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Abstract 

BACKGROUND AND AIM: Cricetomys gambianus (African Giant Rat (AGR) a nocturnal rodent has 

recently been a choice model for several areas of neuroscience research. This study assessed sexual differences 

in the morphometric parameters of visual pathway structures of the AGR.  

MATERIALS AND METHODS: Ten healthy adult AGRs (n=5; Male (M) and Female (F)) were captured 

from the wild and used for this study. The ARGs were sedated and body weight obtained before perfusion and 

decapitation. The weight and dimensions of the brain, eyeballs, optic nerve, optic chiasma and optic tract were 

obtained using digital weighing balance and Vernier caliper, respectively. Data obtained were analyzed using 

Statistical Package for the Social Sciences (SPPS) version 23. Results were expressed as mean ± SEM. 

RESULTS:  Average body weight of AGRs was 787±208.6 g for males and 926±133.0 g for females; Brain 

weight was 6.7±0.6 g for males and 6.9±0.6 g females; while eyeball weight was 0.23±0.02 g for males and 

0.22±0.02 g for females. Significant (p<0.05) sexual differences were observed in the dimensions of eyeball 

antero-posterior diameter (M=7.19±0.24 mm; F= 6.56±0.17 mm); Eyeball right-left diameter (M=6.12±0.11 

mm; F= 5.27±0.19 mm); Optic nerve length (M=2.18±0.18 mm; F=1.42±0.13 mm); Optic tract length 

(M=1.21±0.16 mm; F=1.02±0.08 mm); Optic chiasma antero-posterior length (M=1.02±0.24 mm; 

F=0.66±0.05 mm) and Optic chiasma right-left length (M=0.80±0.07 mm; F=0.73±0.05 mm). 

CONCLUSION: There exists sexual dimorphism in the morphometric parameters of visual pathway 

structures in the AGR. These differences are suggestive of evolutionary advantage in males compared to 

females as they go out in search for food and easy escape from predators within their natural habitat. 
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INTRODUCTION 

Sexual dimorphism is a common phenomenon 

in mammalian species (Lindenfors et al., 2007; 
Shine, 2019). Evolutionarily, biological and 
environmental factors are critical in influencing 
specific patterns and extent of sexual 
dimorphism across species.  Differences in 
bodily structures may contribute to sex-specific 
activity and associated with behavioral patterns 
in the species’ natural habitat (Kappeler, 1991; 
Bimova et al., 2018). Rodent species are 
important research tools in the biomedical field 
and have been reported to exhibit varying 
patterns of sex-based differences in the 
structures of the body including sensory organs 
(Campi and Krubitzer, 2010; Prendergast et al., 
2014). 
Under-explored rodent species such as Cricetomys 

 
gambianus (African Giant Rat, AGR) has of 
recent been a choice model for several areas of 
neuroscience research, due to severally shared 
anatomical and physiological similarities with 
higher mammals including humans, particularly 
in their nervous system and sensory processing 
mechanisms (Jones, 2007; Okoye et al., 2019). 
AGRs are nocturnal rodents which belongs to 
the family Nesomyidae and order Rodentia. 
They live in a variety of habitats ranging from 
arid to temperate areas (Ajayi, 1977; Igbokwe et 
al., 2017). The AGRs are nearly inactive during 
the day, and come out at night in search of food. 
They are omnivorous, feeding on vegetables, 
insects, crabs, snails, and other items (Perry et 
al., 2006). Both sexes are very territorial, but 
huddle together when temperature drop due to 
their low body fat as they do not retain heat easily 
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(Nowak, 1997). The AGRs display a wide range of behavioral 
patterns in their natural habitat such as burrowing, foraging, 
and social interactions. These patterns may differ between 
sexes and could be useful in studying structures involved in 
neurological processes including sense of vision (Ajayi, 1977; 
Kingdon, 1997; Olude et al., 2014).  

The morphology of the visual pathway structures is conserved 
across evolutionary trend in mammalian species (Kaas, 2008; 
Campi and Krubitzer 2010); performing the function of 
receiving, relaying, and ultimately processing visual 
information. These structures include the eyeball, optic 
nerves, chiasm, tracts, lateral geniculate nucleus (LGN) of the 
thalamus, radiations and visual cortex (striate cortex, and 
extrastriate association cortices) (Felleman and Van Essen 
1991). The eye is the primary sensory organ for vision, 
responsible for collecting light, focusing it, and encoding the 
first neural signals of the visual pathway. As soon as the visual 
information is generated in the retina as an appropriate 
physical stimulus, the electrical signals are conveyed to the 
brain via retinal ganglion cells (RGC) axons, which form the 
optic nerve as they exit the eye (Kaas, 1997; Sherman and 
Guillery, 2002). The optic nerve is an extension of the central 
nervous system (brain). The optic nerves from the two eyes 
decussates at the optic chiasma located at the base of the 
brain (Kaas, 2008).  

Understanding the sex-based differences in the visual system 
of AGR could be beneficial in improving design and 
interpretation of visual and related neurological studies, 
crucial for the reliability and translational relevance of 
research using this species (AGR) as a model. A few studies 
have demonstrated sex differences in the morphometrics 
(size and structural measurements) of the visual pathway 
structures in some rodent species and associated to visual 
processing and function (Zilles et al., 1984; Hua et al., 2015). 
Hence, this study assessed sexual differences in the 
morphometric parameters of visual pathway structures of the 
AGR.  

MATERIALS AND METHODS 

Experimental Animals 

Ten adult AGRs (n=5; male and female) were captured alive 
from the wild around Samaru Village in Zaria, Kaduna State, 
Nigeria. Using locally made metal cages, the AGRs were 
transported to the Neuroanatomy Laboratory, Department of 
Human Anatomy, Faculty of Basic Medical Sciences, Ahmadu 
Bello University, Zaria, where they were acclimatized for 3 
days before the commencement of the study (Conour et al., 
2006). During this period, the AGRs were allowed free access 
to drinking water and food (water melon, bean cake and 
ground nuts). 

 

 

Animal Euthanasia and Sample Collection 

The AGRs were anesthetized with chloroform and the 
absolute body weights obtained using a digital electronic 
balance (Citizen Scales (1) PVT Ltd., U.S.A, sensitivity: 0.01 g). 
Thereafter, the AGRs were perfused transcardially; first, with 
normal saline to do a vascular rinsing, followed by 10% 
Buffered Formal Saline as described by Gage et al. (2012) and 
Ivang et al. (2023).   

The whole brain, eyeballs and other structures of the visual 
pathway (optic nerves, chiasma and tracts) were carefully 
dissected by removal of cranial and facial bones. Enucleation 
of the eyeball was carried out according the method 
described by Mahajan et al. (2010).  Enucleation involved the 
eyelids (superior and inferior) pulled apart to expose and 
access the eyeball. A curved dressing forceps was placed 
behind the globe in the orbit (eye socket). The forceps was 
closed to grasp the orbital connective tissue and optic nerve 
behind the globe while being careful to avoid squeezing the 
globe, and then pulled gently upward to extract the eyeball 
from the orbital cavity.  

The harvested brain including structures of the visual 
pathway were observed for morphologic features and 
dimensions measured (see Figure 1).   

Gross Morphological Observations 

The gross features of the AGR brain, eyeballs and other 
structures of the visual pathway were examined with the aid 
of a handheld lens (30 mm FHK Handheld Portable 
Magnifying Glass - China). Brain shape and colour, and other 
structures were observed on the dorsal and ventral brain 
surfaces. Definitions of gross anatomical structures were 
based on standard information on rodent anatomy (Rowet, 
1979; Suckow et al., 2006). 

Morphometric Assessments  

The harvested whole brains of the AGR were weighed using a 
digital weighing scale (Mettler balance P 1210, Mettler 
instrument AG, Switzerland; sensitivity: 0.001) and, 
organosomatic (brain-body ratio) index were computed as 
described by Amber et al. (2020). Weight of the eyeballs (right 
and left) were measured and eyeball indices (eyeball-body 
weight and eyeball-brain weight ratios) were computed. 
Using a digital Vernier caliper (150 mm, China), the eyeball 
(right and left) dimensions measured were: Eyeball Antero-
posterior (AP) - rostro-caudal diameter and Eyeball Right-left 
(R-L) diameter (see Figure 2). 

The dimensions of the optic nerve, chiasma and tract (Optic 
Nerve Length; Optic Chiasma Right-Left Length; Optic 
Chiasma Antero-Posterior Length; Optic Tract Length) were 
obtained using non stretchable laboratory thread, a 
transparent 30 cm ruler and digital Vernier caliper.  

 

https://www.physio-pedia.com/Brain_Anatomy
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Data Analysis     

Data collected on measured parameters were expressed as 
mean ± SEM and subjected to statistical analysis using 
Statistical Package for Social Sciences (SPSS) version 23.0. 
Student’s t-test was used to determine the significance of the 
differences in the values obtained in AGR males and females. 
Values of p < 0.05 were considered significant. 

 

Figure 1: Experimental design 

 

 

Figure 2: Measurement of dimensions of the visual pathway 
structures. Optic nerve (ON); Optic chiasma (OC); Optic tract 
(OT); Retina (RT); Optic disc (OD); Anterior (A); Posterior (P); 
Medial (M); Lateral (L); 1= Antero-posterior (AP) length of 
eyeball (EB); 2= Medio-lateral length of EB; 3= AP length of 
OC; 4= Right-to-left length of OC. Indices: EB/BrW x 100; BrW/ 
BW x 100; EB/BW x 100 (Amber et al., 2020; Ivang et al., 2023) 
BrW = Brain Weight; BW = Body Weight; EB Eyeball.  

RESULTS 

Morphological Assessments 

The absolute body weight, gross features of the brain, 
eyeballs and other structures of the visual pathway of AGRs 
were examined and are reported as follows: The average 
absolute body weight of AGRs showed higher values in 
females (926 ± 133.0 g) compared to their male (787 ± 208.6 
g) counterparts. However, this difference was not significant 
(Figure 3A).  

Gross observation of the AGR whole brain revealed a milky 
colour with an oval shaped orientation from a dorsal view. 
The brain dorsal surface presented with distinct parts 
including the cerebrum; the largest part of the brain, which 
lies immediately caudal to the olfactory bulb, rostral to the 
cerebellum and dorsal to the brain stem. On the ventral 
surface, the olfactory bulbs presented as rostral outgrowths 
of the brain, with the eyeballs (spherical and pigmented) 
laterally placed. Caudally, the paired optic nerves emerged 
from the eyeball, decussated at the optic chiasma and gives 
off optic tracts. Caudal to the optic tracts is the hind brain 
which comprised of the medulla oblongata, pons and 
cerebellum. The pons and medulla formed portions of the 
brain stem (Figure 4). 

Morphometric assessments 

The mean values of AGR brain weight were less for the males 
(6.7 ± 0.6 g) compared to the females (6.9 ± 0.6 g) with no 
significant (p> 0.05) difference (Figure 3B). Conversely, the 
organosomatic index revealed higher values (p> 0.05) in 
males than their female counterparts (Figure 4).  

The weight, dimensions and indices of the eyeballs of the 
male and female AGRs revealed asymmetry and sexual 
differences. The eyeball weight (right and left) showed higher 
values (p> 0.05) in males than their female counterparts 
(Table 1). Relative to the dimensions (AP and R-L lengths) of 
the eyeball, sexual (p< 0.05) differences were observed only 
in the right eyeball (Table 1).  

The eyeball indices (eyeball-body weight and eyeball-brain 
weight ratios) showed significant sexual differences with 
males having higher values than their female counterparts 
(Figures 5B and 5C).  

The male AGRs revealed higher values in the dimensions of 
the optic nerve, chiasma and tract compared to their female 
counter parts. These sexual differences were significant in all 
the parameters except, optic tract (Figure 6). 
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Figure 3: Comparison of body and brain weight of AGRs  
BW = Body Weight; BrW = Brain Weight; n= 5; mean ± SEM; Unpaired t-test: p> 0.05 (no significant difference)

 

 
Figure 4: Gross morphological features of the AGR Brain; A= Dorsal, B = Ventral views. 
1= Eyeball, 2= Olfactory bulb, 3= Cerebrum, 4= Cerebellum, 5= Optic Nerve, 6= Optic Chiasma, 7= Optic Tract, 8= Visual Cortex, 
9= Midbrain, 10= Pons, 11= Medulla 
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Figure 5: Sex differences in eyeball-brain-body weight indices of AGRs  

EB = Eyeball; BrW = Brain Weight; BW = Body Weight; n= 5; mean ± SEM; Unpaired t-test: p> 0.05 (no significant difference) 

 

Table 1: Sex differences in eyeball dimensions of AGRs 

 
n=5; Unpaired t-test.  ELR= Eyeball AP diameter right; ELL= Eyeball AP diameter left; EDR= Eyeball R-L diameter right; EDL= 
Eyeball R-L diameter left; EWR= Eyeball weight right; EWL= Eyeball weight left. Red text indicates significant difference between 
males and females.  
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Figure 6: Comparison of dimensions of the Optic Nerve, Optic Tract, Optic Chiasma of AGRs.  

ONL = Optic Nerve Length; OCRLL = Optic Chiasma Right-Left Length; OCAPL = Optic Chiasma Anterior-Posterior Length; OTL = 
Optic Tract Length. n= 5; mean ± SEM; Unpaired t-test: p> 0.05 (no significant difference) 

 

DISCUSSION 

In this study, visual pathway structures of African Giant Rats 
were described using morphological and microscopic 
approaches.  

The observed absolute mean body weight of AGRs > 500 g for 
adults is in line with values (1010.00 ± 25.10 g) reported by 
Olude et al. (2015). Comparative studies have reported the 
mean weight values for smaller rodents including murines to 
be lower than the mean absolute body weight values for 
larger rodents like Thryonomys swinderianus (grasscutter); > 
2 kg and porcupine; > 7 kg (Fournier and Thomas, 1997). The 
female AGRs revealed higher average absolute body weight 
than their male counterpart. This finding suggests a possibility 
of sexual dimorphism in the species; although differences 
were not significant in this study. Hergenroeder and Klish 
(1990) reported sex differences in the absolute body weight 
of a rodent species, Mus muculus (Mouse), attributing higher 
body weight values in females to accumulation of body fat 
due to their sedentary life style spending most of their time 
in burrows taking care pulps, while the males are more active 
in search of food (Nowak, 1997; Perry, 2009).  

The milky coloration of the AGRs’ brain is in agreement with 
reported brain coloration for rodent species (Dwarika, 2008; 
Ibegbu et al., 2014; Musa et al., 2016). This coloration is a 
common manifestation of structures of the central nervous 
system linked with the presence of an integral biochemical 
component, lipid moieties (Aschner and Toews, 2010; Poon 
et al., 2018). The oval-shaped brain of AGR is in line with 
reports by Ibe et al. (2014).  The spherical-shaped eyeball of 
the AGR is in line with the morphology reported for rodents 
(Remtulla and Hallett, 2004; Jonathan et al., 2005). This 
characteristics shape provides a wider field of view that 
provides the rodent the adaptive advantage to their 
nocturnal lifestyle (Schittny et al., 2021). Monavarfeshani et 
al. (2017) in his review on the visual system of rodents 
revealed that the optic nerve exits the eye and projects 
ventrally to the optic chiasm in species like mice and rats. A 
similar trend is seen in the arrangement of the visual 
structures of AGRs.  

Longitudinal fissure separating the two cerebral hemispheres 
and, a ventrally located brain stem with colliculi situated at 
the mid brain- tectum as observed in this rodent species is in 
line with reported brain morphology of rodents and other 

https://en.wikipedia.org/wiki/Cerebral_hemispheres
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mammalian species (Musa et al., 2016; Ibe et al., 2017; Pardo 
et al., 2020). Morphologic features of the ventral surfaces 
including brain stem observed in this rodent species is in line 
with reported characteristics in rodents and other 
mammalian species (Olude et al, 2017; Ibe et al., 2021).  

The mean brain weight of the adult AGR (> 5 g) is in 
agreement with reported values by Olude et al. (2016) (5.60 
± 0.06 g). This value is comparatively higher than that of the 
adult guinea pig (4 g), but less than that reported for adult 
rabbit (10.00 g), squirrel (7.6 g), marmoset (7.00 g) and 
porcupine (25 g) (Nzalak et al., 2005; Eric 2006). Sexual 
differences in the brain weight observed in AGR is in line with 
reported trend in large rodent species like adult greater cane 
rat (> 8 g for males and > 9 g for females) (Byanet et al., 2009).  

The organosomatic index, in this case, the brain-body weight 
ratio is a metric that quantifies the percentage of brain mass 
relative to the absolute body weight of a species (Ibe et al., 
2017). In this study, the male AGR revealed higher values for 
brain-body weight ratio compared to their female 
counterparts. This finding is in line with reported higher 
values for brain-body weight ratio in other rodent species 
including mice and rats (Russell and Bulimia, 1979; Olude et 
al., 2016; Agbon et al., 2021). Higher values for brain-body 
weight ratio have been associated with intelligence in 
mammalian species as larger relative brain weight provides 
for more complex cognitive tasks, including behavioral 
flexibility, social interactions, and survival advantage in novel 
environments (Russell and Bulimia, 1979; Sol et al., 2008; 
Roth and Dicke, 2005; Yu et al., 2014). Thus, findings are 
suggestive of the male AGRs as more intelligent species 
compared to their female counter part and could be 
beneficial as an animal model for neuroscience related 
researches (Pallav, 2013; Edobor et al., 2021; Genzel, 2021). 

The mean eyeball weight for AGRs in this study was ≥ 0.2 g 
which agrees with reported values in AGRs (Olude et al., 
2011) (0.16± 0.01 g) and in other rodent species including 
Notomys alexis (Australian hopping mouse); 0.27 g (Smith, 
1976) and Cavia porcellus (guinea pigs); 0.99 g (Latimer, 
1951), but greater than the values reported for different 
strains of mice; 0.014-0.024 g (Zhou and Williams, 1999). The 
observed eyeball dimensions for the AGR were smaller than 
that of African grasscutter and humans with axial eye 
diameters of > 8mm (Peter-Ajuzıe et al., 2019) and > 20 mm 
(Augusteyn et al., 2012) respectively. Organosomatic and 
organ-to-organ indices describes the ratio of organs to body 
weight and organs to certain organs. These indices are 
pointers to different evolutionary trends associated with 
ecological niches in certain environmental changes. This tells 
how each species has adapted over time (Schmidt-Nielsen, 
1984, Ronald and Bruce, 1990).  

Differences in the size of the left and right bodily parts have 
been observed in various mammalian species (van der 
Meulen et al., 2005). Observed differences in the measured 
values (weight and dimensions) of the AGR eyeball is 

suggestive of biological asymmetry. Findings are in line with 
reports on asymmetric characteristics of brain parts in 
rodents and other mammals (Ocklenburg and Güntürkün, 
2018). 

The dimensional differences in eyeballs values for AP and R-L 
diameter between males and females is suggestive of sexual 
dimorphism. This finding agrees with reported values by 
Olude et al. (2011) who reported that the antero-posterior 
(AP) eyeball circumference and the right mediolateral (R-L) 
eyeball circumference of the right and left eyeballs were 
greater in males than in females but this did not translate into 
weight as the eyeball weights between the sexes for the left 
and right eyeballs were similar.  

The AGR eyeball indices (eyeball-body weight and eyeball-
brain weight ratios) showed significant sexual differences 
with males having higher values than their female 
counterparts. This finding is in agreement with sexual 
dimorphic characteristics in the eyeball indices reported for 
rodents, mice, rats, and gerbils (Breedlove and Hampson, 
2002; Ebrahim et al., 2018). Graw (2010) reported that male 
rodents often have larger eyeball indices compared to 
females of the same species. Larger eyeball indices in male 
rodents have been associated to varying behavioral patterns 
and ecological roles. The males are habitually engaged in 
more exploratory, and territorial behaviors (Kiltie, 2000; 
Breedlove and Hampson, 2002; Ebrahim et al., 2018).  

Dimensions of the male AGR optic nerve and chiasma 
revealed significant difference when compared to their 
female counterparts. This finding is in line with reports on the 
diameter of AGRs’ structures of the visual pathway including 
optic nerve, chiasma and tract (Jeffery and Erskine, 2005). 
Similar trend was observed in other rodent species including 
mice and rats (Kaas, 2008; Chuang et al., 2021). This suggests 
that males often exhibit greater sexual differences in various 
aspects of the visual system which may be related to 
differences in visual processing, spatial perception and other 
sex-specific behavioral and ecological requirements (Kaas, 
2008; Chuang et al., 2021). 

Conclusion: There exists sexual dimorphism in the 
morphometric parameters of visual pathway structures in the 
AGR. Most of the assessed morphometric values were higher 
in males. These differences are suggestive of evolutionary 
advantage in males compared to females as they go out in 
search for food and easy escape from predators within their 
natural habitat.  
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