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ABSTRACT  

The aim of this paper is the introduction of a new concept that concerned the analysis of a 

large class of distributed parabolic systems. It is the general concept of gradient remediability. 

More precisely, we study with respect to the gradient observation, the existence of an input 

operator (gradient efficient actuators) ensuring the compensation of known or unknown 

disturbances acting on the considered system. Then, we introduce and we characterize the 

notions of exact and weak gradient remediability and their relationship with the notions of 

exact and weak gradient controllability. Main properties concerning the notion of gradient 

efficient actuators are considered. The minimum energy problem is studies, and we show how 

to find the optimal control, which compensates the disturbance of the system. Approximations 

and numerical simulations are also presented.   
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1. INTRODUCTION 

Various real problems can be formulated within certain concepts of distributed systems 

analysis. These concepts consist of a set of notions as controllability, detectability, 

observability, remediability…, which enable a better knowledge and understanding of the 

system to be obtained. These concepts have been studies at different degrees (exact, weak, 

extended). Systems analysis can be done from a purely theoretical viewpoint [1,2]. However, 

the study may be also become concrete, in some sense, by using the structures of actuators 

and sensors. Thus, one can study the different concepts of controllability via actuators 

structures [3-5] or the different concepts of observability via sensors structures [6-8].  

An extension of these concepts that is very important in practical applications is that of 

gradient controllability [9], gradient detectability [10] and gradient observability [11-13]. 

These concepts are of great interest from a more practical and control point of view since 

there exist systems that cannot be controllable but gradient controllable or that cannot be 

observable but gradient observable or that cannot be detectable but gradient detectable and 

they provide a means to deal with some problems from the real world, for example in the 

thermic isolation problem it may be that the control is only required to vanish the 

temperature-gradient before crossing the wall.  

Hence, with the same preoccupation, we introduce in this paper, a new concept that is gradient 

remediability of distributed parabolic systems. We recall that the notion of remediability 

consists in studying the existence of a convenient input operator (efficient actuators), ensuring 

the remediability of any disturbance acting in the considered systems. This problem is 

particularly motivated by pollution problems and so called space compensation or 

remediability problem. The notions of remediability and efficient actuators are introduced and 

studied first for discrete systems and there for continuous systems of a finite time horizon and 

for other situations (regional and asymptotic cases, internal or boundary actions of 

disturbances) [14-16].  

This paper is organized as follows: In the second paragraph, we start by presenting the 

notations and some preliminary material. After, we recall the notions of exact and weak 

gradient controllability. In the third paragraph, we introduce and we characterize the notions 
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of exact and weak gradient remadiability. We show how to find an input operator (actuators) 

with respect to the output (gradient observation) that ensures the gradient remediability of a 

disturbed parabolic system. By analogy with the relation between the remediability and the 

controllability examined in the finite time case, it is then natural to study, in the paragraph 4, 

the relationship between the gradient remediability and the gradient controllability. We show  

that the gradient remediability is weaker and more supple than the gradient controllability of 

the parabolic systems, that is to say, if any parabolic systems are gradient controllable, then it 

is gradient remediable. The fifth paragraph recall the notion of gradient strategic actuators and 

we give a characterization of gradient remediability which shows that the gradient 

remediability of any system may depend on the structure of the actuators and sensors. Then 

we introduce and we characterize the notion of gradient efficient actuators. In paragraph 6, 

using an extension of Hilbert Uniqueness Method (H.U.M), we examine the problem of 

gradient remediability with minimum energy, and we give the optimal control that 

compensate an arbitrary disturbance. In the last paragraph, approximations and numerical 

results are presented. 

 

2. CONSIDERED SYSTEM   

Let   be an open and bounded regular subset of nIR  3,2,1n with a smooth 

boundary  . For 0T , we denoted by  TQ ,0 ,  T,0 . Consider a 

parabolic system defined by 
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Where A  is a second order linear differential operator with compact resolvent and which 

generates a strongly continuous semi-group    0ttS on the Hilbert space  2L  .    0
*

ttS  

is considered for the adjoint semi-groupe of    0ttS  .  

   UTLuXUB ;,0,, 2L  where U is a Hilbert space representing the control space and 

  1
0HX  the state space. The disturbance term  XTLf ;,02  is generally unknown.  



S. Rekkab et al.          J Fundam Appl Sci. 2017, 9(3), 1535-1558              1538 
 

 

The system (1) admits a unique solution       211
0 ;,0;,0 LTCHTCy   [17] given by  

             
t t

dssfstSdssBustSytSty
0 0

0  

and it is augmented by the output equation 

   tyCtz                                   (2) 

where     OLC
n
,2 L , O is a Hilbert space (observation space). In the case of an 

observation on  T,0  with q  sensors, we take generally qIRO   .The operator   is 

defined by  
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while 
*  its adjoint operator. 

 

3. GRADIENT REMEDIABILITY  

The system (1) is disturbed by the force f  assumed unknown and excited by a control u  

that will be chosen so as to compensate for the disturbance f . In the autonomous case, 

without disturbance  0f and without control  0u , this same system is written 
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                     (3) 

The system (3) admits a unique solution       211
0 ;,0;,0 LTCHTCy  [17] given by 

    0ytSty   then the observation on  T,0  is normal and it is given by     0ytSCtz  . 

But if the control 0u and the disturbance 0f , the observation noted fuz ,  is disturbed 

such that  

  tz fu,            
t t

dssfstSCdssBustSCytSC
0 0

0  

The problem consists to study the existence of an input operator B  (actuators), with respect 

to the output operator C  (sensors), ensuring at the timeT , the gradient remediability of any 
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disturbance on the system, that is:  

For any  XTLf ;,02 , there exists  UTLu ;,02  such that     0
, yTSCTz fu  this is 

equivalent to 0 FfCHuC where H  and F  are two operators defined by 

 

    


T

dssBusTSHuu

XUTLH

0

2 ;,0:

 

 

    


T

dssfsTSFff

XXTLF

0

2 ;,0:

 

This leads to the following definitions  

Definition 1:  

1) We say that the system (1) augmented by the output equation (2) is exactly gradient f - 

remediable on  T,0 , if there exists a control  UTLu ;,02  such that  

0 FfCHuC  

2) We say that the system (1) augmented by the output equation (2) is weakly gradient f - 

remediable on  T,0 , if for every ,0 there exists a control  UTLu ;,02  such that 


O

FfCHuC  

3) We say that the system (1) augmented by the output equation (2) is exactly (resp. weakly) 

gradient remediable on  T,0 , if for every  XTLf ;,02  the system (1)–(2) is exactly 

(resp. weakly) gradient f - remediable. 

Proposition 1: 

Let us consider  XTLf ;,02 .  

1) The system (1)–(2) is exactly gradient f - remediable on  T,0  if and only if  

 HCFfC  ImIm  

2) The system (1)–(2) is weakly gradient f - remediable on  T,0  if and only if  

 HCFfC  ImIm  

Proof:  

1) We assume that the system (1)–(2) is exactly gradient f - remediable on  T,0 , then there 



S. Rekkab et al.          J Fundam Appl Sci. 2017, 9(3), 1535-1558              1540 
 

 

exists  UTLu ;,02 such that 0 FfCHuC , that is 

  1HuCuHCHuCFfC  with  uu 1  UTLu ;,02
1 then 

HCFfC  Im .  

Conversely, we assume that HCFfC  Im , then there exists  UTLu ;,02  such that 

HuCFfC   that is 0 HuCFfC  this gives   0 uHCFfC . We put 

 UTLuu ;,02
1   where the system (1)–(2) is exactly gradient f - remediable. 

2) We assume that the system (1)–(2) is weakly gradient f - remediable on  T,0 , then 

 UTLu ;,0,0 2  such that 
O

HuCFfC that is  UTLu ;,0,0 2  

such that   
O

uHCFfC . We put  UTLuu ;,02
1  , 

then  UTLu ;,0,0 2
1  such that 

O
HuCFfC 1 , this gives 

 HCFfC  Im . 

Conversely, we assume that  HCFfC  Im , then  UTLu ;,0,0 2
1   such that 


O

HuCFfC 1 . We put  uu1  UTL ;,02 , then  UTLu ;,0,0 2  such 

that 
O

HuCFfC  where the system (1)–(2) is weakly gradient f - remediable.  

Proposition 2:  

1) The system (1)–(2) is exactly gradient remediable on  T,0  if and only if  

HCFC  ImIm  

2) The system (1)–(2) is weakly gradient remediable on  T,0  if and only if  

HCFC  ImIm         

Proof:  

1) We assume that the system (1)–(2) is exactly gradient remediable on  T,0  then 

 XTLf ;,02  the system (1)–(2) is exactly gradient f - remediable on  T,0  and 

from the Proposition 1 we have,  XTLf ;,02 : HCFfC  Im , this gives 

HCFC  ImIm .  

Conversely, we assume that HCFC  ImIm and we show that the system (1)–(2) is 

exactly gradient remediable on  T,0 . Let  XTLf ;,02  then FCFfC  Im  since 
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HCFC  ImIm we have HCFfC  Im  then there exists  UTLu ;,02  such 

that HuCFfC   that is to say 0 HuCFfC  this gives   0 uHCFfC . 

We put  uu1  UTL ;,02  where the system (1)–(2) is exactly gradient remediable. 

2) We assume that the system (1)–(2) is weakly gradient remediable on  T,0  

then  XTLf ;,02  the system (1)–(2) is weakly gradient f - remediable on  T,0  and 

from the Proposition.1 we have,  XTLf ;,02 : HCFfC  Im , this gives 

HCFC  ImIm .  

Conversely, we assume that HCFC  ImIm and we show that the system (1)–(2) is 

weakly gradient remediable on  T,0 . Let  XTLf ;,02  then FCFfC  Im . Since 

FCIm HCIm then  HCFfC  Im this leads to  UTLu ;,0,0 2  such 

that HuCFfC    by putting  uu1  UTL ;,02 this 

gives  UTLu ;,0,0 2
1   such that 

O
HuCFfC 1  where the system 

(1)–(2) is weakly gradient remediable on  T,0 .                                  � 

 

4. GRADIENT REMEDIABILITY AND GRADIENT CONTROLLABILITY  

By analogy with the relation between the remediability and the controllability examined in the 

finite time case, it is then natural to study, in this paragraph, the relationship between the 

gradient remediability and the gradient controllability. Firstly, we recall the definitions of 

exact and weak controllability. 

Definition 2: 

1) The system (1) is said to be exactly gradient controllable on  T,0  if   nd Ly  2  

there exist a control  UTLu ;,02  such that   dyTy  . 

2) The system (1) is said weakly gradient controllable on  T,0  

if   nd Ly  2 , 0 there exist a control  UTLu ;,02  such that 

 
 







 

n
L

dyTy 2
. 

 



S. Rekkab et al.          J Fundam Appl Sci. 2017, 9(3), 1535-1558              1542 
 

 

Proposition 3: 

1) If the system (1)–(2) is exactly gradient controllable on  T,0 , then it is exactly gradient 

remediable on  T,0 . 

2) If the system (1)–(2) is weakly gradient controllable on  T,0 , then it is weakly gradient 

remediable on  T,0 . 

Proof: 

1) We assume that the system (1)–(2) is exactly gradient controllable  and let   0yTSyd   

then there exists  UTLu ;,02  such that     0yTSTy   that is to say 

    00 yTSFfHuyTS   this leads to 0 FfHu  then let 

0 FfCHuC  and then the system (1) – (2) is exactly gradient remediable. 

2) We assume that the system (1)–(2) is weakly gradient controllable and let   0yTSy d   

then ,0   UTLu ;,02  such that    
 







 

n
L

yTSTy 2
0  that 

is  







 

n
L

FfHu 2 . Since the operator C  is continue, consequently we have 

 
n

LO
FfHukFfCHuC






 

 2  with 0k  where the system (1)–(2) is 

weakly gradient remediable.                                                � 

 

5. GRADIENT REMEDIABILITY, SENSORS AND ACTUATORS  

We suppose that the system (1) is excited by p  zone actuators    iipiii Lgg 


2

1
,, , 

   ii gsupp  in this case the control space is  pIRU   and the operator: 

              





p

i

iiip

p

tuxgxBututututu

XIRB

1

21 ,,,

:


 

Its adjoint is given by 

p
T

p
p IRzgzgzgzB 









,,,,,,

2211
*                    (4)          
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Also suppose that the output of the system (2) is given by q sensors    iiqiii DLhhD 2

1
,, 

 , 

being the spatial distribution,  ii hD supp , for qi ,,1 and ji DD  for ji  , then 

the operator C  is defined by:  

  

       
Tn

i
qDiq

n

i
Di

n

i
Di

qn

tyhtyhtyhtCy

IRLC














 11

22

1
11

2

,,,,,,

:


 

its adjoint is given by *C  with for   qT

q IR  ,,, 21   

           








 



q

i

iiiD

q

i

iiiD

q

i

iiiD xhxxhxxhxC
111

* ,,,             (5) 

Lemma 1 [18]:  

Let WV ,  and Z  be reflexive Banach spaces,  ZVP ,L  and  ZWQ ,L . Then the 

following properties are equivalent: 

i. QP ImIm   

ii. 0  such that ', *

'

**

'

* ZzzQzP
WV

*   

We have the following characterizations:  

Proposition 4:  

1) The system (1)–(2) is exactly gradient remediable on  T,0  if and only if there exists 

0  such that for every qIR , we have 

    
 

 







 pIRTLXTL
CTSBCTS

;,02
****

';,02
*** ..   

2) The system (1) – (2) is weakly gradient remediable on  T,0  if and only if  

   ******* kerker CFCFB   

Proof: 

1) It follows from the fact that   ****** . CTSCF   and that   ******* . CTSBCH   

and since the Proposition 2, we put FCP   and HCQ   and using the Lemma 1. 

2) We assume that the system (1)–(2) is weakly gradient remediable on  T,0 and we show 

that     ******* kerker CFCFB  . Let qIR  such that 0****  CFB , and we 

have 
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.

.
***

**

TSBH

TSF
 

then, 00 *******   CHCFB this gives  ***ker CH  and we have 

     ***kerIm CHHC . Since the hypothesis and the Proposition 2, we have 

HCFC  ImIm then    ***kerIm CHFC    FfCXTLf :;,02

   ***ker CH 0,  FfC  because  ***ker CH  , this 

gives    ***kerIm CFFC 
 , where the result. 

Conversely, assume that    ******* kerker CFCFB   and we show that 

HCFC  ImIm . Let  XTLf ;,02  such that FCf Im , we have 

   ***kerIm CHHC . For every qIR  such that 0***  CH , that is 

0****  CFB we have 0***  CF  because    ******* kerker CFCFB    

then 0,  FfC , where the result.                                            � 

Corollary 1:  

The system (1)–(2) is exactly gradient remediable on  T,0  if and only if  0  such that 

qIR , we have 

   
 






p

i

T

Li

T

X
dsCsTSgdsCsTS

i

1 0

2***

0

2

'

***
2

,   

Proof:  

Since the Proposition 4, the system (1)–(2) is exactly gradient remediable on  T,0  if and 

only if there exists 0  such that for every qIR , we have 

 
 

   
2

;,0

****2

';,0

***
22

..
pIRTLXTL

CTSBCTS    

by using (4) the formula of the operator *B , we have  

   



p

i

T

i

T

X
dsCsTSgdsCsTS

1 0

2***

0

2

'

*** ,   

where the result.                                                             � 

In the following, without loss of generality we consider, the system (1) with a dynamics Aof 

the form 
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m   

where  
1

1



m
mrjjmw  is an orthogonal basis in  1

0H  of eigenvectors of A orthonormal in 

 2L , associated to eigenvalues 0m  with a multiplicity mr . Then, the operator A  

generates on the Hilbert space  2L  a strongly continuous semi-group    0ttS  given by 

[1,19]: 

 
 







mr

j

jmLjm

m

tm wwyeytS
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1

,                   (6) 

Corollary 2:  

The system (1)–(2) is exactly gradient remediable on  T,0  if and only if  0  such that 

qIR , we have 
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Proof:  

Since the Corollary 1, the system (1)-(2) is exactly gradient remediable on  T,0  if and only 

if there exists 0  such that for every qIR , we have 
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i
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X
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1 0

2***

0

2

'

*** ,   

By using (6) the formula of the operator S  and since it is auto-adjoint, we obtain 
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2
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where the result.                                                             � 

By using (5) the formula of the operator *C , we have the following corollary: 
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Corollary 3:  

The system (1)–(2) is exactly gradient remediable on  T,0  if and only if  0  such that 

qIR , we have 
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Proof:  

Since the Corollary 2, the system (1)-(2) is exactly gradient remediable on  T,0  if and only 

if there exists 0  such that for every qIR , we have 
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and by using (5) the formula of the operator *C , we have 
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where the result.                                                             � 

This characterization shows that the remediability of a system may depend on the structure of 

the actuators and sensors. 

By analogy with the concept of gradient strategic actuator, we introduce the notion of gradient 

efficient actuator, as follows: 

Definition 3:  

The actuators    iipiii Lgg 


2

1
,,  are said to be gradient efficient if the system (1)–(2) 

so excited is weakly gradient remediable. 

The actuators gradient efficient define actions with the structure (spatial distribution, location 

and number) can compensate the effect of disturbance distributed on the system. We have then 
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the following characterization of the gradient efficient actuators. 

For 1m , let mM  be the matrix of order  mrp  defined by   piwgM
jijmim  1,,  

and mrj 1  and let mG  be the matrix of order  mrq   defined by 

qi
x

w
hG

ji

n

k k

jm

im 
















 



1,,
1

  and mrj 1 . 

Proposition 5:  

The actuators    iipiii Lgg 


2

1
,,  are gradient efficient if and only if 

   mm
m

fMC kerker
1

**


  . Where, for qIR and 1m ,  

  mf   mr
T

mrmmm IRwCwCwC  ,,,,,, **
2

**
1

**    

Proof:  

We assume that the actuators    iipiii Lgg 


2

1
,,  are gradient efficient and we show 

that    mm
m

fMC kerker
1

**


  . Since the Proposition 4, the system (1)-(2) is weakly 

gradient remediable on  T,0  if and only if    ******* kerker CFCFB  . Let qIR , 

we have 
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and we have 1m , 
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If we assume that  mm
m

fMker
1

  , then 



S. Rekkab et al.          J Fundam Appl Sci. 2017, 9(3), 1535-1558              1548 
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 ******** ker0 CFBCFB   where    ****

1
kerker CFBfM mm
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  that is 

   ****

1
kerker CFBfM mm
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 .  

On the other hand, we have for every qIR ,  
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1 1

**.****** ,.  
We assume that 

 ***ker CF  , then 0***  CF  

    0,.
1 1

**.******   
 


jm

m

mr

j

jm
Tm wwCeCTSCF  
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1 1
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   ***** kerker CCF  . If we assume that  **ker C , then 0**  C  that is 

  0,
1 1

**.***   
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m
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j
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Tm wwCeCF    ***ker CF  , then 

   ***** kerker CFC   that is    ***** kerker CFC  .  

Where the result.                                                            �  

Corollary 4:  

If there exists 10 m  such that  

qGrank T
m 

0
                                (7) 

then the actuators    iipiii Lgg 


2

1
,,  are efficient if and only if    0ker

1




T
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m
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T
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 . 

On the other hand,   **ker C 0**  C , then for 0m that appears in the hypothesis 

and by using (5) the formula of the operator *C , we obtain 

 
0
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 T
m

T
m GG

00
ker0    and 

since qGrank T
m 

0
 , then  0ker

0
T

mG  this gives 0 . That is    0ker **  C  

Finally, the proof follows directly from the Proposition 5.                     � 

Corollary 5:  

If there exists 10 m  such that      qGrank T
m 

0
 and if 

  qGMrank T
mm 

00
                             (8) 

Or                                  

 
00 mm rMrank                                 (9) 

then the actuators    iipiii Lgg 


2

1
,,  are gradient efficient. 

Proof:  

Assume that there exists 10 m  such that   qGMrank T
nn 
00

. The matrix  T
mm GM

00
 is of 

order qp . From the theorem of rank to matrices [20], we 

have      qGMGMrank T
mm

T
mm 

0000
kerdim , and then    0kerdim

00
T

mm GM  witch is 

equivalent to    0ker
00
T

mm GM    0ker
1




T
mm

m
GM . Since the Corollary 4, that is 

equivalent to the gradient efficient of the actuators    iipiii Lgg 


2

1
,, . 

Now, we suppose that   qGrank T
m 

0
  and  

00 mm rMrank  . The matrix  T
mG

0
 is of 

order qrm 
0

. By using the theorem of rank to matrices [20], we have 

     qGGrank T
m

T
m 

00
kerdim then,    0kerdim

0
T

mG . That is equivalent to  

   0ker
0
T

mG                                (10) 

The same, the matrix  
0mM  is of order 

0mrp  . By using the theorem of rank for matrices 
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[19], we have     
000

kerdim mmm rMMrang  . And from (9), we obtain 

   0kerdim
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mM  which is equivalent to 
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On the other hand, let  T
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T
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GM  which is equivalent, from the Corollary 4, to the gradient 

efficient of the actuators    iipiii Lgg 
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,, .                                 � 

Remark 1: 

1) The condition (8) pq  . 

2) The condition pq   is not necessary for actuators to be gradient efficient. Indeed, in the 

case of a single actuator  g,1  and of q  sensors  
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, , with 1q , 
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6. GRADIENT REMEDIABILITY WITH MINIMUM ENERGY 

For  XTLf ;,02 , we study the existence and the unicity of an optimal control 

 PIRTLu ;,02  ensuring, at the timeT , the gradient remediability of the disturbance f  

such that 0 FfCHuC . That is the set defined by  

  0/;,02  FfCHuCIRTLuD P              (13) 

is non empty.  

We consider the function    
2

;,0

2

2 Pq IRTLIR
uFfCHuCuJ      

The considered problem becomes  uJ
Du

min . For its resolution, we will use an extension of the 

Hilbert Uniqueness Methods (H.U.M). For qIR , let us note  

 
2

1

0

2****

* 












 

T

IR
dsCsTSB

P
  

*
is a semi-norm on qIR . If the condition (7) is verified then it is a norm if and only if the 

system (1)-(2) is weakly gradient remediable on  T,0 . The corresponding inner product is 

given by     dsCsTSBCsTSB
T

 
0

********

*
,,   

and the operator qq IRIR  :  defined by 

    


T

dsCsTSBBsTSC

CHHC

0

****

***





 

Then, we have the following proposition: 

Proposition 6:  

If the condition (7) is verified, then 
*
is a norm on qIR if and only if the system (1)-(2) is 

weakly gradient remediable on  T,0  and the operator  is invertible. 

Proof :  

We have 
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But   ****ker CFB  mm
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1
  (see the Proof of Proposition 5) and we have also 

 


T
mm

m
GMker

1
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   (see the Proof of Corollary 4) 

then,    ****ker CFB  T
mm

m
GMker

1
  this gives   T

mm
m

GMker
1
  and since the 

Corollary 4 we obtain the result. 

On the other hand the operator   is symmetric, indeed 

qIR
qIR

CHHC  ,, *** qIRqIR
CHHC   ,, ***  

and positive definite, indeed 

 

   

0,0
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,

,,

2

*

0

********

;,0

******

***

2


















for

dsCsTSBCsTSB

CHCH

CHHC

T

IR

IRTL

IRIR

P

P

qq

 

and then  is invertible.                                                      � 

We give hereafter the expression of the optimal control ensuring the gradient remediability of 

a disturbance f at the timeT . 

Proposition 7:  

For  XTLf ;,02 , there exists a unique q
f IR  such that FfCf   and the 

control     ff
CSBu 

**** ..   verifies 0 FfCHuC
f . Moreover, it is optimal and 

  *;,02 f
IRTL Pf

u   . 

Proof :  

From the Proposition 6, the operator   is invertible then, for  XTLf ;,02 , there exists a 

unique q
f IR  such that  
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FfCf   

and if we put     ff
CSBu 

**** ..  , we obtain 

   
f

T

ff HuCdsCsTSBBsTSC   
0

****
 


f

HuCFfC  0 FfCHuC
f . 

The set D defined by (13) is closed, convex and not empty. For Du , we 

have    
2

;,02 PIRTL
uuJ  . J  is strictly convex on D , and then has a unique minimum at 

Du * , characterized by 
  ;0,

;,0

**
2


PIRTL

uvu  Dv  .  

For Dv , we have 

 
     PPff IRTLff

IRTL
CSBvCSBuvu

;,0

********

;,0
22

.,.,         

0,  qIRff HvC   

Since *u is unique, then 
f

uu *
and 

f
u is optimal with 

 
   

2

*

2

;,0

****
2

;,0
22

. fIRTLf
IRTL

PPf
CSBu   .                                  � 

 

6. APPROXIMATIONS AND NUMERICAL SIMULATIONS 

This section concerns approximations and numerical simulations of the problem of gradient 

remediability. First we give an approximation of f as a solution of a finite dimension linear 

system bAx  and then the optimal control
f

u , with a comparison between the 

corresponding observation noted fuz ,  and the normal case. 

7.1 Approximations  

 Coefficients of the system: For ,1, ji let  

qIRjiji eea , where  
qiie

1
is the canonical basis of qIR , we have 

    
T

ii dseCsTSBBsTSCe
0

****           

And for NM ,  sufficiently large, we have 
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and FfCf   

qIRjj eFfCb ,  

For N  sufficiently large, we have 
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 The optimal control: In this part, we give an  

approximation of the optimal control 
f

u which is defined by     ff
CTSBu 

**** ..  . 

Its function coordinates  ., fju   are given by 

    fjfj CTSgu 
***

, .,. 
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for a large integer N . 

 Cost: The minimum energy (cost) is defined by  
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for N sufficiently large. 

 The corresponding observation: The observation corresponding to the control is 

given by 
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 are obtained for a large integer N , as follows: 
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7.2 Numerical simulations 

We consider without loss of generally the following diffusion system 

           

   
   




























Tty

xyxy

Ttxftuxgtxytx
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y p

i

iii

,00,

0,

,0,,,

0

1





 

with  1,0  and a Dirichlet boundary condition. In this case, the functions  .mw  are 

defined by     1;sin2  mxmxwm  . The associated eigenvalues are simple and given 

by 1;22  mmm  . Then in the case of: 

 an initial state:   ,0.0 y  

 a sensor:  hD,  with  1,0D  and   22xxh    1q  

 an efficient actuator:  g,  with  1,0  and   32xxg   1p  

 a disturbance function: defined by   0;240, 10 










tetxf
x

t

 

  For 1NM  and 70T , we obtain numerical results illustrating the theoretical results 

established in previous sections. Hence, in figure1, we give the representations of the discrete 

observation fuz ,  corresponding to the control 
f

uu   and the disturbance f  and 0,0z  

which represent the normal observation, that is 0u  and 0f .   

 

Fig.1. Representation of fuz ,  (blue line) and 0,0z  (red line). 
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This figure show that for t  sufficiently large  50t , the disturbance f  is compensate by 

the control optimal 
f

u at the time T   70T  that is, we have    tztz f
f

u 0,0, 


. 

The optimal control 
f

u  ensuring the gradient remediability of the disturbance f  , is 

represented in figure 2. 

 

Fig.2. Representation of the optimal control 
f

u  (blue line) 

 

8. CONCLUSION  

In this paper, which is an extension of previous works to the analysis of the gradient of a 

large class of parabolic systems, new notions of weak and exact gradient remediability are 

introduced and characterized. The relation between the notion of gradient remediability and 

the notion of gradient controllability is also studied. We have shown that a parabolic system 

is gradient remediable if it is gradient controllable. Furthermore, we have shown that the 

exact and weak gradient remediability of a system may depend on the structure and the 

number of the actuators and sensors. Using an extension of the Hilbert Uniqueness Method, 

we have shown how to find the optimal control ensuring the gradient remediability of the 

known or unknown disturbance. The results of illustrative examples and numerical 

approximations are acceptable.  

These results are developed for a class of discrete linear distributed parabolic systems, but 

the considered approach can be extended to other class of systems with a convenient choice 

of space.  
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