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ABSTRACT 

The assessment of water microbial quality is normally performed by verification of 

Escherichia coli where the growth is in nonlinearity. NARX is computational tools that have 

extensive utilization in solving nonlinear time series problems. It is well known

technique that has the ability to predict with efficient and good performance. Using NARX, a 

highly accurate model was developed to predict the growth of Escherichia coli (E. coli) based 

on pH water parameter. The multiparameter portable sen

used to build and train the neural network. The selection of neural network structure for pH 

and optical density modelling was optimized and also the training and validation were 

analyzed. The result exhibited that NARX 

based on pH water parameter with overall regression is 0.99956. 

Keywords: neural network; NARX; prediction; Escherichia coli; pH; optical density.

 

Author Correspondence, e-mail: 

doi: http://dx.doi.org/10.4314/jfas.v9i4s.42

 

 

Journal of Fundamental and Applied Sciences

ISSN 1112-9867 

Available online at       http://www.jfas.info

Journal of Fundamental and Applied Sciences is licensed under a Creative Commons Attribution-NonCommercial 4.0 

ESCHERICHIA COLI GROWTH MODELING USING NEURAL NETWORK

 

Rahiman1,*, M. N. Taib1, A. H. Ahmad2 and W. R. W. A.

Faculty of Electrical Engineering, UniversitiTeknologi MARA, 40450 Shah Alam, Selangor

Malaysia 

Faculty of Applied Sciences, UniversitiTeknologi MARA, 40450 Shah Alam, Selangor

Malaysia 

 

Published online: 05 October 2017 

The assessment of water microbial quality is normally performed by verification of 

Escherichia coli where the growth is in nonlinearity. NARX is computational tools that have 

extensive utilization in solving nonlinear time series problems. It is well known

technique that has the ability to predict with efficient and good performance. Using NARX, a 

highly accurate model was developed to predict the growth of Escherichia coli (E. coli) based 

on pH water parameter. The multiparameter portable sensor and spectrophotometer data were 

used to build and train the neural network. The selection of neural network structure for pH 

and optical density modelling was optimized and also the training and validation were 

analyzed. The result exhibited that NARX modeling was able to predict the growth of E. coli 

based on pH water parameter with overall regression is 0.99956.  
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1. INTRODUCTION 

An extensive microbial waterborne disease outbreak among peoples who used water for 

drinking, domestic purpose and recreation [1-3]. Faecal coliforms that include Escherichia 

coli is the most common risk associated with microbial contamination in water [2]. 

Escherichia coli commonly referred to as E. coli is found in the digestive systems of human 

and warm-blooded animals. E. coli get in the water during rainfalls and snow melt, washed 

into creeks, rivers, lakes, stream, sea, beaches, recreational water from the land surfaces [4].  

The presence of E. coli in water is associated with the microbial growth itself. Microbial 

growth phases under specific environment conditions represent a principal process in 

microbiology. The microbial growth phases consists of lag, exponential, stationary and death 

for typical growth curve [5]. In water quality application areas, the verification of microbial 

growth is more focused at the stationary phases [6].  

Nowadays, modeling has become significant mechanism for expanding our understanding of 

microbial growth. In water quality, the models are developed to describe water parameter 

changes. It must be acknowledged that water is very complex and many interactions may 

occur. For instance, the growth of microbes may lead to pH changes which in turn may have 

consequences for chemical reactions if they are acid-catalyzed. Nevertheless, models can help 

in controlling and predicting water quality attributes and their changes.  

A wide range of nonlinear system can be interpreted by neural network modeling technique 

for use in microbial growth [7-10]. Nonlinearity is essential to the living microbial culture and 

limits strongly the use of traditional deterministic modeling techniques to represent the 

growth of microbes as a function of time [11]. Neural network have been engaged in recent 

years as an alternative to traditional regression models due to strength of describing complex 

and nonlinear problems [12].  

The realization of microbial growth modeling is based on an Autoregressive Network with an 

Exogenous Input (NARX) model. NARX neural network is a model that is based on the linear 

ARX model. It is commonly used to predict future especially in difficult time series prediction 

tasks [13].  

In recent years, there has been an increasing amount of literature on pH data were used for 

determining the microbial water quality [14-18]. In 2001, data for aerobic growth of microbe 
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in response to change in pH were used to develop a prediction model [19]. In a different study 

in 2005, a model was developed to predict bacterial spore inactivation based on combined 

effect of pH as a function of heat resistance [20].  

With this in mind, in this study, the effect between E. coli and pH at various times was 

examined. To this end, NARX neural network was used as an alternative approach to 

conventional methods of microbial growth prediction.  

 

2. MATERIAL AND METHOD 

2.1. Multiparameter Portable Sensor Unit  

The data of pH were collected from the experiment of water physical parameter using 

multiparameter portable sensor unit. The HORIBA multiparameter, U-50 Series was soaked in 

water sample containing E. coli culture. The pH sensor that builds in the multiparameter was 

read the changes of pH value every 1 hour interval within 8 hours. The pH readings were 

recorded manually and those data will be prepared for the analysis. 

2.2. Spectrophotometer 

The data of optical density, OD was collected from the experiment of E. coli growth using a 

spectrophotometer. An amount of 0.1 ml of water sample was taken using micropippete and 

then placed in a cuvette. A light beam passing through the cuvette will be scattered more or 

less by the cells, depending on the cell density (=turbidity). The wavelength of the optical 

density (OD) was set to 600 nm [21]. The OD readings were recorded manually and those 

data will be prepared for the analysis. 

2.3. Significant Correlation between E. Coli Growth and pH 
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Fig.1. Statistical analysis using Pearson correlation between E. coli growth and pH 

From the previous study [22], pH was identified as significant parameter that correlates with 

the growth of E. coli as seen in Fig. 1. The statistical analysis technique used was Pearson 

correlation. The relationship between E. coli growth (≈OD)and pH gave the correlation 

coefficient, r = 0.971.  

2.4. NARX Experimental Design 

 

Fig.2. Flowchart of NARX experimental design 
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Fig. 2 shows the experimental design of the NARX modeling developed by using MATLAB 

2015. The network consists of five steps i.e. the data collection, the model structure 

collection, NARX model training, NARX model validation and modelling acceptance. First 

step, the pH and OD data were collected and were normalized. Second step, the number of 

hidden neurons and input delays were selected based on optimization of NARX training and 

validation under model structure selection. When the number of hidden neurons and input 

delays were selected with the nearest regression value, R = 1, the input data were divided by 

block so that 70% of samples were assigned to the training set and the remaining 30% to the 

validation set in the third and fourth step. All the data set were used interpolation technique 

[23]. Lastly, if the regression value, R for the training, validation and testing data set is 

acceptable, the number of hidden neurons and input delays can be used to evaluate the NARX 

model.    

The definition equation for the NARX model is: 

y(t) = f൫y(t − 1)൯, y(t − 2), … , y൫t − n୷൯, u(t − 1), u(t − 2), … , u(t − n୳)(1) 

where the next value of the dependent output signal y(t) is regressed on previous values of 

the output signal and previous values of an independent (exogenous) input signal. 

 

3. RESULTS AND DISCUSSION 

3.1. Data Collection for OD and pH 
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(b) 

Fig.3. Observed data on the input signal (a) OD versus time and (b) pH versus time of E. coli 

growth recorded during an experiment 

The experimental study yielded an input and output data as illustrated in Fig. 3. Data recorded 

by manual monitoring are pH as an input and OD of E. coli growth as an output. For each 

parameter, 2 curves were generated at 1 hour interval for 8 hours. Fig. 3 (a) shows the 

relationship between OD and time,while Fig. 3 (b) shows the relationship between pH and 

time. The pH shows some decrement pattern for the first 3 hours. This unexplained behaviour 

may be further investigated. However, the statistic shows significant correlation exists 

between OD and pH (Fig. 1). 

3.2. NARX Structure Selection 

3.2.1. Hidden Neuron Number Selection  

A quantitative observation for hidden neuron number selection based on number of delay 1 

using NARX modelling is presented in Table 1. The ratio of training and validation used are 

70% for training (23 data) and 30% for validation (10 data). This table shows that regression 

calculated using both training and validation data sets were trained until 10th number of 

hidden neurons. The results indicate that the number of hidden neurons 2 gives the best 

regression value, R of 0.99914, which is closest to 1.  
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Table 1.Selection of hidden neuron number based on regression value 

No. of Hidden 

Neuron 

No. of 

Delay 

Regression 

Training 

Regression 

Validation 

Regression 

All 

1 1 -0.97953 0.47772 -0.30499 

2* 1 0.99882 0.96605 0.99914 

3 1 0.92089 0.79351 0.97182 

4 1 0.99922 0.21497 0.97767 

5 1 0.99884 0.56714 0.99245 

6 1 0.99640 0.34913 0.98139 

7 1 0.99875 0.90371 0.99399 

8 1 0.99862 0.52664 0.98724 

9 1 0.99938 -0.92001 0.94077 

10 1 0.99937 -0.00402 0.95054 

  *Indicate the best overall regression value. 

 

Fig.4. Result of training and validation data 
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Fig. 4 shows the regression value, R of training and validation during the selection of number 

of hidden neurons 2. The result indicates that the regression value, R = 0.99914 which is near 

to 1 when the input delay is 1. 

3.2.2. Number of Delays Selection 

The numerical results of the identified model parameters and the number of delays based on 

the number of hidden neurons 2 are shown in Table 2. The ratio of training and validation 

were 70% (23 data) and 30% (10 data) respectively. This table validates the accuracies of the 

NARX model work reasonably well during 7 numbers of delays. The result of least value 

among the overall regression, R was 0.99882 for performing the best model structure. 

Table 2.Selection of delays number based on regression 

No. of Hidden 

Neuron 

No. of 

Delay 

Regression 

Training 

Regression 

Validation 

Regression 

All 

2 1 0.99888 0.94519 0.99844 

2 2 0.96496 -0.46384 -0.19256 

2 3 0.99922 0.39226 0.98858 

2 4 0.99909 -0.38825 0.91396 

2 5 0.99883 0.94145 0.99823 

2 6 -0.78170 -0.45950 -0.34176 

2 7* 0.99915 0.94531 0.99882 

2 8 0.99934 0.93860 0.99872 

2 9 -0.97418 0.61180 -0.56236 

2 10 0.99376 -0.63632 0.96788 

  *Indicate the best overall regression value. 

3.3. Result of NARX Model 

3.3.1. Regression 

The NARX model consists of two features which are pH and OD over 1 hour time interval within 

8 hours. The regression values achieved by NARX model using interpolation data are shown in 

Fig. 5. This NARX model signifies a very good linear regression correlation between measured 

and predicted data. From the results, it can be seen that NARX model gives good performance 

over the training and validation models with all regression, R = 0.99882. 
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Fig.5. Best regression of NARX model 

3.3.2. Time Series Response 

In this section, the time series response using data testing is shown in Fig. 6. The training and 

validation output were fitted with the targets. This shows that time series response can 

identify novel relationships and patterns in microbial data.  

 

Fig.6. Time series response of output and error for structure selection of NARX model 
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4. CONCLUSION 

Using simple yet reasonable input combination, the proposed NARX [24] model is able to 

perform real time E. coli growth with good accuracies. This paper also investigates the 

number of hidden neurons and delays selection to predict E. coli growth based on pH 

parameter using NARX modelling [25]. The selection criteria are based on regression values 

during testing. The number of hidden neurons and delays affected the performance of 

prediction technique. This model shows a good agreement between target and output values.  

Overall, the prediction of E. coli based on pH parameter performs the best result with 2 

hidden neurons and 7 numbers of delays with regression value, R = 0.99882 which is close to 

1. NARX [26] is one part of the efficient model to predict E. coli growth based on pH 

parameter. 
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