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ABSTRACT

During this work, we simulated an unsteady flow around an airfoil type NACA0012 using the
Fluent software. The objective is to control the code on the one hand and on the other hand
the simulation of unsteady flows. By simulating an unsteady flow Reynolds number (Re =
6.85 * 106) and Mach number (M = 0.3), we have the flowing with a grid (mesh) adequate
numerical results and experimental data are in good agreement. To represent the results of the
simulation we have validated by comparing the values of aerodynamic coefficients with those
of experimental data.

Keywords: Unsteady flow; Fluent; a single equation model; NACAQ0012.

1. INTRODUCTION
Predetermination of unsteady flow was aways a concern for the research because the
implementation difficult in laboratories and sophisticated equipment requirements. Our

objective of this study isto control the simulation of unsteady flows around structures.
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Using the finite volume method and Spalart-Allmars model, designed for applications in
Aerospace, our results were in good agreement with experimental data. By ssimulation studies
predeterminations became very easy to prepare, this gain is the result of the development of
computational methods and hardware remarkable revolution. So mastery of computers has
become indispensable for such studies simulation. Representations available in the Fluent
software allowed me to understand the discipline of an unsteady flow.
For this work we simulated unsteady flow around a NACAQO012 profile type in the following
conditions:

Iso-thermal wall at 300°k; Fluid temperature 300°K; Atmospheric pressure, P = 101325 Pa;
Reynolds number, Re = 6.84 .106; Mach number, M = 0.3; Angle of incidence, a = 4;
Relationship for the viscosity of Sutherland.

2. TURBULENCE MODELING:

Modeling is by definition an approximation of reality, so its results are adways more or less
close to the experimental data. It was resolved the Navier-Stokes Reynolds averaged using a
single closed equation, which models the Reynolds stress (-p (u_i U_j)) by solving the
transport equation for the turbulent kinematic viscosity this model proposed by Spalart-
Allmaras.

The equations of continuity and Navier-Stokes Reynolds averaged are given by:
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The equation connectingiti: Reynolds stress with the average speed is the following:
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Ue: turbulent viscosity;
k: Kinetic energy of turbulence.

The transport equation for turbulent kinematic viscosity (v) is:
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G, : The production of turbulent viscosity;
Y,,: The destruction of turbulent viscosity;
oy and Cp,,: Constants,

Sy: the user’s defined source.
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The kinetic energy of turbulence, k will not be calculated.

3. GEOMETRY AND MESH:
Seethefigures 1, 2 and 3.

—

Fig.1. NacaD012 profile.
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Fig.2. Domain of camputation
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Fig.3. Mesh near the profile

4. STUDY OF DEPENDENCE IN MESH:

In order to check the mesh dependency or not the simulation of steady flow at 10° incidence

is made by calculating four cases by conducting a mesh adaptation to the walls for the 3rd and

4th cases, the results are affirmative for dependence and the thickness of the first mesh affects

the simulation results.

The values of lift coefficient were improved after modifications of the mesh, however the

accuracy of convergence is higher for the first adaptation and stepped back for seconds. It is

advisable to choose a good convergence criterion not to waste time cal cul ating assets without

aconverged solution. Figures 4 to 8.
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Fig.6. Mesh after second adaptation
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5. VALIDATION OF RESULTS:

To validate our results, we compared the values of the coefficients of drag and lift with the
experimental data obtained by N. And Gregory N. P. Welby. These values are taken for both
cases for each incidence angle. V1 is taken after the convergence of the continuity equation
for atest 10° and V2 after the zero convergence of these coefficients. (Figures 9 and 10).
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Fig.9. drag coefficient afunction of angle of attack, M = 0.4
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Fig.10. drag coefficient a function of angle of attack, M = 0.4
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6. REPRESENTATIONSOF STEADY RESULTS:
We represented the stationary results in order to use them to initiate the unsteady calculation

and avoid oscillations composition in the transient portion of the flow. Figures 11 to 14.
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Fig.11. Drag convergence for steady flow

Cl

LE 0D LIS 02 L2 03 038 Ld 048
Flaw Time

Lift Convergerea (Tinschd321)
e Ranbrge o TS FLUENT 5.3 124, dp. dbrs inp, &4, uns:sedy)
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Fig.13. Distribution of Static pressure around the airfoil
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Fig.14. Distribution of Mach number around the airfoil

7. REPRESENTATIONSOF UNSTEADY RESULTS:
To simulate the unsteady flow we used a static pressure pulse to the input of area to get the
Mach 0.32> M> 0.278. This pulse is defined by the general equation [P = A sin (w.t) + Patm].
The figures above (15 to 18) highlight the difference between steady results and those

unsteady.
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Fig.15. Drag convergence for unsteady flow
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Fig. 18. Distributions of instantaneous static pressure around the airfoil

8. LESISO-CONTOURSINSTANTANESDE LA PRESSION STATIQUE:
The different Iso-contours are represented to highlighting the diffences between the contours

of the instantaneous static pressure. Figures 19 to 24.
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Fig.19. Iso-contour of static pressureatt = 0.816 s.
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Fig.23. Iso-contour of static pressure at t = 0.8544 s.



M. Y. Habibet al. J Fundam Appl Sci, 2014, 6(1), 116-126 125

Fig.24. 1so-contour of static pressure at t = 0.864 s.

9. CONCLUSION

The historical convergences of the aerodynamic coefficients highlight the influence of
changing the speed at infinite upstream of these coefficients. The oscillation of coefficients
produces a vibration of arcraft wings will, in view of the rigidity of the wing is the cause
vibration by the flowing fluid.

The Iso-contours of the instantaneous static pressure represented illustrate the dependence of
the flow time, so the flow is unsteady and the pressure distribution around the profile changes
from one moment to another by oscillating the aerodynamic coefficients. Thus the oscillation
of static pressure is defined boundary conditions at the origin of the variation of the speed and
therefore Mach number. To conclude our study, with an adequate grid and well-chosen
approach the numerical results and ones experimental are in good concordance. so boundary
conditions must be well defined.
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