
 

 

MATHEMATICAL MODELING OF RAINWATER RUNOFF OVER CATCHMENT 

SURFACE AND MASS TRANSFER OF CONTAMINANT INCOMING TO WATER 

STREAM FROM SOIL 

 

A. Chekalin*, M. Khramchenkov, V. Konyukhov, I. Konyukhov, A. Garaeva 

 

Kazan Federal University 

 

Published online: 08 August 2017 

ABSTRACT 

The subject of an article is the mathematical modeling of the rainwater runoff along the 

surface catchment taking account the transport of pollution which permeates into the water 

flow from a porous media of soil at the certain areas of this surface. The developed 

mathematical model consists of two types of equations: the equations for calculating of the 

water layer thickness over the slope surface given the precipitation and evaporation, and 

equation of the mass transfer of impurity coming into the surface water during its filtration in 

zone of incomplete saturation of soil. The model also takes into account a reverse process – 

adsorption of impurity in soil with its low concentration or in the uncontaminated soil. Water 

content in the zone of incomplete saturation is determined within the approximate approach 

based on the model of capillary impregnation. The principal features of nonlinear differential 

equations are theoretically studied. In particular, it is shown that the equation for water 

content in this zone can become a differential equation with lagging argument.  

Keywords: Mathematical Modeling, Runoff, Transport of Contaminant, Catchment, 

Sorption, Desorption, Incomplete Saturation 

 

1 INTRODUCTION 

The investigation of the interrelated mass transfer in the rainwater runoff along the catchment 

surface and in the porous media of soil in the basin of rivers is of central interest for  
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hydrology, hydrogeology, environmental geology and other allied sciences. Surface runoff 

has annual periodicity, however, its creation and behavior can significantly vary in depend on 

the intensity of precipitation, evaporation, absorption of water in the entire area of the 

catchment and many other factors [1–3]. These processes are further complicated by the 

presence of the contaminated areas with soil containing the various types of pollution which 

can permeate into runoff due to desorption of contaminant from the pores of soil into the 

water flow. There can arise also a reverse process- adsorption of impurity in soil with its low 

concentration or in the uncontaminated soil. Runoff is associated with the following three 

types of flow: the surface flow (continuous or consisting of set of streamlets), a subsurface 

runoff and a groundwater runoff.  

Subsurface runoff has a relatively high speed in the inclined upper layers of soil, for example, 

at filtration of water and its motion through macro-pores and cracks. The rate of water 

movement along the slope beneath the catchment surface, on the one hand, is significantly 

less than on this surface. On the other hand, it is much more than the filtration velocity in the 

aquifers. 

Groundwater runoff is the water flow along the saturated aquifers to the river network. This 

flow represents only a small part of the river hydrograph although some amount of water can 

come into the river channel immediately after rainfall. In various physical and geographical 

areas [4–6] and even within watersheds of relatively small sizes, the runoff formation may be 

caused by a variety of factors. Often runoff transforms from one form to another and these 

changes depend on the surface relief, types of atmospheric fallout, their intensity and total 

amount [7–14]. 

The behavior of runoff along the catchment surface, the riverbed and its feeders can be 

investigate with mathematical modeling [15–19] and solving the corresponding forecasting 

problems. The models suggested by authors of these works, consist of the multi-variable 

nonlinear differential equations, which can be numerically solved [18, 19]. Computation of 

the interrelated processes during a motion of rainwater and groundwater  in the river basin is 

characterized also by a large amount of input data, including boundaries of watershed, the 

topography the catchment surface given the depth of the river network, etc.  

Grid data may be prepared using any standard geoinformation systems and the number of the 

grid nodes usually amount to hundreds of thousands and tens of millions. The problem 

solution becomes more complicated at presence of areas of contamination at the catchment 

surface and transport of contaminant incoming to water stream from soil. So the objective of 

this work is extension of mathematical model [18, 19] of runoff in case of its contaminating, 
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and the theoretical analysis of the features of this problem solution which are very useful at 

development special numerical schemes with high computational efficiency oriented to the 

parallel computing on multiprocessor computers. 

 

2 METHODS AND EQUATIONS 

Mathematical model of the rainwater runoff along the surface catchment was developed 

earlier in our previous papers [18, 19] in framework of the concept of two-dimensional 

kinematic wave. To describe the mass transfer of contaminant incoming to the water stream 

from the porous media of soil, this model was modified and amplified with new equations. In 

result, new generalized system equations can be written as following: 
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Here x  and y  are spatial coordinates; t  is the time; ( , , )U x y t  is the thickness of the water 

layer at the catchment surface; ( , , )x y t  is water content in coil within zone of incomplete 

saturation («ZIS»); m  is the porosity of this area; ( , , )C x y t  is the impurity concentration in 

water solution of the surface flow; ( , , )sC x y t  is the similar characteristic of the water solution 

in the soil thin boundary layer, by which water enters the soil from earth surface; h  is the 

thickness of boundary layer; ( , , )x y tV  is the velocity vector of the surface flow; ( , )H x y  is 

the ground elevation above sea level; n  is the roughness coefficient of the catchment surface; 

1( , , )x y t  is the function that specifies amount of precipitation and evaporation;   is the 

water density; g  is the gravity acceleration; r  is the average radius of pores in zone of 

incomplete saturation;   is the surface tension coefficient;   is the wetting angle;   is the 

viscosity of water solution; ( , , )x y t  is desorption of impurity from the surface of pores in 

soil by rainwater; ( , , )s x y t  is the amount of the desorbed impurity in water, moving in the 
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porous medium, per unit volume of soil;   and   are coefficients of desorption; 

/xZ Z x    ; /yZ Z y    . 

System of differential equations (1) – (4) governs the mass transfer in the catchment area D  

with boundary w r    , where w  is the watershed line; r  is intersection of this line and 

the river surface at its lower course, see Fig. 1. Initial and boundary conditions are: 
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Here 
w

nV


 is the normal velocity at the boundary w ; cD  is the area of contamination source 

with the initial concentration  0 ,sC x y . 

 

Fig.1. Topographical relief of the river basin, the bed of the river with inflows and area D  of 

the runoff formation in the presence of water pollution zone cD  in the soil 

 

Note 1. Parameter h  in the second equation (2) can be used as a verification parameter of 

model. It can be defined by computations in the every concrete situation. In the simplest case 

we can put 1h  . Further, since absorption goes much faster than desorption so we can 

assume that the impurity concentration in the water solution at its moving along this thin layer 

is the same as in the water solution coming from the surface. In this case  ,s s sC C  , and 

the desorbed impurity is instantly transported by water flow throughout the length of ZIS. 

Note 2. If surface-water flow brings the impurity to the area with its lower concentration or to 

the area free from contaminant then the reverse process (the sorption) takes place in soil with 
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coefficients   and  , which values differ from values of   and  , so that 
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Note 3. In the model (1) – (4) the impurity concentration in ZIS is not computed, however at 

each point  , cx y D  the total amount  , ,q x y t  of contaminant gone with the water stream 

in the time interval [0, ]t  is defined as  
0

· / .
t

q C t dt      It is obvious that the value 

cD

Q qdxdy    is equal to amount of impurity which gone away from the area cD . 

 

3 RESULTS AND DISCUSSIONS: THE PRINCIPAL FEATURES OF THE 

EQUATIONS SOLUTION 

Important features of the searched solution of equation (1) were studied in our work [18] in 

absence of impurity in the rainwater runoff. Now we generalize and reformulate obtained 

earlier results for the case of presence of contaminant in soil, ingress of impurity into water 

and its moving with the surface flow. 

3.1. Since there is no inflow through the boundary w  of the watershed, so the thickness U  

of the liquid layer in the area D  becomes greater than zero only due to the function 1 , 

characterizing the intensity and the duration of rainfall. At the same time, water soaks into the 

soil in zone of incomplete saturation with the flow rate which is determined by the derivative 

/ t  . If precipitations have small intensity, then the pores of ZIS can completely absorb all 

rainwater. The absence of the surface runoff in the area D , i.e. equality to zero of the 

functions ( , , )U x y t , reflects the inequality  

2
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which follows from equation (1) and relationship (4). 

3.2. Let us consider the equation (1) at the initial time, i.e. for 0t  . The surface runoff can 

only arise if it rains, so the limit 1 0t



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1 . On the other hand, 

0t   is the time appearance of an instant water source on the boundary of zone of incomplete 

saturation. The discharge flow of this source is determined by the value / t  . At 0t   one 

obtains 
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Thus, in the initial time the condition (6) is fulfilled, and surface runoff is formed not at once 

but only after some time. In addition, as it follows from relation (7), the surface-water flow is 

missing at 1 2a   regardless on duration of precipitation. Note, that from the physical 

standpoint the parameter 2a  corresponds to the filtration coefficient of the soil.  

3.3. The function   (4) defines the water content in ZIS, and the derivative / t   

determines, on the one hand, the amount of water entering the soil through the earth surface, 

and on the other hand, – the velocity of the advancing front saturation in ZIS. The relationship 

(4) is obtained under the assumption that amount of water at the boundary of zone of 

incomplete saturation is enough to provide the maximum possible speed of its absorption. If 

the rainfall is less than they are completely absorbed by soil, and in this situation the volume 

of water incoming into ZIS should be determined not from the relation (4) but in a different 

way using the function 1 : 1

0

.
t

d     

Obviously, the velocity of the advancing front saturation will be decrease. Therefore, at 0t t  

when the intensity of rainfall will exceed the intensity of absorption and the water layer 

appears on the earth surface, the function / t   becomes a function of the retarded argument 

d . In this case, it is required to define the values 0t  and d  for 1 2a  . Let 1 0 dt t   . At 

the time point 0t t  the intensity of rainfall is equal to the absorbtion intensity: 
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By this time, the rainfall has completely been absorbed by soil in zone of incomplete 

saturation forming its water content. Hence we have: 
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Solution to the system of nonlinear equations (8) and (9) can be obtained in terms of 

parameters 0t  and 1t . After their transformation we write the following expressions for 0t  and 

1t : 
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The values of 0t  and 1t  are calculated from the equations (10), respectively. If at 0t t  the 

function 1  is independent of time and 1 const   then 0 0 1( )a t t  , so that the values of the 

lag time 0t  and the retarded argument d  are defined as: 
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Thus, the surface runoff arises only at 0t t  and the function   for 0t t  is calculated from 

the relationship with retarded argument: 

     22 .d d da t b t a t          (12) 

3.4. The intensity of rainfall over time can become so insignificant that at an instant in time 

crt  region crD  with boundary cr  will be formed where water completely soaks into the soil. 

In this case, the thickness of the surface water layer ( , , ) 0U x y t   at ( , ) crx y D , crt t , and 

the water content in the soil is defined as:  
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At those parts cr
  of the boundary cr  where water flows out the region crD , the function U  

is equal to zero and has no jumps. At the other parts cr
  this function can be discontinuous, 

and the water flow rate entering into the unsaturated zone is expressed as: 1/ ,nt V      

where nV   is the water flow through cr
 . The area crD  can vanish if the intensity of 

precipitation will increase. In this case, as in item 3, the values d  and 0t  should be calculated 

at the instant of time when the intensity of rainfall exceeds the intensity of absorption, and the 

water layer appears on the earth surface. In this case d  and 0t  are defined from the system 

that is similar to system (8), (9) and differs from these equations only in expression for 0( )A t , 

namely: 
0

0 1( ) ( ) .
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t
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3.5. At 0t t  the surface-water flow is not formed ( 0U  ), therefore 0C  , and in the area 

cD  equation (3) allows for an analytical solution: 
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So, the problem is formulated as follows: we need to determine the solution  , , 0U x y t  , 

 , ,x y t ,  , ,C x y t  and  , ,sC x y t  of equations (1) – (4), (10) – (13) with initial and 

boundary conditions (5) and estimate the water flow rate in cross-section r  of river at its 

lower course. 

Discussed above a priori information on the solution behavior is very useful and will be used 

at development of finite-difference computational schemes to solve the system equations. 

 

4 SUMMARY 

The relationships and formulas to calculate of the runoff characteristics have been obtained in 

result of the theoretical study of the problem solution for the following typical situations. 

1. The runoff may not arise in case of small intensity of precipitations when all rainwater is 

completely absorbed in the pores of zone of incomplete saturation. 

2. Surface runoff is formed not at once with beginning of rainfall but only after some time 

regardless on duration of precipitation.  

3. If the intensity of rainfall exceeds the intensity of absorption and the water layer appears on 

the earth surface, then the equation for water content in zone of incomplete saturation 

becomes a differential equation with lagging argument.  

4. The intensity of rainfall over time can become so insignificant that at an instant in time the 

thickness of the surface water layer will be equal to zero within those regions of the surface 

catchment where water completely soaks into the soil. 

5. In time period when the surface-water flow is not formed the transfer equation has an 

analytical solution allowing us to calculate concentration of impurity. 

 

5 CONCLUSIONS 

We have developed the mathematical model of runoff along the surface catchment taking 

account precipitation, evaporation, transport of impurity in water, its filtration in zone of 

incomplete saturation of soil, sorbtion and adsorption of pollutant in soil.  Theoretical study of 

the problem solution allows us to reveal its features which will be very useful and required in 

developing special numerical schemes with high computational efficiency oriented to the 

parallel computing on multiprocessor computers. These investigations will be presented in the 

next our paper. 
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