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ABSTRACT 

The problem of recovery of parameters of an elastic uniform layer is considered. The solution 

method of this problem is proposed by means of neural networks. For the input network 

parameters, amplitudes of transmitted or reflected waves are chosen. We consider the output 

parameter of network density and longitudinal speed of the environment filling a layer. Three 

types of neurons activation function are chosen: piecewise-linear, sigmoid and radial function 

(Gauss's function). The following algorithms of perseptron training are considered: the 

backpropagation algorithm and the genetic algorithm. In the genetic algorithm, the crossover 

method, in which the next gene is selected equiprobable and incidental from genes of the 

ancestors located in the same position is chosen. Then genes of a new chromosome with small 

probability are exposed to mutations at a small value. Training of neural network takes place 

according to the calculated data of the direct problem solved multiply times with various 

elastic parameters varying in the defined intervals. Dependences graphs of an error of 

parameter recovery on such parameters of neural network as selection dimension and 

neurons’ number are provided. Deterioration in accuracy of recovery of required data, when 

training network, is shown. Results of comparison of neural networks with various activation 

functions are described. For density and speed of a layer recovery at the same time, the 

method of calculation of unknown elastic parameters using the neural network trained for 

recovery of acoustic rigidity and wave number is proposed. The conclusion is drawn that 

radial function of neurons activation yields steadier results. 
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1. INTRODUCTION 

Problems of elastic waves passing through isotropic [1] and anisotropic [2, 3] layers arise in 

many applications. It is often necessary to carry out the nondestructive analysis of the studied 

layers. In this regard, recovery of above-mentioned parameters of elastic materials according 

to the available "external" data is of great interest. Most often, such data are amplitudes of the 

reflected or transmitted waves [4]. The Artificial Neural Network (ANN) can be considered as 

one of the tools for the similar problems solution [5, 6]. In the current study, for recovery of a 

profile the method of neural networks is used. For example, authors earlier showed a 

possibility of the ANN use for recovery of refraction index of a layer [7]. 

In the current study, ANN training is provided by two methods: by method of the 

backpropagation and genetic algorithm [8]. At the same time, three activation functions (AF) 

of neurons are considered: piecewise-linear, sigmoid and radial function (Gauss's function) 

[9]. Errors of recovery of longitudinal wave speed in a layer for various values of elastic 

parameters and ANN parameters are estimated. The conclusion is drawn that more exact 

results are obtained by ANN with radial activation function. 

For density and speed of a layer recovery, the method of calculation of unknown elastic 

parameters by the neural network trained for recovery of acoustic rigidity and wave number is 

proposed. It is shown that such approach, in certain cases, is more effective than a standard 

method when the network restores directly through required parameters. Graphs of 

dependence of neural network training errors on the ANN various parameters are provided. 

 

2. Problem statement 

Let the elastic harmonic wave with a frequency of oscillations   of the form 

}exp{)(0 tixu  , where }1exp{0)(0 xikAxu   and 1/1 vk   (see Fig. 1) fall on a 

uniform layer of thickness L  (the environment 2 }0{ Lx , with unknown density 2  

and propagation speed of a longitudinal wave 2v ) from the environment 1 }0{ x . 
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Fig.1. Geometry of the problem 

 

As a result of diffraction, the reflected wave )(1 xu  and the wave )(3 xu , which passes into 

the environment 3 }{ Lx   appear. It is necessary to find values of elastic parameters 2  

and 2v  provided that the passed and/or reflected waves are known. 

Let us solve a problem by the method of neural networks. At the same time, we will consider 

two methods of network training: the backpropagation algorithm and the genetic algorithm 

using three most widespread AF: piecewise-linear, sigmoid and radial (Gauss's function). 

 

3. Neural networks 

Before proceeding directly to the problem’s solution, we will provide some necessary 

background from the theory of ANN, which we will use further on. 

Formally, every neuron represents a certain node, which receives a signal from the previous 

layer and transfers it to the following layer. The function calculating an output signal of an 

artificial neuron is called AF. As an argument, the function receives a signal produced at the 

exit of the so-called adder, which represents the sum of products of weights and values of 

entrance neurons. It is possible to consider weight as certain channels characterizing a 

constraint force between neurons and an imitating work of biological synapses. Thus, ANN 

can be presented in the form of sets of simple elements, i.e. neurons, which are carrying out 

processing of entrance data with the subsequent delivery of the resulting value. The block 

diagram of ANN with three hidden layers is presented in Fig. 2.  
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Most of such functions of activation as piecewise-linear, sigmoid and radial functions and, in 

addition, some modified options of these functions were widely adopted. A correctly picked 

AF together with a training algorithm in many respects improve convergence of a neural 

network. In this regard, one of the important aspects of the ANN design for the solution of a 

specific objective is the correct choice of the network architecture. 

 

 

Fig.2. Model of artificial neural network with one hidden layer 

 

The signal at the exit neuron i with the linear activation function is determined by the 

combined entrance, which represents an adder exit: 

 jx
N

j ijwiS 



0

, (1) 

where ijw  are weights of neural network, jx  is the exit of neuron i  of the current layer. 

Here 0iw  is value of a threshold, 10 x . 

Piecewise-linear functions are used most often: 
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Piecewise-linear functions are some of the simplest functions of activation and easily 

implemented in practice. However, these functions have an essential shortcoming; their 

derivative has a discontinuity, and it is difficult to use gradient methods for ANN training of 

this kind. 
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The sigmoid activation function changes in the range from zero to unity and is described by 

the following formula: 

 
}exp{1

1)(
S

Sf


 . (3) 

A distinctive property of such function is its monotoneness and differentiability in the entire 

range of definition that can be used in gradient training algorithms. 

It is possible to designate networks of radial and basis functions as a separate class ANN, 

where radial basis functions are used as activation functions. Gauss's function can act as such 

function 
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where parameter   is a real number. 

While determining a structure of the neural network, it is necessary to find values of weights 

ijw  and thresholds 0iw  so that the error at the exit of the neural network is minimized. For 

the solution of this problem, training algorithms are used. Let us consider two algorithms, 

which will be used in the present work. 

The most widespread method of training is the backpropagation algorithm. The method of 

calculating a gradient vector for the subsequent process of weights specification is the 

cornerstone of this algorithm. The direction of a vector corresponds to the shortest descent on 

the error surface. This method means training with "a teacher" that is the training selection, at 

which the network will study having entrance data and a desirable response to it. By 

comparison of real and target (desirable) values, the mean square error of network training   

is calculated. On the basis of  , the overall performance of ANN, in general, is estimated. 

Let us consider other method of global optimization - a genetic algorithm. The genetic 

algorithm represents the method reflecting natural evolution of the required decision. In it the 

evolutionary principle of survival of the most adapted individuals is used. Optimization takes 

place by crossover and mutation of chromosomes }{ ijwW   of this population. Under a 

chromosome W  it is necessary to understand a set of genes ijw , which can be coded in the 

form of a vector ("genotype"). It is presumed that the genotype has the fixed length. On the 

first iteration in a random way, the set of genotypes of initial population is created. The error 

of network training helps to estimate the level of fitness of each individual, and on the basis of 

it to create new population of individuals. The best individuals on the basis of fitness value to 
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whom operations of crossover and a mutation are applied again get out of the received set of 

the decisions called by generations. Descendants have to have an opportunity to inherit signs 

of both parents.  

"Mixing" can be carried out in various ways. In the current study we will consider a way of 

crossover at which the next gene gets out equiprobably and incidentally of genes of the 

ancestors located in the same position. Further genes of the "designed" chromosome with 

small probability are exposed to mutations at a small rate. Generation of new populations 

happens until fitness function is optimized. Thus, the sequence of similar iterations can 

simulate "evolutionary process". 

 

4. Recovery of longitudinal wave speed in a layer 

Let us consider a case when density 2  and thickness of a layer L  is known. Let us assume 

that measurements on both sides of a layer are performed. Results of measurements can be 

presented as two complex values: )0(1u  and )(3 Lu . Thus, the designed neural network will 

contain four neurons at an entrance )]0(1Re[u , )]0(1Im[u , )](Re[ 3 Lu , )](Im[ 3 Lu , and 

one neuron at the exit ( 2v ). 

We will train ANN selection containing M  experiments. Each experiment corresponds to the 

value 
)(

2
iv , Mi ..1 , so that the interval ])(

2,)1(
2[ Mvv  contained the restored required 

value 2v . And we will cover an interval with a uniform grid: 

)1(
21

)1(
2

)(
2)1()(

2 v
M

vMv
iiv 




 . The research of the constructed ANN shows that 

function of error has many local extrema, and backpropagation algorithm will stop in the next 

local minimum. In this regard genetic algorithm should be taken into account as a method of 

global optimization. 

At each ANN training as a result we will receive the set full set of weights }{ ijwW  . And 

owing to any starting values 
)0(W , as well as variabilities of mutations of weights W  at 

each training constructed weight W  will differ. Let us assume that the values 2v  calculated 

by neural network approximately satisfy to the normal law. Then it will allow using the 

following approach. For the same experiments we will provide training of K  times in 
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network, having received, thus, actually K  independent ANN. Further we will calculate exits 

for each network.  

We will receive total value as an average 

 



K

i iv
K

v
1 ,2

1
2 , (5) 

For numerical experiments we will choose 5K . 

For the ANN "work" accuracy check we use a method of cross validation. We use the 

following modification of a method. We have available M  experiments. Randomly we will 

choose from them one experiment, we will train network at the remained 1M  data. Let us 

compare 2v  received with the known value, having received an approach error i . Let us 

carry out R  tests, we will be result the sequence Ri  ,..., . Let us choose the worst value 

iRi


..1
max


 . Let 20R , then it is possible to claim 95% with reliability that the neural 

network "works" with a margin   error. Let us put 20R . 
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Fig.3. Dependence of   on M . ANN: 1 hidden layer with 3 neurons (left), 3 hidden layers 

with 3 neurons (right). The continuous line is for the piecewise-linear activation function, the 

dashed line is for sigmoid function, the dotted line is for Gauss's function. The 

backpropagation algorithm was applied 

 

Let us consider recovery of speed on transmitted field. In this case the neural network will 

contain two entrances )](3Re[ Lu , )](3Im[ Lu  and one exit 2v . Let us restore value 2v  the 

network containing one and three hidden layers on three neurons in each. Dependence of an 

error   on number of selections M  is given in Fig. 3. It is visible that the error remains 

rather big for ANN with one hidden layer with three neurons, but steadier and a little smaller 

values   will be for ANN with three hidden layers with three neurons in each layer. It should 

be noted that at big M there is an instability of an error caused by retraining. 
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Fig.4. Dependence of   on M . ANN: 1 hidden layer with 3 neurons (left), 3 hidden layers 

with 3 neurons (right). The continuous line is for the piecewise-linear activation function, the 

dashed line is for sigmoid function, the dotted line is for Gauss's function. Genetic algorithm 

was applied 

 

We will make the next experiments for a genetic algorithm (Fig. 4). It is obvious that the error 

improves and stabilizes with growth of quantity of layers and neurons (and according to 

weights). In these cases it is already difficult to allocate any activation function.  
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Fig.5. Dependence   on N . Activation function of output neuron of the transmitted layer: 

identical (left), linear (right). The continuous line is for the piecewise-linear activation 

function, the dashed line is for sigmoid function, the dotted line is for Gauss's function. The 

backpropagation algorithm was applied 

 

In Fig. 5 dependence of a relative error recovery of longitudinal wave speed is given in a layer 

  from number of neurons N  of network with one hidden layer. It is possible to see from 

graphs, when using the AF gradient methods of output neuron of the transmitted layer to set 

better identical with AF of neurons of inside layers. In case of a linear exit results turn out 

unstable. 

Let us consider the same dependences for a genetic algorithm of network training (see Fig. 6). 

It is visible that 7N  at values of error   with growth N improves and stabilized, at the 

same time both options have approximately identical results. We will receive the best result 

when using AF of Gauss with a linear exit. 
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Fig.6. Dependence   from N . Activation function of output neuron of the transmitted layer: 

identical (left), linear (right). The continuous line is for the piecewise-linear activation 

function, the dashed line is for sigmoid function, the dotted line is for Gauss's function. 

Genetic algorithm was applied 

 

By method of cross validation, it is expedient to reveal dependence of the training error on 

amount of neurons of the network with one hidden layer. Conditions for cross validation 

remain same, as for assessment of the training error dependence on number of selections M . 

These graphs for the backpropagation algorithm and a genetic algorithm are provided on Fig. 

7. 
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Fig.7. Dependence   from N . The backpropagation algorithm (left), the genetic algorithm 

(right). The continuous line is for the piecewise-linear activation function, the dashed line is 

for sigmoid function, the dotted line is for Gauss's function. Activation function of output 

neuron of the transmitted layer identical 

 

For a genetic algorithm with sigmoid function and Gauss's function the error of network 

training, starting 3N , decreases and further essential jumps are not observed. If to look at 

error change ranges, by the backpropagation algorithm the network works with a bigger error, 

especially for piecewise-linear activation function. 

5. Recovery of longitudinal speed and density 

Let us consider more general problem - the problem of the two parameters recovery of an 

elastic layer: longitudinal speed 2v  and density 2 . At the same time we will consider two 

approaches depending on a way of parameter recovery. In the first case the neural network 

restores values 2v  and 2 . In the second restores rigidity of the environment 222 vz   

and the wave number 
2/22 vk  , and required speed and density are expressed through 

them. 
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We choose the number of the training selection M = MMv* , where Mv  and M  are the 

grid values on 2v  and 2 , respectively. Let us note that in the second case the grid on 2k  

and 2z  turns out curvilinear as these parameters are not linearly connected with 2v  and 2 . 

  

Fig.8. Relative error of recovery of 2v . Error at recovery: through 2z , 2k  (left), 2v , 2  

(right). The sigmoid AF from the linear AF in an output layer. Genetic algorithm was applied 

 

Let us make numerical experiments for a case 3K . Lines of level of an error recovery for 

longitudinal speed are given in two ways in Fig. 8: through 2v , 2  (right) and 2z , 2k  (left). 

The relative mistake in both cases remains rather big - more than 100%. Nevertheless, 

recovery through 2v , 2  yields better results, than recovery through 2k  and 2z . It is 

visible in the right Fig. 8 that the worst approach 2.1  turns out at small values Mv . 
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While at the second way of recovery it is impossible to allocate specific zones of bad speed 

recovery.  

Now we will consider dependence of a relative error recovery 2 on selection M number for 

ANN from sigmoid AF in inside layers and linear AF in an output layer. Lines of level of an 

error recovery are also given in two ways in Fig. 9: through 2v , 2  (right) and 2z , 2k  

(left). Also as well as at recovery of speed, big mistakes are located at small values M . 

Results of experiments of recovery 2  (see Fig. 9) demonstrate that the second way of 

recovery is a little more preferable. 

 

  

Fig.9. Relative error of recovery of 2 . Error at recovery: through 2z , 2k  (left), 2v , 2  

(right). The sigmoid AF from the linear AF in an output layer. Genetic algorithm was applied 
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For more detailed comparison of two ways of recovery we will estimate a difference of errors 

for each of them. For this purpose we will estimate a difference between error at recovery in 

the second way )2,2( kz and error at recovery in the first way )2,2(  v . Results of 

values )2,2()2,2(  vkz   for ANN with two various AF are given in Fig. 9 and 10. 

Zones with negative values show where the second way of recovery of required parameters is 

more preferable. While zones with positive values indicate higher precision at recovery in the 

first way. Parameter recovery in all cases was carried out by ANN with two hidden layers on 

three neurons in each. 

 

  

Fig.10. A difference of results at recovery 2  as ),(),( 2222  vkz   for ANN with Gauss's 

AF from identical AF of an output layer (left) and from the linear AF (right). Genetic 

algorithm was applied 
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The difference of error is given in Fig. 10 at various Mv  and M  for neural network with 

Gauss's AF. Left lines of level for a case when all layers have one AF are given; and right - 

for a case from Gaussian AF in the hidden layers and linear AF in an output layer.  

It is possible to note prevalence of dark color in the left Fig. 10. It demonstrates that ANN 

from Gaussian AF restores better on 2z  and 2k . Dark and light shades in the right Fig. 10 

are distributed approximately equally. It means that both ways for neural networks from linear 

AF in an output layer give an identical error. 

 

  

Fig.11. A difference of results at recovery 2 as ),(),( 2222  vkz   for ANN from sigmoid 

AF from identical AF of an output layer (left) and from the linear AF (right). Genetic 

algorithm was applied 
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For sigmoid AF dark shades in Fig. 11 are expressed not so strongly. This fact shows that in 

this case it is impossible to give preference to any way. 

Thus, if to estimate an error of speed recovery, then small preference should be given to the 

first way - on density and speed. If to estimate an error of density recovery, then the second 

way recovery is more preferable to radial AF through 2z  and 2k . 

 

6. CONCLUSIONS 

It is expedient to provide training of the neural network for recovery of elastic parameters of 

wave propagation in a uniform layer by means of the genetic algorithm in case of a simple 

ANN. Such conclusion follows from the fact that the criterion function (error of the network) 

contains a set of local extrema. 

The second and quite obvious conclusion is that an increase in the number of neurons 

improves an approximation of the required values, and the network functioning with a 

complication of the structure (an increase in the number of neurons) becomes more stable. 

The third conclusion concerning functions of activation demonstrates that all functions 

considered in the present work (piecewise-linear, sigmoid and Gauss's functions) approximate 

the sought-for speeds almost identically. But an ANN giving more stable solutions is obtained 

via using a genetic algorithm with the Gaussian activation function. 

For recovery of two parameters, which are longitudinal speed and density, it is more 

preferable to use the network trained for recovery of acoustic rigidity and wave number. 

Let us note that in the present study, we were not concerned with questions of uniqueness of 

the solution of the inverse problem and optimum frequencies for the analysis. However, we 

fully understand that this question is quite important [10, 11] and deserves a separate attention 

and research investigation. In addition, it is better to train the network via taking into account 

the features of passing of elastic waves through characteristic peculiarities of the waveguide 

structures [12, 13]. 

 

7. SUMMARY 

Perseptrones with a small number of neurons and a high precision recover one unknown 

parameter of an elastic layer and can be recommended as a method of fast and qualitative 

analysis. 
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Recovery of two unknown parameters such as density and speeds of propagation of an elastic 

wave provide a solution to the problem with a great error. This approach can be used as an 

approximate or initial assessment of the elastic parameters. 
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