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ABSTRACT: This paper presents a two-parameter extension of the classical Poisson distribution, specifically 

tailored for rare event modeling. The proposed model is constructed as the sum of two independent Poisson random 

variables, using a convolution method. Some properties of the distribution, including the probability mass function 
(PMF), moment-generating function (MGF), mean, variance, higher-order moments, Skewness, and kurtosis, are 

derived.  
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The Poisson distribution is a significant probabilistic 

model utilized to characterize the occurrence of 

sporadic, random phenomena within a defined time 

interval or spatial region. Initially formulated by 

Siméon-Denis Poisson in 1837, it has since found 

extensive applications across diverse domains, such 

as telecommunications, public health, and traffic 

studies (Cox and Isham, 1980). This model is 

determined by a single parameter, λ, representing the 

frequency at which events take place over the 

specified period. A fundamental attribute of the 

Poisson distribution is its independence assumption, 

indicating that the occurrence of one event does not 

impact the likelihood of subsequent events. This 

feature significantly enhances its relevance in 

numerous practical applications (Chavez-Demoulin 

et al., 2021). 

 

The Poisson distribution possesses noteworthy 

statistical characteristics. For example, both the mean 

and variance of a Poisson random variable are 

equivalent to λ, emphasizing its property of 

equidispersion, wherein the variability in event 

counts is directly proportional to the average rate. 

Additionally, it exhibits a lack of memory, signifying 

that the probability of future events remains 

unaffected by past occurrences. This feature is 

particularly advantageous for examining systems 

governed by independent events over time (Johnson 

et al., 1994). 

 

In this study, we expand upon the Poisson 

distribution by introducing a novel two-parameter 

framework, which represents the aggregation of two 

independent Poisson-distributed random variables 

through the convolution technique. This 

generalization seeks to address more sophisticated 

scenarios where event frequencies may vary. By 

enhancing the analytical scope, we aim to deepen 

insights into aggregated event behaviors in practical 

contexts. The paper further explores the statistical 
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features of this new framework, shedding light on its 

potential utility across multiple disciplines. 

 

The convolution methodology, a well-recognized 

approach for deriving probabilistic models, serves as 

the foundation for this research. This technique is 

broadly employed in constructing both discrete and 

continuous probability distributions. For instance, the 

Negative Binomial Distribution, derived from the 

convolution of geometric random variables (Johnson 

et al., 2005), and the Compound Poisson 

Distribution, obtained from the convolution of 

Poisson random variables (Klugman et al., 2012), 

exemplify its application in discrete scenarios. 

Similarly, in continuous contexts, convolution has 

been crucial in generating distributions such as the 

sum of exponential random variables (Oguntunde et 

al., 2013), the Beta-Exponential convolution (Shitu et 

al., 2012; Mdziniso, 2012), and the Beta-Weibull 

convolution (Nadarajah and Kotz, 2006; Sun, 2011). 

The objective of this paper is to evaluate a 

twoparameter extension of the classical Poisson 

distribution. 

 

MATERIALS AND METHODS 
The convolution method is a fundamental technique 

in probability theory used to determine the 

distribution of the sum of two independent random 

variables. Given two independent and identically 

distributed (i.i.d.) random variables    and   , their 

sum         has a probability distribution 

obtained via convolution. This method is particularly 

useful for discrete distributions, such as the Poisson 

and Binomial distributions (Ross, 2014). 

If    and    are independently and identically 

distributed Poisson random variables with parameter 

   and    respectively, 

 

Then, the probability of the sum           is 

given by the convolution of their individual 

probability mass functions: 

  ( )   (   )
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This formula represents the summation over all 

possible values of     and   , such that their sum 

equals Z. Intuitively, this method accounts for all 

ways the individual values of    and   ,  can combine 

to form Z (Feller, 1968). 

 

The Probability Mass Functions of    and    are 

given below: 
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The model in equation (4) above represents the 

probability model for the sum of two independently 

and identically distributed Poisson random variables 

 

RESULTS AND DISCUSSION 
Validity of the Model  ( ): The model is valid if and 

only if 
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The Cumulative Density Function (CDF) of the 

Model P(Z) 

By definition, CDF is derived by: 
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It can be deduced that as 

                           

 

The Shape of the Model: The shape is distribution is 

determined by obtaining the mode of the distribution. 

The mode can be obtained by comparing consecutive 

probabilities   (   )     (     ). 

We find the point where   (     )  
   (   )    ( )  
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Since (     ) must be an integer, the mode of the 

model is the largest integer less than or equal to 

parameter. 

 

           
It is Unimodal; it has a single peak at the mode. 

The graph in Figure 1 shows the shape of the 

distribution for (     )    and (     )    

 

 
Fig. 1: Graph for pdf of Z (where (     )    and (     )    ) 

 

The graph illustrates that as the parameter for 

(     ) increases from 2 to 3, the distribution 

becomes more concentrated, with a higher peak. This 

suggests an increased probability of observing values 

closer to the mean. The increased Peakness is 

accompanied by a wider spread and a longer right 

tail, indicating that the distribution remains 

Unimodal. 

 

Parameter Estimation: Let                 denote a 

random sample of   independent and identically 

distributed random variables, each with the 

probability density function (pdf) as derived in 

Equation (2) above. Applying the method of 

maximum likelihood estimation, the likelihood 

function is expressed as: 
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Solving equation (3) above we have: 

(     )̂    ̅ 
 

Hazard Function: According to its definition, the 

hazard function for a random variable Z is given by: 
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Fig. 2: Graph for hazard function 

 

Figure 2 demonstrates that the hazard rate increases 

as variable Z increases, indicating a higher initial risk 

or probability of occurrence that diminishes over 

time. This suggests that the model in Equation (2) is 

well-suited for events characterized by a high initial 

risk that gradually decreases as time progresses. 

 

Asymptotic Behaviour of the Model: We aim to 

analyze the behaviour of the model in equation (4) as 

Z  0 and as Z   . This includes evaluating 
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These results further confirm that the model 

presented in Equation (4) exhibits a single mode (uni-

modal). 

 

Moment Generating Function: The moment 

generating function (m.g.f.) of a random variable Z is 

represented by: 
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Where  (    )      (    ) are moments generating 

functions for convoluted Poisson distribution.  
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The Characteristic function of the model is given as: 
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From the result in Equation (18), we can confidently 

generalize that if              are independently 

and identically distributed random variables, each 

having Exponential distribution with parameter, the 

moment generating function of the sum can be 

expressed as                   

  ( )    (∑   )
 
   (    )     (  ) 

 

Moment: The rth raw moment of a random variable Z 

is given by: 
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From Equation (7), the first 4 moments are derived 

below: 
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The following results are obtained from moment 

above: 

 

The mean:  

 ( )    
 ( )   (     )    (  )   

 

The variance:  
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Skewness:  

     
 [(   [  )  

(   ( ))   
  

 

√     

     (  ) 

 

Kurtosis:  
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Conclusion: In this study, a new two-parameter 

distribution by combining two independent Poisson 

distributions through convolution has been 

developed. Our analysis showed that this distribution 

is positively skewed and has a single peak, making it 

Unimodal. The shape of its hazard function suggests 

that it’s well-suited for situations where the 

likelihood of an event initially starts high and then 

gradually decreases over time. This makes it 

particularly useful for applications in insurance and 

reliability fields, such as predicting claim frequencies 

in insurance policies or failure rates in reliability 

studies, where risks tend to decrease over time. 

Overall, this model offers a practical way to capture 

patterns in data where frequencies play a central role. 

 

Declaration of Conflict of Interest: The authors 

declare no conflict of interest. 

 

Data Availability Statement: Data is available upon 

request from the first author or corresponding author 

or any of the other authors 

 

 

 

 

 

REFERENCES 
Chavez-Demoulin, V; Embrechts, P; Hofert, M 

(2021). An Introduction to Applied Probability 

(3rd ed.). Springer, p. 350. 

 

Cox, DR; Isham, V (1980). Point Processes. 

Chapman and Hall, p. 188. 

 

Feller, W. (1968). An Introduction to Probability 

Theory and Its Applications, Vol. 1 (3rd ed.). 

Wiley.  p. 160. 

 

Johnson, NL; Kotz, S; Kemp, AW (1994). Univariate 

Discrete Distributions (2nd ed.). Wiley, p. 565. 

 

Johnson, NL; Kemp, AW; Kotz, S (2005). Univariate 

Discrete Distributions (3rd ed.). Wiley, p. 648. 

 

Klugman, SA; Panjer, HH; Willmot, GE (2012). Loss 

Models: From Data to Decisions (4th ed.). Wiley, 

p. 752. 

 

Montgomery, DC; Runger, GC (2003). Applied 

Statistics & Probability for Engineers (3rd ed.). 

Wiley, p. 640. 

 

Mdziniso, N (2012). The Convoluted Beta-

Exponential Distribution and Its Applications 

[Unpublished master's thesis]. University of 

Swaziland. 

 

Nadarajah, S; Kotz, S (2006). The Beta Weibull 

Distribution. Reliab. Eng. Syst. Saf. 91(6): 689–

697. DOI: 

https://doi.org/10.1016/j.ress.2005.07.003 

 

Oguntunde, PE; Odetunmibi, OA; Adejumo, AO 

(2013). On the Sum of Two Exponential Random 

Variables. Int. J. Probab. Stat. Stud. 1(4): 25–30. 

 

Ross, S. M. (2014). Introduction to Probability 

Models (11th ed.). Academic Press p. 66. 

 

Sun, Y (2011). On the Convoluted Beta-Weibull 

Distribution [Master's thesis, University of 

Alberta]. Univ. Alberta Libr. 

 

https://doi.org/10.1016/j.ress.2005.07.003

