Main Article Content
Route optimization for solid waste collection: Onitsha (Nigeria) case study
Abstract
Routing of solid waste collection vehicles in developing countries poses a challenging task. New decision procedure for solid waste collection problem was introduced in this study. The problem objective
was to minimize the overall cost, which was essentially based on the distance travelled by vehicle. The study proposed heuristic method to generate feasible solution to an extended Capacitated Arc Routing Problem (CARP) on undirected network, inspired by the refuse collection problems in Nigeria. The heuristic procedure
consists of route first, cluster second method. The computational experience with the heuristic in Onitsha was presented. The technique was compared with the existing schedule with respect to cost, time and distance travelled. The adoption of the proposed heuristic in Onitsha resulted in reduction of the number of existing vehicles, a 22.86% saving in refuse collection cost and 16.31% reduction in vehicle distance travelled per day. The result revealed a good performance of the proposed heuristic method, which would be useful in vehicle
scheduling
was to minimize the overall cost, which was essentially based on the distance travelled by vehicle. The study proposed heuristic method to generate feasible solution to an extended Capacitated Arc Routing Problem (CARP) on undirected network, inspired by the refuse collection problems in Nigeria. The heuristic procedure
consists of route first, cluster second method. The computational experience with the heuristic in Onitsha was presented. The technique was compared with the existing schedule with respect to cost, time and distance travelled. The adoption of the proposed heuristic in Onitsha resulted in reduction of the number of existing vehicles, a 22.86% saving in refuse collection cost and 16.31% reduction in vehicle distance travelled per day. The result revealed a good performance of the proposed heuristic method, which would be useful in vehicle
scheduling