝐾𝑦
(ାଵ)

ቍ    (15) 

where 𝑖 = 0,1,2, … , 𝑛. According to Equation (15), the implementation of KSOR iteration 

scheme may be elaborated in algorithm 3. 

Algorithm 3: KSOR scheme  

i. Set initial value 𝑦() = 0.  

ii. Calculate the coefficient matrix, 𝐾.  

iii. Calculate the vector, 𝐹.  

iv. For 𝑖 = 0,1,2, … , 𝑛, calculate 
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𝑦
(ାଵ) = 𝑦

() +
𝜔

𝐾

⎝

⎜
⎛𝐹 −  𝐾

ିଵ

ୀଵ

𝑦
(ାଵ) −  𝐾



ୀାଵ

𝑦
()

−𝐾𝑦
(ାଵ)

⎠

⎟
⎞

 

v. Check the convergence test, ቚ𝑦
(ାଵ)

− 𝑦
()

ቚ < 𝜀 = 10ିଵ . If yes, go to step (vi). 

Otherwise, go back to step (iv).  

vi. Display numerical solution. 

 

4. NUMERICAL EXPERIMENTS 

To evaluate the performance of these three iterative methods such as GS, SOR and KSOR, 

there are two examples of system of second kind Fredholm integral equations were considered 

to be test problems. For the purpose of comparison between these three iterative methods, 

there are three parameters such as number of iterations (Iter), computational time in seconds 

(Time) and maximum error (Error) will be recorded in the table form. In addition to that, the 

tolerance error, 𝜀 considered in the implementation of point iteration based on these three 

proposed iterative methods is𝜀 = 10ିଵ. 

4.1. Problem 1 [4]              

𝑦ଵ(𝑥) =
௫

ଵ଼
+

ଵ

ଷ
+ ∫

(௫ା௧)

ଷ

ଵ


൫𝑦ଵ(𝑡) + 𝑦ଶ(𝑡)൯𝑑𝑡         (16a) 

𝑦ଶ(𝑥) = 𝑥ଶ −
ଵଽ

ଵଶ
𝑥 + 1 + ∫ 𝑥𝑡

ଵ


൫𝑦ଵ(𝑡) + 𝑦ଶ(𝑡)൯𝑑𝑡        (16b) 

The exact solutions for the system of Fredholm integral Equation (16) can be given as 

𝑦ଵ(𝑥) = 𝑥 + 1 

𝑦ଶ(𝑥) = 𝑥ଶ + 1 

4.2. Problem 2 [3]  

𝑦ଵ(𝑥) =
ହ


𝑥ଶ −

ଶହ

ଵଶ
𝑥 + 1 + ∫ 𝑥(1 + 𝑡

ଵ


)𝑦ଵ(𝑡)𝑑𝑡 + ∫ 𝑥ଶଵ


𝑡𝑦ଶ(𝑡)𝑑𝑡     (17b) 

𝑦ଶ(𝑥) = 𝑥ସ −
ଵ

ହ
𝑥ଶ −



ଵଶ
𝑥 + ∫ 𝑥𝑡 𝑦ଵ

ଵ


(𝑡)𝑑𝑡 + ∫ (𝑥ଶଵ


− 𝑥𝑡)𝑦ଶ(𝑡)𝑑𝑡    (17a) 

The exact solutions for the system of Fredholm integral Equation (17) can be shown as 

𝑦ଵ(𝑥) = 𝑥ଶ + 1 

𝑦ଶ(𝑥) = 𝑥ସ 

According to two systems of second kind Fredholm integral equations in Equations (16) and 
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(17), all the results of numerical experiments were recorded in Tables 1 and 2. The numerical 

results in Table 3 showed that the SOR iterative method has reduced number of iterations 

approximately 48.00%-77.39% and computational time approximately 0%-81.82% for 

solving the systems of second kind Fredholm integral equations when compared to the GS 

iterative method, whereas the KSOR iterative method has reduced number of iterations 

approximately 48.00%-77.61% and computational time approximately 0%-99.50%. Therefore, 

it can be pointed out that the SOR and KSOR iterative methods are better than GS iterative 

method in terms of number of iterations and computational time. 
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Table 1. Comparison of number of iterations (Iter), computational time in seconds (Time) and 

maximum absolute error (Error) on iterative methods for Problem 1 

Iter 

M GS SOR KSOR 

50 196 45.0 

(w= 1.56) 

45.0 

(w= -2.75) 

100 199 45.0 

(w= 1.56) 

45.0 

(w= -2.76) 

200 201 46.0 

(w= 1.57) 

45.0 

(w= -2.77) 

400 202 46.0 

(w= 1.57) 

46.0 

(w= -2.78) 

800 202 46.0 

(w= 1.57) 

46.0 

(w= -2.78) 

Time (Second) 

M GS SOR KSOR 

50 0.11 0.02 0.02 

100 0.11 0.03 0.03 

200 0.33 0.08 0.08 

400 0.81 0.20 0.20 

800 3.03 0.69 0.68 

Error 

M GS SOR KSOR 

50 8.2081e-01 8.2081e-01 8.2081e-01 

100 7.8860e-01 7.8860e-01 7.8860e-01 

200 7.7367e-01 7.7367e-01 7.7367e-01 

400 7.6651e-01 7.6651e-01 7.6651e-01 

800 7.6299e-01 7.6299e-01 7.6299e-01 
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Table 2. Comparison of number of iterations (Iter),computational time in seconds (Time) and 

maximum absolute error (Error) on iterative methods for Problem 2 

Iter 

M GS SOR KSOR 

50 33 17.0 

(w= 1.21) 

17.0 

(w= -5.59) 

100 33 17.0 

(w= 1.21) 

17.0 

(w= -5.68) 

200 33 17.0 

(w= 1.21) 

17.0 

(w= -5.79) 

400 33 17.0 

(w= 1.21) 

17.0 

(w= -5.95) 

800 33 17.0 

(w= 1.21) 

17.0 

(w= -6.06) 

Time (Second) 

M GS SOR KSOR 

50 0.01 0.01 0.01 

100 0.02 0.01 0.01 

200 0.06 0.03 0.03 

400 0.15 0.08 0.07 

800 0.50 0.26 0.15 

Error 

M GS SOR KSOR 

50 7.7515e-01 7.7515e-01 7.7515e-01 

100 7.8347e-01 7.8347e-01 7.8347e-01 

200 7.8758e-01 7.8758e-01 7.8758e-01 

400 7.8963e-01 7.8963e-01 7.8963e-01 

800 7.9065e-01 7.9065e-01 7.9065e-01 
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Table 3.Depreciation percentage of the number and time of iteration for SOR and KSOR 

iterative methods compared with GS iterative method 

 

 

 

 

 

 

 

5.CONCLUSION  

In this paper, the problems of the system of second kind Fredholm integral equations in 

Equations (16) and (17) have been successfully discretized by using the first order quadrature 

scheme to derive the corresponding first order quadrature approximation equation. The linear 

system generated from this quadrature approximation equation has been solved iteratively via 

GS, SOR and KSOR iterative methods. From the observation of numerical results in Tables 1, 

2 and 3 clearly stated that both SOR and KSOR iterative methods require less iteration 

number and computational time as compared with GS iterative method. However, the 

accuracy of these three iterative methods are in a good agreement. Overall, since this paper 

just considered a family of point iterative methods, future study can be extended to investigate 

the proposed approximate solutions through block iterative method as discussed in EDG [18], 

EG [19-20] and AGE [21].  
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