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ABSTRACT 

In this study, two-point boundary value problems have been discretized by using cubic B-spline 

discretization scheme to derive the cubic B-spline approximation equations that corresponds. 

Then, this approximation equation is used to develop system of cubic B-spline approximation 

equations. To get the numerical solutions, there are three iterative methods such as 

Gauss-Seidel (GS), Successive Over Relaxation (SOR) and Modified Kaudd Successive Over 

Relaxation (MKSOR) used to solve the generated systems of linear equations. For the purpose 

of comparison, the GS iterative method has been designated as a control method for the SOR 

and MKSOR iterative methods. Three examples of problems also have been considered to test 

the effectiveness of these proposed iterative methods. From the numerical results, MKSOR 

iterative method is superior method in terms of number of iterations and computational time. 

Keywords: cubic B-splineapproximation; two-point boundary value problem; MKSOR 

iteration. 
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The B-spline method has been founded by a Frenchman who is a mathematician and engineer, 

Pierre Bezier. This method is essentially based on the theories that have been developed by P. 

De Casteljau but Pierre Bezier has fixed the loopholes that exist in order to be a strong theory in 

the early 1960s [1]. Thus, the B-spline curve can be defined as 

 y(t) =  C୮



୮ୀ
⋅ β୮,ୢ(x),        0 ≤ t ≤ 1 (1) 

whereC୮ is the control point and β୮,ୢ(t) is a B-spline basis functions. B-spline function can 

also be expressed as [2] 

 β୮,ୢ(t) =
୲ି୲౦

୲౦శౚషభష୲౦
β୮,ୢିଵ(t)

୲౦శౚି୲౦

୲౦శౚష୲౦శభ
β୮ାଵ,ୢିଵ(t) (2) 

with condition 

β୮,(t) = ൜
1 , t ∈ ൣt୮, t୮ାଵ൧

0 , otherwise
  (3) 

Numerical solution in solving two-point boundary value problems is important to explain 

many problems involving science, physics and engineering phenomena. Therefore,various 

numerical methods have been developed to solve and explain all of these problems. As a 

result, some researchers used Sinc-Galerkin method and modifications decomposition [3], 

Adomain decomposition method [4] and hybrid Galerkin method [5]. Apart from these 

methods, the shooting method based on the initial boundary approach to solve two-point 

boundary value problems [6], the spline solution based on quadratic and cubic spline schemes 

[7-8]and B-spline method [9].However, this paper focuses on obtaining the cubic B-spline 

solution over cubic B-spline approximation linear equations via GS, SOR and 

MKSORiterative methods. The intention to describe the efficiency results for these three 

iterativemethods, firstly,let us consider two-point boundary value problems being defined as 

 yᇱᇱ + f(t)yᇱ + g(t)y = r(t) , x ∈ [t, t] (4) 

subjectto two boundary conditions 

  y(x) = a,   y(x) = b (5) 

with y(t)is the initial boundary represented by 𝑎 andy(x) is the end boundary represented 

by 𝑏 for two-point boundaryvalue problem [7]. 
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2. CUBIC B-SPLINE APPROXIMATION EQUATIONS 

In this section, the processof discretization must be imposed toderive B-spline approximation 

equation for constructing a system of linear equations. However, this paper proposes the 

discretization of problem (4) through the cubic B-spline discretization scheme. Prior to that, 

let us consider the cubic B-spline function can be defined as [10] 

 β୮,ଷ(t) =
୲ି୲౦

୲౦శయష୲౦

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ ୲ି୲౦

୲౦శమష୲౦


୲ି୲౦

୲౦శభష୲౦
β୮,(t)

+
୲౦శమି୲

୲౦శమష୲౦శభ
β୮ାଵ,(t)



+
୲౦శయି୲

୲౦శయష୲౦శభ


୲ି୲౦శభ

୲౦శమష୲౦శభ
β୮ାଵ,(t)

+
୲౦శయି୲

୲౦శయష୲౦శమ
β୮ାଶ,(t)



⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 +
୲౦శరି୲

୲౦శరష୲౦శభ

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ ୲ି୲౦శభ

୲౦శయష୲౦శభ


୲ି୲౦శభ

୲౦శభష୲౦
β୮ାଵ,(t)

+
୲౦శయି୲

୲౦శయష୲౦శమ
β୮ାଶ,(t)



+
୲౦శరି୲

୲౦శరష୲౦శమ


୲ି୲౦శమ

୲౦శయష୲౦శమ
β୮ାଶ,(t)

+
୲౦శరି୲

୲౦శరష୲౦శయ
β୮ାଷ,(t)



⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

(6) 

Then, simplify Equation (6), the following are the formulation of the cubic B-spline functions 

at the several different intervals 

 β୮,ଷ(t) =
ଵ

୦య

⎩
⎪
⎨

⎪
⎧ ൫t − t୮൯

ଷ
, t ∈ ൣt୮, t୮ାଵ൧

kଵ, t ∈ ൣt୮ାଵ, t୮ାଶ൧

kଶ, t ∈ ൣt୮ାଶ, t୮ାଷ൧

൫t୮ାସ − t൯
ଷ

, t ∈ ൣt୮ାଷ, t୮ାସ൧

  (7) 

where 

𝑘ଵ=hଷ + 3hଶ൫t − t୮ାଵ൯ + 3h൫t − t୮ାଵ൯
ଶ

+ 3൫t − t୮ାଵ൯
ଷ
, 

kଶ = hଷ + 3hଶ൫t୮ାଷ − t൯ + 3h൫t୮ାଷ − t൯
ଶ

+ 3൫t୮ାଷ − t൯
ଷ
. 

 β୮ିଵ,ଷ(t) =
ଵ

୦య

⎩
⎪
⎨

⎪
⎧൫t − t୮ିଵ൯

ଷ
, t ∈ ൣt୮ିଵ, t୮൧

kଷ, t ∈ ൣt୮, t୮ାଵ൧

kସ, t ∈ ൣt୮ାଵ, t୮ାଶ൧

൫t୮ାଷ − t൯
ଷ

, t ∈ ൣt୮ାଶ, t୮ାଷ൧

  (8) 

where 
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𝑘ଷ=hଷ + 3hଶ൫t − t୮൯ + 3h൫t − t୮൯
ଶ

+ 3൫t − t୮൯
ଷ
, 

kସ = hଷ + 3hଶ൫t୮ାଶ − t൯ + 3h൫t୮ାଶ − t൯
ଶ

+ 3൫t୮ାଶ − t൯
ଷ
. 

 β୮ିଶ,ଷ(t) =
ଵ

୦య

⎩
⎪
⎨

⎪
⎧൫t − t୮ିଶ൯

ଷ
, t ∈ ൣt୮ିଶ, t୮ିଵ൧

kହ, t ∈ ൣt୮ିଵ, t୮൧

k, t ∈ ൣt୮, t୮ାଵ൧

൫t୮ାଶ − t൯
ଷ

, t ∈ ൣt୮ାଵ, t୮ାଶ൧

  (9) 

where 

𝑘ହ =hଷ + 3hଶ൫t − t୮ିଵ൯ + 3h൫t − t୮ିଵ൯
ଶ

+ 3൫t − t୮ିଵ൯
ଷ
, 

k = hଷ + 3hଶ൫t୮ାଵ − t൯ + 3h൫t୮ାଵ − t൯
ଶ

+ 3൫t୮ାଵ − t൯
ଷ
. 

 β୮ିଷ,ଷ(t) =
ଵ

୦య

⎩
⎪
⎨

⎪
⎧൫t − t୮ିଷ൯

ଷ
, t ∈ ൣt୮ିଷ, t୮ିଶ൧

k, t ∈ ൣt୮ିଶ, t୮ିଵ൧

k଼, t ∈ ൣt୮ିଵ, t୮൧

൫t୮ାଵ − t൯
ଷ

, t ∈ ൣt୮, t୮ିଵ൧

  (10) 

where 

𝑘 =hଷ + 3hଶ൫t − t୮ିଶ൯ + 3h൫t − t୮ିଶ൯
ଶ

+ 3൫t − t୮ିଶ൯
ଷ
, 

k଼ = hଷ + 3hଶ൫t୮ − t൯ + 3h൫t୮ − t൯
ଶ

+ 3൫t୮ − t൯
ଷ
. 

By considering the cubic B-spline functionbeing expressed in Equations (7)-(10), the function 

can be stated as 

  

β୮,ଷ൫t୮൯ = 0

β୮ିଵ,ଷ൫t୮൯ =
ଵ



β୮ିଶ,ଷ൫t୮൯ =
ସ



β୮ିଷ,ଷ൫t୮൯ =
ଵ

⎭
⎪
⎬

⎪
⎫

 (11) 

the first derivative of functions (11) at the t = t୮ can be shown as 

  

β′୮,ଷ൫t୮൯ = 0

β′୮ିଵ,ଷ൫t୮൯ =
ଵ

ଶ୦

β′୮ିଶ,ଷ൫t୮൯ =
ଵ

୦

β′୮ିଷ,ଷ൫t୮൯ = −
ଵ

ଶ୦⎭
⎪
⎬

⎪
⎫

 (12) 
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and the second derivative as 

  

β′′୮,ଷ൫t୮൯ = 0

β′′୮ିଵ,ଷ൫t୮൯ =
ଵ

୦మ

β′′୮ିଶ,ଷ൫t୮൯ = −
ଶ

୦మ

β′′୮ିଷ,ଷ൫t୮൯ =
ଵ

୦మ ⎭
⎪
⎬

⎪
⎫

 (13) 

Consider the problem in Equation (4) and then the derivation of the approximation, Equation 

(1) can be rewritten as 

y(t) = Cିଷ ⋅ βିଷ,ଷ(t) + Cିଶ ⋅ βିଶ,ଷ(t) + Cିଵ ⋅ βିଵ,ଷ(t) + C ⋅ β,ଷ(t) + Cଵ ⋅ βଵ,ଷ(t) + Cଶ ⋅

βଶ,ଷ(t) + Cଷ ⋅ βଷ,ଷ(t) + Cସ ⋅ βସ,ଷ(t) + Cହ ⋅ βହ,ଷ(t) + C ⋅ β,ଷ(t) + C ⋅ β,ଷ(t) (14) 

for the case of 𝑛 = 8 and 𝐶 are unknown coefficients.Then, let us impose the first derivative 

and the second derivative over Equation (14) and substitute into Equation (4),cubic B-spline 

approximation equation of problem (14) is acquired and can be stated as 

 α୮ ⋅ C୮ିଷ + β୮ ⋅ C୮ିଶ + γ୮ ⋅ C୮ିଵ = R୮ (15) 

where 

α୮ =
ଵ

୦మ −
୮౦

ଶ୦
+

୯౦


, 

β୮ = −
ଶ

୦మ
+

୮౦

୦
+

ସ୯౦


, 

γ୮ =
ଵ

୦మ +
୮౦

ଶ୦
+

୯౦


. 

for  p = 1,2,3, … ,8.Furthermore, the approximation Equation (15) will be used to carry out a 

system of linear equations in matrix form generally as 

 Aθ = R (16) 

where 

𝐴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝛼 𝛽 𝛾 0 0 0 0 0 0 0 0
0 𝛼ଵ 𝛽ଵ 𝛾ଵ 0 0 0 0 0 0 0
0 0 𝛼ଶ 𝛽ଶ 𝛾ଶ 0 0 0 0 0 0
0 0 0 𝛼ଷ 𝛽ଷ 𝛾ଷ 0 0 0 0 0
0 0 0 0 𝛼ସ 𝛽ସ 𝛾ସ 0 0 0 0
0 0 0 0 0 𝛼ହ 𝛽ହ 𝛾ହ 0 0 0
0 0 0 0 0 0 𝛼 𝛽 𝛾 0 0
0 0 0 0 0 0 0 𝛼 𝛽 𝛾 0
0 0 0 0 0 0 0 0 𝛼଼ 𝛽଼ 𝛾଼⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

θ = [θିଶ θିଵ θ θଵ θଶ θଷ θସ θହ θ], 
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R = [R − α Rଵ Rଶ Rଷ Rସ Rହ R R R଼ − β]. 

Clearly, A,𝜃 and𝑅are known respectively as the coefficient matrix, unknown vector and 

known vector. In order to obtain an approximate solution of linear equations,the coefficients 

matrix, Ain Equation (16) must fulfill the positive definite,ൣa୮୮൧ ≥ ∑ ൣa୮୯൧୮ஷ୯ . 

 

3. FORMULATION OF ITERATIVE METHODS 

By reffering the first section, the system of linear Equation (16) will be solved through GS, 

SOR and MKSORiterative methods. To facilitate us forthe following discussion, formulation 

of GS, SOR and MKSOR iterative methods will be presentedin matrix and/or iterative form. 

3.1.GS Iteration Scheme 

Systems of linear Equation (16) can be manipulated to produce a variety of iterationmatrix 

schemes. Therefore, by manipulating the coefficient matrix, 𝐴in linear system (16), letthe 

matrix A be expressed as 

 A = L + D + V (17) 

where L is strictly lower matrix, D is strictly upper matrix andVis diagonal matrix respectively. 

By using the matrix decomposition in Equation (17), the linear Equation (16) can be rewritten 

as 

 (𝐿 + 𝐷 + 𝑉)𝜃 = 𝑅 (18) 

Furthermore, the GS iteration scheme can be constructed in the iterative form generally as 

 θ୰ାଵ = −(L + D)ିଵVθ୰ + (L + D)ିଵR (19) 

or the general formula for the iterative method is given as 

 θ୮
(୰ାଵ)

=
ଵ

ୟ౦౧
ቆR୮ −  a୮୯

୮ିଵ

୯ୀଵ
θ୯

(୰ାଵ)
−  a୮୯



୯ୀ୮ାଵ
c୯

(୰)ቇ (20)                                  

withp = −2, −1, 0, 1, … , N − 2. 

3.2.SOR Iteration Scheme 

Young studies [11-14] also introduced the SOR iterative method. This method improves the 

GS iterative method by adding the relaxation parameter, 𝜔 which aims to accelerate the 

convergence rate and reduce error approximation solution. The value of 𝜔 does not depend 

on the value of 𝑖 and 𝑘 but the range value of 𝜔is given as 1 ≤  𝜔 < 2[15]. The numerical 
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solution for SOR method shows more accurate if the selected value of 𝜔 is the optimal value. 

The general formula for the SOR method is given as [16] 

 θ୮
(୰ାଵ)

= (1 − ω)θ୮
(୰) +

ன

ୟ౦౦
ቆR୮ −  a୮୯

୮ିଵ

୯ୀଵ
θ୯

(୰ାଵ)
−  a୮୯



୯ୀ୮ାଵ
θ୯

(୰)
ቇ (21) 

for p = −2, −1, 0, 1, … , N − 2. As considering 𝜔 = 1, the SOR method will perform as GS 

method. 

3.3. MKSOR Iteration Scheme 

Due to the advantage of the SOR iterative method, the formulation of an MKSOR iterative 

scheme is based on SOR iterative scheme but thismethod has been modified to form a new 

method [17]. MKSOR method has considered the implementation of the red-black ordering 

strategy, by using two relaxation parameters, 𝜔ଵ
∗and𝜔ଶ

∗ . For example, the firstparameter ”ωଵ
∗” 

performed on the red and the second parameter “ωଶ
∗ ” is also applied to black rule. The general 

formula for the MKSOR method can be declared as 

 θ୮
(୰ାଵ)

=
ଵ

(ଵାனభ
∗ )

ቈθ୮
(୰)

+
னభ

∗

ୟ౦౦
ቆR୮ −  a୮୯

୮ିଵ

୯ୀଵ
θ୯

(୰ାଵ)
−  a୮୯



୯ୀ୮ାଵ
θ୯

(୰)
−

a୮୯θ୯
(୰ାଵ)

ቇ (22) 

for  p = −2, 0, 2, 4, … , N − 2. 

 θ୮
(୰ାଵ)

=
ଵ

(ଵାனమ
∗ )

ቈθ୮
(୰)

+
னమ

∗

ୟ౦౦
ቆR୮ −  a୮୯

୮ିଵ

୯ୀଵ
θ୯

(୰ାଵ)
−  a୮୯



୯ୀ୮ାଵ
θ୯

(୰)
−

a୮୯θ୯
(୰ାଵ)

ቇ (23) 

for p = −1, 1, 3, 5, … , N − 1. Based on Equations (22) and (23), algorithm 1 explains the 

implementation of MKSOR iteration scheme. 

Algorithm 1: MKSOR scheme 

i. Set initial valueθ()=0. 

ii. Calculate the coefficient matrix, A. 

iii. Calculate the vector, R. 

iv. For  p = −2, 0, 2, 4, … , N − 2, calculate Equation (22). 

v. For  p = −1, 1, 3, 5, … , N − 1, calculate Equation (23). 
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vi. Check the convergence test, ቚθ୮
(୰ାଵ)

− θ୮
(୰)

ቚ < 𝜀 = 10ିଵ. If converge, go to step (vii). 

Otherwise,repeat from step (iv). 

vii. Show numerical solution. 

Iftakingωଵ
∗ = ωଶ

∗ , then the MKSOR iterative method can be reduced to the Red-BlackKSOR 

iterative method. 

 

4. RESULTS AND DISCUSSION  

Three examples of two-point baundary value problems have been considered to examinate the 

effectivenessof GS, SOR and MKSOR iterative methods by considering the cubic B-spline 

approximation equation. Comparison of these three iterative methods will be measured based 

on three parameters which is number of iterations (Iter), computational time in seconds (Time) 

and maximum error (Error). Then, the implementation of these three proposed iterative 

methods has considered the tolerance error at different grid sizes that is constant in which its 

value is given as 𝜀 = 10ିଵ
. 

4.1. Problem 1 [18] 

 yᇱᇱ − yᇱ = −e(୲ିଵ)ିଵ, t ∈ [0,1] (24) 

The analytical solution for problem (24) is 

  y(t) = t൫1 − e(୲ିଵ)൯, t ∈ [0,1] 

4.2. Problem 2 [19] 

 −yᇱᇱ − 2yᇱ + 2y = eିଶ୲, t ∈ [0,1] (25) 

The analytical solution for problem (25) is 

 𝑦(𝑡) =
ଵ

ଶ
𝑒ି(ଵା√ଷ) +

ଵ

ଶ
𝑒ିଶ௧ , 𝑡 ∈ [0,1] 

4.3. Problem 3 [5] 

 yᇱᇱ − 4y = kosh(1), t ∈ [0,1] (26) 

The analytical solution for problem (26) is   

  y(t) = kosh(2t − 1) − kosh(1), t ∈ [0,1] 

Based on these three problems in Equations (24), (25) and (26), all results of numerical 

experiments were also recorded in Tables 1, 2 and 3. After analyzing the numerical results 
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areobtained in these tables, clearly show that the SOR and MKSOR iterative methods have 

less number of iterations and more faster in term of computational time than the GS method at 

different values of grid sizes, m = 32, 64, 128, 256, 512 and 1024. 

Table 1. Result of the number of iterations (Iter), computational time (Time) and maximum 

absolute error (Error) for problem 1 

Iter 

M GS SOR MKSOR 

32 1701 103.0 

(w=1.8215) 

95.0 

(w=-2.2170) 

64 6248 206.0 

(w=1.9101) 

178.0 

(w=-2.1028) 

128 22753 392.0 

(w=1.9542) 

353.0 

(w=-2.0475) 

256 82043 770.0 

(w=1.99768) 

663.0 

(w=-2.0247) 

512 292276 1526.0 

(w=1.9879) 

1346.0 

(w=-2.0116) 

1024 1025490 6334.0 

(1.9910) 

2448 

(w=-2.0061) 

Time (Second) 

 GS SOR MKSOR 

32 0.22 0.05 0.03 

64 0.65 0.06 0.05 

128 2.18 0.15 0.12 

256 7.04 0.30 0.24 

512 26.67 0.33 0.28 

1024 112.06 1.02 0.56 

Error 

 GS SOR MKSOR 
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32 2.8273e-5 2.8283e-5 2.8284e-5 

64 7.0299e-6 7.0687e-6 7.0759e-6 

128 1.6075e-6 1.7644e-6 1.7516e-6 

256 2.1305e-7 4.3928e-7 4.6000e-7 

512 2.4807e-6 1.1671e-7 7.8049e-8 

1024 1.0334e-5 1.7631e-8 8.8889e-8 

From the numerical results as obtained in Table 1, it shows that the number of iterations of 

MKSOR iterative method has declined approximately by 84.42-99.76% as compared with GS 

method. In addition, MKSOR iterative method is faster than GS iterative method in term of 

computational time where the range is 86.36-99.50%. It means that the MKSOR iterative 

method have less number of iterations and faster in computational time than GS and SOR 

iterative methods. 

Table 2. Result of the number of iterations (Iter), computational time (Time) and maximum 

absolute error (Error) for problem 2 

Iter 

M GS SOR MKSOR 

32 1415 126.0 

(w=1.7950) 

115.0 

(w=-2.2536) 

64 5225 249.0 

(w=1.8911) 

229.0 

(w=-2.1201) 

128 19143 493.0 

(w=1.9436) 

454.0 

(w=-2.0585) 

256 69532 977.0 

(w=1.9711) 

902.0 

(w=-2.0290) 

512 249932 1933.0 

(w=1.9853) 

1790.0 

(w=-2.0145) 

1024 886861 

 

5070.0 

(w=1.9910) 

3547.0 

(w=-2.0073) 

Time (Second) 
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 GS SOR MKSOR 

32 0.28 0.04 0.03 

64 0.66 0.13 0.08 

128 2.14 0.15 0.12 

256 6.39 0.26 0.24 

512 23.83 0.37 0.32 

1024 102.47 0.94 0.73 

Error 

 GS SOR MKSOR 

32 9.5775e-5 9.5768e-5 9.5768e-5 

64 2.3959e-5 2.3929e-5 2.3929e-5 

128 6.1035e-6 5.9823e-6 5.9819e-6 

256 1.9892e-6 1.4978e-6 1.4966e-6 

512 2.3987e-6 3.7911e-7 3.7647e-7 

1024 8.2376e-6 1.2311e-7 9.9733e-8 

From the numerical results are observed in Table 2, it can be concluded that the MKSOR 

iterative method has less the number of iterations by 91.87-99.60% as compared with GS 

method. Other than that, in term of computational time, the MKSOR iterative method is faster 

than GS iterative method with the range is 87.88-99.29%. It shows that the MKSOR iterative 

method is much better than GS and SOR iterative methods for solving the second problem 

involving two-point boundary value problems. 

Table 3. Result of the number of iterations (Iter), computational time (Time) and maximum 

absolute error (Error) for problem 3 

Iter 

M GS SOR MKSOR 

32 1341 97.0 

(w=1.7941) 

88.0 

(w=-2.2590) 

64 4953 193.0 

(w=1.8944) 

167.0 

(w=-2.1164) 
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128 18173 382.0 

(w=1.9439) 

313.0 

(w=-2.0590) 

256 66139 724.0 

(w=1.9717) 

581.0 

(w=-2.0290) 

512 238353 1438.0 

(w=1.9858) 

1158.0 

(w=-2.0144) 

1024 848604 4739.0 

(w=1.9910) 

2357.0 

(w=-2.0068) 

Time (Second) 

 GS SOR MKSOR 

32 0.28 0.05 0.03 

64 0.57 0.09 0.04 

128 1.84 0.18 0.15 

256 6.05 0.26 0.24 

512 22.41 0.33 0.29 

1024 97.2 0.86 0.57 

Error 

 GS SOR MKSOR 

32 1.2400e-4 1.2401e-4 1.2401e-4 

64 3.0963e-5 3.0992e-5 3.0986e-5 

128 7.6296e-6 7.7471e-6 7.7569e-6 

256 1.4644e-6 1.9383e-6 1.9708e-6 

512 1.4058e-6 4.8750e-7 5.1340e-7 

1024 7.4391e-6 9.9535e-8 6.2049e-8 

From the numerical results as recorded in Table 3, it can be observed that the MKSOR 

iterative method has a lesser amount of the number of iterations by 93.44-99.72% as 

compared with GS method. Similar in term of computational time, implementations of 

MKSOR iterative method with the range 89.29-99.41% are faster than GS iterative method. It 

means that the MKSOR iterative method obtains less number of iterations and faster in 

computational time than GS and SOR iterative methods. 
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Table 4. Depreciation percentage of the number of iterations (Iter) and computational time 

(Time) for the SOR and MKSOR compared with GS iterative method 

 SOR MKSOR 

Problem 1 Iter 93.94-99.48% 94.42-99.76% 

Time 77.27-99.08% 86.36-99.50% 

Problem 2 Iter 91.10-99.43% 91.87-99.60% 

Time  80.30-99.08% 87.88-99.29% 

Problem 3 Iter 92.77-99.94% 93.44-99.72% 

Time  82.14-99.11% 89.29-99.41% 

Based on the numerical results as obtained in Table 4 with GS iterative method as a control, it 

can be observed that MKSOR iterative method has reduced number of iterations 

approximately 91.87%-99.76% and computational time approximately 86.36%-99.50%. 

Therefore, it is proven that the MKSOR iterative method is more efficient in terms of number 

of iterations and computational time as compared with GS and SOR methods. 

 

5. CONCLUSION  

In conclusion, the cubic B-spline approximation equation with GS, SOR and MKSOR 

iterative methodsto solve two-point boundary value problems has been studied. The numerical 

results with the three selected problems indicated that the proposed MKSOR iterative method 

requires much lesser number of iterations and computational time in obtaining approximate 

solution for the proposed problems as compared to the other two proposed iterative methods. 

Overall, the three proposed iterative methods are good in term of accuracy. However, the 

overall numerical results recorded were obtained through iterative methods based on the 

concept of full sweep. Therefore, further studies should be continued in the review of the 

half-sweep iteration concept[20-21] and the quarter-sweep iteration concept[22]. Apart from 

these three proposed iterative methods which are categorized as a family of one-step iterative 

methods, further observations should be made to investigate the efficiency of the two-step 

iteration family such as AM [23], AGE, IADE [24] and QSAM [25]with the B-spline 

approximation approach. 
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