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1. INTRODUCTION

Cloud computing is emerging as a critical practice for the online provisioning of computing

resources as services. This technology allows scalable on-demand sharing of resources and

costs among a large number of end users. It enables end users to process, manage, and store

data efficiently at very high speed with reasonable prices. Customers of cloud computing do

not need to install any kind of software and can access their data worldwide from any

computer as long as an Internet connection is available [1].

Many definitions have been presented for cloud computing [2]–[4]. Foster et al.,[3] defined

cloud computing as “a large-scale distributed computing paradigm that is driven by economies

of scale, in which a pool of abstracted, virtualized, dynamically-scalable, managed computing

power, storage, platforms, and services are delivered on demand to external customers over the

Internet.” Cloud computing provides various computing services online based on SLAs

between the provider and the consumer.

Cloud computing providers offer many services to their customers [5], including infrastructure

as a service (IaaS), platform as a service (PaaS), software as a service (SaaS), storage as a

service (STaaS), security as a service (SECaaS), test environment as a service (TEaaS), and

many more. A cloud computing provider’s typical goal is to maximize its revenues with its

employed pricing scheme, while its customers’ main goal is to obtain the highest level of

quality of service (QoS) feasible for a reasonable price. Therefore, satisfying both parties

requires an optimal pricing methodology. The price charged is one of the most important

metrics that a service provider can control to encourage the usage of its services.

Pricing is a critical factor for organizations offering services or products [6]. How the price is

set affects customer behavior, loyalty to a provider, and the organization’s success. Therefore,

developing an appropriate pricing model will help achieve higher revenues. The price

determined for a service or product must consider the manufacturing and maintenance costs,

market competition, and how the customer values the service or product offered. Iveroth et

al.,[7] analyzed the possible sets of price models that different organizations can employ. Their

research illustrated how price is connected to a set of many implicit features of the price

model. Such an approach helps in resolving many issues regarding pricing between the

customer and the provider.

Software vendors utilize many pricing techniques. For example, a typical pricing approach is

to pay once for limitless usage. However, this approach is inflexible and does not consider

many other factors that affect pricing, such as the age of resources and price fairness [8]. Many
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major cloud computing providers (e.g., Amazon Web Services [9] and Google App Engine

[10]) employ “pay-per-use fixed pricing,” which charges users according to their overall

resource consumption. “Pay for resources” is another technique, in which users are charged

according to the storage or bandwidth size provided. Subscription is another pricing technique,

in which the customer subscribes with a certain service provider for a fixed price per unit for

long periods of time. Moreover, a service level agreement (SLA) is an essential part of cloud

computing. It describes the negotiations between the provider and the customer regarding the

services provided. The final agreement is verified via a contract between the involved parties.

An SLA might involve agreements regarding QoS, pricing, guarantees, and so on.

Samimi and Patel [11] introduced a review and comparison of the recent pricing models in grid

and cloud computing and their economic models. They also highlighted the differences in grid

and cloud computing by comparing their usage, standardization, virtualization, and SLAs.

They studied pricing models thoroughly in grid computing and compared them to those in

cloud computing. However, the number of pricing models compared is insufficient to draw

conclusions. Moreover, the fairness of each model, which is an important factor to assess

pricing models, was not stated.

In our work, we present a thorough comparison between many proposed cloud computing

pricing models and schemes. We consider many factors that affect pricing and user

satisfaction, such as fairness, QoS, and more, by highlighting their importance in recent

markets. We consider recent pricing models and their pricing approaches. We also introduce

the pros and cons of each model to provide a solid ground to design future improved models.

The rest of the paper is organized as follows. Section II presents background information for

cloud computing and pricing. Section III describes a novel method of pricing based on the

priority of customer’s types. Section IV presents a thorough comparison between different

factors and parameters in our model and Section V includes our conclusions and remarks.

2. BACKGROUND

Different service providers employ different schemes and models for pricing. However, the

most common model employed in cloud computing is the “pay-as-you go” model. Customers

pay a fixed price per unit of use. Amazon [9], considered the market leader in cloud

computing, utilizes such a model by charging a fixed price for each hour of virtual machine

usage. The “pay-as-you-go” model is also implemented by other leading enterprises such as

Google App Engine [10] and Windows Azure[12]. Another common scheme employed by
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these leading enterprises is the “pay for resources” model. A customer pays for the amount of

bandwidth or storage utilized. Subscription, where a customer pays in advance for the services

he is going to receive for a pre-defined period of time, is also common.

Nevertheless, many useful theoretical studies for cloud computing pricing have been

introduced. Sharma et al.,[13] proposed a novel financial economic model capable of providing

a high level of QoS to customers. They employed the financial option theory and treated the

cloud resources as assets to capture their realistic value. The price determined using this model

represented the optimal price that the service provider should charge its customers to recover

the initial costs. The financial option theory gave a lower boundary on the price that should be

charged to customers. The upper boundary of the price was determined using a proposed

compounded Moore’s law. This law, presented by the authors, combined Moore’s law [14]

with the compounded interest formula. The authors claimed that, if the price was set between

these two boundaries, it would be beneficial for both customers and service providers. This

approach was interesting; however, it did not take into consideration the maintenance costs.

The authors also assumed that the initial costs would be the same for clients and providers,

which is not true. Service providers get discounts for buying a larger amount of assets.

Wang et al.,[15] proposed an algorithmic solution to optimize data center net profit with

deadline-dependent scheduling by jointly maximizing revenues and minimizing electricity

costs. They developed two distributed algorithms for the net profit optimization: Net Profit

Optimization for Divisible jobs (NPOD), and Net Profit Optimization for Indivisible Jobs

(NPOI). An indivisible job is a job that cannot be interrupted, while a divisible job can be

interrupted or divided. The authors proved via simulations their algorithm’s capabilities to

increase revenues and reduce electricity costs by comparing it to the Largest Job First (LJF)

algorithm. However, the authors considered only static job arrivals and departures. They also

assumed that the servers at all data centers were homogenous, which is not realistic. Macias

and Guitart [16] proposed a genetic model for pricing in cloud computing markets.

Choosing a good pricing model via their genetic algorithms involved three main steps: define a

chromosome, evaluate it, and finally select the best pairs of chromosomes for reproduction and

discarding those with the worst results. The results of the simulation illustrated that genetic

pricing acquired the highest revenues in most of the scenarios. The proposed genetic model

with a flexible genome was proven to be more stable against noise and earned more money

than the one with the rigid genome. The proposed genetic model is easy to implement, flexible,

and easily adapted to a set of various parameters that influence pricing. The genetic pricing
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approach can be further explored by defining relations between the parameters that influence

pricing.

Mihailescu and Teo [17] introduced a dynamic pricing scheme for federated clouds, in which

resources are shared among many cloud service providers. Federated clouds are implemented

to improve reliability and scalability for both users and providers. Users in the federated

environment were assumed to be capable of both buying and selling resources. In the case of

high market demand, fixed pricing would minimize seller welfare because he would not be

capable of raising his price. Similarly, when demand was low, user utility would be minimized

because he would be charged more than the market price. Therefore, dynamic pricing would be

beneficial in such environments because it would set the price according to the levels of supply

and demand. It would also allow the offering of many types of resources to end users. The

authors carried out simulations to determine the efficiency of this approach by comparing it to

a fixed pricing scheme. They found that dynamic pricing achieved better average performance

with increasing buyer welfare and numbers of successful requests up to 200%. However, fixed

pricing achieved better scalability in the case of high demand in the market.

Yeoa et al.,[18] described the difference between fixed and variable prices. Fixed prices were

easier to understand and more straightforward for users. However, fixed pricing could not be

fair to all users because not all users had the same needs. Their study proposed charging

variable prices with advanced reservation. Charging variable pricing with advanced reservation

would let users know the exact expenses that are computed at the time of reservation even

though they were based on variable prices. The paper emphasized the importance of

implementing autonomic metered pricing to increase revenues. Autonomic metered pricing can

also be straightforward for users through the use of advanced reservations. The advantage of

advanced reservations is that users can not only know the prices of their required resources in

the future but are also able to guarantee access to future resources to better plan and manage

their operations.

Rohitratana and Altmann [19] analyzed four dynamic pricing schemes: derivative-follower

(DF), demand-driven (DD), penetration (PN), and skimming (SK). They developed an agent-

based simulation of a software market that allowed the trading of two types of software

licensing models. The two types of software licensing models were SaaS and perpetual

software (PS). Rohitratana and Altmann’s simulation results indicated that the DD pricing

scheme was the best scheme in ideal cases. However, in the real world, obtaining perfect

information about customers and competitors is almost impossible. This makes the DD pricing
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scheme difficult to implement. PN and SK pricing schemes can be implemented easily, while

they give results close to the DD pricing scheme.

Nähring [20] focused his study on four basic pricing strategies. The basic pricing strategies

were cost-based pricing, customer-based pricing, competition-based pricing, and value-based

pricing. Nähring highlighted the pros of cons of each one of the pricing strategies. On the other

hand, Jäätmaa [21] emphasized strongly that a “pay-per-use” pricing mechanism was regarded

as the key characteristic of cloud computing pricing. The study found that pay-per- use pricing

significantly changed the risk-sharing model between the service provider and the customer as

the customer’s commitment decreased. In addition, a pay-per-use mechanism could decrease

the service provider’s incoming cash flow. Jäätmaa, therefore, proposed a new form of generic

cloud computing pricing that balanced the balanced the commitment between the service

provider and the customer.

Li et al., [22] proposed a pricing algorithm for cloud computing resources. This proposal used

the cloud bank agent model as a resource agency because it could provide the proper analysis

and assistance for all members. The authors used a price update iterative algorithm to

determine the price. It analyzed the historical utilization ratio of the resources; iterated current

prices constantly, assessed the availability of resources for the next round, and determined the

final price. The model included a user request broker (GCA), cloud banking, a cloud service

agent (CSA), and a cloud resource agent (GRA). The proposed pricing model was

comparatively fixed because it could not adapt to the rapid changes that typically occur in the

market. However, it could reduce the costs to providers and maximize their revenues, allowing

resources to be used more effectively.

3. PROPOSED METHOD

In a resource market with a large number of providers (sellers) and users (buyers), fixed

pricing does not reflect the current market price resource price due to the changing demand and

supply. This leads to lower user welfare and to imbalanced markets, and even imbalanced

resource allocation. Figure 1 shows the welfare lost by a seller that uses fixed pricing. In the

case of under-demand, the fixed price tends to be higher than the market price and buyers may

look for alternative providers. In the case of over-demand, the fixed price limits the seller

welfare, which could be increased by using a higher resource price.
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Fig.1. Fixed Pricing Limits Seller Welfare [23]

In a cloud market, dynamic pricing sets resource payments according to the forces of demand

and supply. Moreover, the use of dynamic pricing facilitates sellers to provide multiple

resource types. Early cloud services such as Sun Grid Compute Utility were restricted to one

resource type, e.g. CPU time. More recent services, such as Amazon S3 and EC2, introduced

more resource types, i.e. storage and bandwidth. Currently, Amazon has expanded its offer to

10 different virtual machine instance configurations, with different prices for each

configuration, and practice tiered pricing for storage and bandwidth. We see this as step

towards dynamic pricing, where users can request for custom configurations with multiple

resource types based on available slots.

In the context of cloud pricing, we propose a strategy-proof dynamic pricing mechanism for

allocating dedicated (and optionally shared if applicable) resources with multiple resource

types. We assume a Standalone Cloud Service resource market where rational users can not

provide (=Sell) but they can utilize resources (=Buy). Rational users represent either an

individual or an organization. Interoperability provides the buyers with uniformity and

elasticity.

On the other side there are some service providers most of whom are using a fixed static

pricing method with fixed plans. They provide services with some simple pricing metrics and

users are not able to choose what they really need. The managerial side of this story is

somehow different. Although all service providers like to have more revenue of their business

but there are some commercial tricks which are not understandable by most of proposed

pricing methods in computer-science papers. There are some sample issues:
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1) It is not acceptable to power off a resource which is available in a cloud. The company

spent money on that to be profitable for him. (Power Efficiency is not as simple as what

computer scientists think)

2) Sometimes, having more customers is much more important than income. There are

many companies who are advertising and they spend money to comply their resources

availability. Then it is not true only  to think about revenue maximization in our optimizations.

3) Saying “No” to a customer is not as easy as running a scheduling function. It has many

side effects on business when someone leaves your order process like figure 2. Assume that

going to create a Gmail account results: “We do not provide any email account now, please

try later!!!”. Would you try again?

Fig.2. Normal Plan-Based Service Provider Order Process

Our proposed method is going to achieve these important characteristics:

1) The master goal of the method is to sell our available resources as much as possible like

what you see in figure 3. Not only CPU but also Memory and Storage (Our Assumptions are

these three resources).

Fig.3. The Negotiation step of proposed service model

2) We do not want to lose a customer when we have available resources but we really like

to sell the available resources to whom that may be more match with the available resources
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scales. (Not to have Injured Resources1). In a such situations we will use prediction based on

the history of cloud which will be a good matter of future discussions.

3) While it is very important not to reject new customers because of their dissatisfaction,

also it would be useful to offer some discounts as a satisfactory feature. We would like to sell

normal plans in normal cases and we would like to give discounts to people who could utilize

our free resources scales. Example: When we have available resource like (2 CPU Cores +

3GB Memory + 20GB Storage) it would be much more acceptable to sell it as one VM instead

of selling two (1 CPU Cores + 1GB Memory + 10GB Storage) which will cause 1GB of

wasted memory.

To reach these key features we have evaluated the proposed dynamic pricing scheme both for

economic and computational efficiency. Using simulation, we compare our pricing scheme

with fixed pricing, currently used by many cloud providers. We implement our framework as

an application built on top of the data from a real service provider environment as a case study

(Because of the commercial secrecy in cloud sellers, we do not have the permission to publicly

announce their brand name). We exported three main data from their services.

1) Available Hardware Devices in Scale.

100 x Servers with these specifications:

24 Separate CPU Cores + 24GB Memory + 2TB Storage

2) Orderable Cloud VM Plans in eight types.

 1 Core,256MB Memory,25GB Storage

 2 Cores,512MB Memory,50GB Storage

 4 Cores,1GB Memory,100GB Storage

 6 Cores,2GB Memory,200GB Storage

 9 Cores,4GB Memory,500GB Storage

 12 Cores,8GB Memory,1000GB Storage

 16 Cores,16GB Memory,1000GB Storage

 24 Cores,24GB Memory,2000GB Storage

Note: Entrance rate was assumed as normal distribution.

3) Price per Month (Near to HP Cloud Prices):

 $10 ~ Per CPU Core

1 For Example: When we have 1% Free CPU Cores available but there are around 20% Memory and 30%
Storage in Total of Cloud, you are not able to sell these resources as there are not any plan to match these
requirements then you loss many resources and your income will be much less than your maximum.
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 $10 ~ Per 1GB of Memory

 $0.25 ~ Per 1GB of Storage

For simplicity, we used a centralized market-maker to compare the efficiencies of the two

pricing schemes. A centralized implementation has the advantage of allowing the measurement

of economic and computational efficiency with a simple setup for a simulated network.

Moreover, the use of an API-based simulation allows us to address the scalability issue in our

future works and even the real implementation accordingly. Thus, our simulated environment

contains one market-maker and 100 nodes, where each node can be checked separately. Order

and Resource check processes are sent to the market-maker node, which then performs the

assignment using the first-come-first-serve policy and computes the payments in the simplest

way.

Economic systems measure efficiency with respect to normal price for resources (utility).

Consequently, in a Pareto efficient system, where economic efficiency is maximized, a user’s

utility cannot improve without decreasing the utility of another user. We try to have dedicated

resources not to face such issues. Economic efficiency is a global measure and represents the

total buyer and seller welfare. More specifically, there are three factors that affect the

economic efficiency:

1) Average user welfare (Discounts)

2) Number of successful requests, for buyers

3) Number of allocated resources, for sellers.

We write out all the plans in the system of constraints and rewrite the system, including the

objective function[24] to see the best plan to have best revenue (xi = No. of Customers using

Plan i):

We convert the linear programming problem to the canonical form[25][26]:
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To accomplish this, we will perform the following steps:

Introduce residual variable si≥0 into the constraints of form "≤"

Introduce redundant variable Si≥0 into the constraints of form "≥"

Table 1. Initial Simplex Table

Now we can make an initial simplex table.

Iteration 1

We insert into the basis x8. Let us find a lead row:

We withdraw from the basis s1. We construct a simplex table.

Since in the row "Solutions" of the optimal simplex table there are some zeros, then the

resulting solution is degenerate.

Since in the objective function row there is no negative coefficients (except R-columns), we

have found the optimal point!

Table 2. 2ND Iteration Simplex Table
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Postoptimal analysis: Determining the values of resources[27]

This method of finding the value of the resources uses the following formula:

Vector - coefficients of the objective function corresponding to the basic variables of

optimal simplex table, ie

We extract from the optimal simplex table matrix B−1, corresponding to the optimum. To do

this, we note that in the initial acceptable basic solution base identity matrix consists of

columns

The inverse basis matrix consists of the same columns as the matrix B0, but of the optimal

simplex table.

Thus,

Hereby,
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Finding the intervals of variation of the right side coefficients of constraints, in which the

optimal solution is given by the current acceptable basis solution.

The variable x1 > 0 nonbasis, therefore, the resource 1 is scarce. The original constraint has a

sign "≤".

In this case, the range of valid relative change of the resource is defined as:

Then the relative interval of stock change of 1-th resource, where the optimal solution given

the current basis would be:

Since the absolute interval is calculated using the formula: , then it would be:

The variable x2 > 0 (basis, in the optimal simplex table equals 2400), therefore, the resource 2

is not scarce. The original constraint has the sign "≤".In this case, the range of valid relative

change of the resource is defined as:

-s0≤△2≤∞
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Then the relative interval of stock change of 2-th resource, where the optimal solution given

the current basis would be:

0≤△2≤∞

Since the absolute interval is calculated using the formula: b2new=△2+b2, then it would be:

2400≤b2<∞

The variable x3 > 0 (basis, in the optimal simplex table equals 200000), therefore, the resource

3 is not scarce. The original constraint has the sign "≤".In this case, the range of valid relative

change of the resource is defined as:

-s0≤△3≤∞

Then the relative interval of stock change of 3-th resource, where the optimal solution given

the current basis would be:

0≤△3≤∞

Since the absolute interval is calculated using the formula: b3new=△3+b3, then it would

be:

200000≤b3<∞

Finding the intervals of coefficient variation of the objective function, in which the optimal

solution is given by the current acceptable basis solution.

This is a maximum problem:

Variable x1 is not a basis variable in the optimal simplex table, therefore to find relative range

of variation of their coefficients of the objective function, we use the formula:

−∞<△1≤d10
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Since coefficient of the objective function for this variable is 75/4, we get the following

absolute range of sustainability:

Variable x2 is not a basis variable in the optimal simplex table, therefore to find relative range

of variation of their coefficients of the objective function, we use the formula:

Since coefficient of the objective function for this variable is 75/2, we get the following

absolute range of sustainability:

Variable x3 is not a basis variable in the optimal simplex table, therefore to find relative range

of variation of their coefficients of the objective function, we use the formula:

Since coefficient of the objective function for this variable is 75, we get the following absolute

range of sustainability:

Variable x4 is not a basis variable in the optimal simplex table, therefore to find relative range
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of variation of their coefficients of the objective function, we use the formula:

Since coefficient of the objective function for this variable is 130, we get the following

absolute range of sustainability:

Variable x5 is not a basis variable in the optimal simplex table, therefore to find relative range

of variation of their coefficients of the objective function, we use the formula:

Since coefficient of the objective function for this variable is 255, we get the following

absolute range of sustainability:

Variable x6 is not a basis variable in the optimal simplex table, therefore to find relative range

of variation of their coefficients of the objective function, we use the formula:

Since coefficient of the objective function for this variable is 450, we get the following

absolute range of sustainability:
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Variable x7 is not a basis variable in the optimal simplex table, therefore to find relative range

of variation of their coefficients of the objective function, we use the formula:

Since coefficient of the objective function for this variable is 570, we get the following

absolute range of sustainability:

Variable x8 is a basis variable in the optimal simplex table, therefore to find relative range of

variation of their coefficients of the objective function, we use the formula:

Since coefficient of the objective function for this variable is 980, we get the following

absolute range of sustainability:

The eco-system has three phases in operation:

1) Assign Normal Dedicated Plans up to X% of the system’s bottleneck resource (Which is

CPU Cores in our environment as if we sell only normal plans.)

2) Assign Priority-Based Dedicated Expert Plans based on professional usages up to Y%

using the model above( OR using Multi-Variable BucketSort) to see who is more accepted in

using the company resources and give more discount to him (Example: Extra Large Storage

in addition to normal plan for Hadoop usage or Extra CPU cores in Parallel Computing.)

3) Assign Shared Plans to cover final non-allocated resources. (CPU Cores which are not

needed to be dedicated for FTP Account which needs only Dedicated Storage)
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Note: X and Y are two managerial parameters set on the system to apply the managerial

decisions. ( Here : 70/20 )

4. RESULTS

The Normal Fixed price method used by our case study with the default plans take the cloud to

waste many resources like what the simulator exported in figure 4. The total income with this

structure is mentioned here:

 Total CPU Sold: 2274 Core x $ 10 =22740

 Total Ram Sold: 1058500 Byte x $ 10/1000 =10585

 Total Storage Sold: 117050 GB x $ 0.25 =29262.5

 Total Income = $ 62587.5 / month After Saturation

 

Fig.4. Case Res. Saturation with Wasted Resources/Income

The proposed dynamic price method used by our case study with the default plans for first

phase (X=70%) and Specialists Plans (Y=20% | Total : 90%) take the cloud to a much better

statistical situation like what the simulator exported in figure 5 and shows around 25% better
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The proposed dynamic price method used by our case study with the default plans for first

phase (X=70%) and Specialists Plans (Y=20% | Total : 90%) take the cloud to a much better

statistical situation like what the simulator exported in figure 5 and shows around 25% better
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income without any extra hardware or maintenance cost. The total income with this structure is

mentioned here:

 Total CPU Sold: 2269 Core x $ 10 =22690

 Total Ram Sold: 2069400 Byte x $ 10/1000 =20694

 Total Storage Sold: 174025 GB x $ 0.25 =43506.25

 Total Income = $ 86890.25 / month After Saturation



Fig.5. The 3-Phase Proposed Method Results

5. CONCLUSIONS AND FUTURE WORKS

This paper discusses current resource allocation models for cloud computing service provider

and shows that dynamic pricing is more suitable for sharing of computing resources, where

they want to have more customers as a managerial decision and even more income.

Using fixed pricing, the average user welfare is constant, since the user utility is also constant

and the cloud owner does not have any control on its resource usage scale. In contrast, when

using dynamic pricing, the average user welfare fluctuates with the computed payments,

according to the resource demand. Moreover, a dynamic pricing scheme is able to balance the

number of successful requests and the number of allocated resources depending on the market
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condition (~300 VM in Fig.4 against ~550VMs in Fig.5). For example, resource contention in

the case of over-demand is balanced by increasing the resource price or even discount on other

resources. Similarly, buyers are incentivized by a lower price when the market condition is

under-demand. Overall, dynamic pricing achieves better economic efficiency both with higher

average user welfare, and a higher number of successful buyer requests and allocated seller

resources. From our experiments we find that our method will serve higher utilization and on

the other side more customers and lower rejection rate expansion shown in figure 6, while the

percentage of succesful requests is also increased up to 180%.

Fig.6. Comparison between Rates of Orders Rejection

Even though the pricing algorithm is polynomial, scalability becomes an issue as the number

of resource types in a request increases. We are currently implementing a scheme that uses this

model in a full feature framework, where multiple costing parameters should be cared and

costing can affect allocation of different resource types at the same time. Applying this method

to Federated Clouds is another aspect of this work which is able to be followed.
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