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We know that, when a metric is induced with 

Gromov–Hausdorff distance 𝑑𝒢ℋ , the family of all 

isometry classes of compact metric spaces 𝑋 𝑎𝑛𝑑 𝑌, 

say, is a complete and separable metric space. 

Gromov-Hausdorff distance on metric spaces was 

formally presented in (Gromov, 1981). Since then, his 

work has been applied in studying convergence and 

collapsing theory in a field called Riemannian 

geometry, see (Cheeger and Tobias, 1996). 

Particularly, (Cheeger, et.al, 1992) introduced the 

notion of equivalent Gromov-Hausdorff convergence 

for isometric actions of topological groups on 

Riemannian manifolds to study collapsing of 

Riemannian manifold under bounded curvature and 

diameter, and fundamental groups of almost 

negatively curved manifolds. 

Conversely, from the concepts of Perelman’s stability 

results in geometry, Alexandrov, we understand that 

for every 𝑘 ∈ ℝ, 𝑛 ∈ ℕ, every compact Alexandrov 𝑛-

space 𝑌 of curvature ≥ 𝑘 with 𝑑𝒢ℋ(𝑋, 𝑌) < 𝜀 is 

certainly homeomorphic to metric space 𝑋, and every 

𝜀-Gromov-Hausorff approximation can be estimated 

by a homeomorphism map (Nhan – Phu and Chung, 

2019). (Rong and Xu, 2012) explored this idea to study 

stability of exponential Lipschitz and co-Lipschitz 

maps in Gromov-Hausdorff topology. Recently, 

(Arbieto and Morales, 2017) established stability 

under Gromov-Hausdorff topology for expansive 

maps having pseudo-orbit tracing property, see (Dong, 

2021). Combining the ideas of (Dong, 2018) and 

(Nhan – Phu and Keonhee, 2018); (Arbieto and 

Morales, 2017) result has been stretched for such 
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actions of a finitely generated group G in (Metzgeretal, 

2020) and (Dong, 2021). In another dimension, several 

stability results of Gromov-Hausdorff topology were 

also proved for certain isometric actions, see (Inavov 

and Tuizhilin, 2019), (Sturm, 2020) and (Victor et al, 

2021,). In this paper, results of stability under 

Gromov-Hausdorff distance for compact metric 

spaces X, Y and Z were established and idea of 

(Facundo, M and Zhengchao, X 2021) were used to 

establish Gromov – Hausdorff Convergence results for 

isometric actions on Wasserstein hyperspaces of 

topological groups associated with compact metric 

spaces. 

 

Definition of Some Important Terms  

Definition 1 (Donjuan et.al, 2021): Suppose 𝑋 is a 

metric space with metric 𝑑 and let 𝜀 > 0. A subset 𝑆 ⊆
𝑋 is called an 𝜀-net if 𝐵′𝜀(𝑆) = 𝑋, i.e for every 𝑥 ∈ 𝑋, 

∃𝑠 ∈ 𝑆 such that 𝑑(𝑥, 𝑠) ≤ 𝜀. 

 

Definition 2 (Jiwon, 2019): Given that 𝑍 is a metric 

space with metric 𝐶 and  let 𝑋, 𝑌 be subsets of 𝑍. The 

Hausdorff distance between 𝑋 and 𝑌, denoted by 

𝑑ℋ = inf (𝜀) > 0 such that 𝑋 ⊂ 𝐵′𝜀(𝑌) ⊂ 𝐵′𝜀(𝑋). 

 

Definition 3 (Atonyan, 2020): Let 𝑋 and 𝑌 be metric 

spaces. The Gromov-Hausdorff (𝒢ℋ) distance 

between 𝑋 and 𝑌, denoted by 𝑑𝒢ℋ(𝑋, 𝑌), is the 

inf (𝑟) > 0 such that ∃ a metric space 𝑍 with metric 𝑑 

and its subspaces 𝑋′ and 𝑌′ being isometric to 𝑋 and 𝑌 

respectively such that 𝑑ℋ(𝑋′, 𝑌′) < 𝑟. 

 

Definition 4 (Atonyan, 2020): The Gromov - 

Hausdorff distance, 𝑑𝒢ℋ  is a metric on the set of all 

isometry classes of compact metric spaces. 

 

Definition 5 (Inavov and Tuzhilin, 2019): Let (𝑋, 𝑑𝑋) 

and (𝑌, 𝑑𝑌) be metric spaces and let 𝜀 > 0. An 𝜀-

isometric map between 𝑋 and 𝑌 is a map 𝑓: 𝑋 → 𝑌 

satisfying |𝑑𝑌(𝑓(𝑥1), 𝑓(𝑥2)) − 𝑑𝑌(𝑥1, 𝑥2)| ≤ 𝜀 for 

every 𝑥1, 𝑥2 ∈ 𝑋. We call a map 𝑓: 𝑋 → 𝑌 an 𝜀-

isometry if it is an 𝜀-isometric map and 𝑌 =

𝐵′𝜀(𝑓(𝑋)). In this case, the map 𝑓 is also called an 𝜀-

 𝒢ℋ approximation from 𝑋 to 𝑌. 

 

Definition 6 (Nhan-phu, 2019): For any 𝜀- 𝒢ℋ 

approximation 𝑓: 𝑋 → 𝑌, there is an approximation 

inverse 𝑓′: 𝑌 → 𝑋 made, for example; Let 𝑦 ∈ 𝑌, and 

𝑥 ∈ 𝑋 such that 𝑑𝑌(𝑓(𝑥), 𝑦) ≤ 𝜀 and approximate 

inverse of the function 𝑓: 𝑋 → 𝑌 is defined as 𝑓′(𝑦) ≔
𝑥. Then, the approximate inverse 𝑓′: 𝑌 → 𝑋 is a 3𝜀-

 𝒢ℋ approximation. From the construction of 

approximate inverse 𝑓′, it is clear that 

 

𝑠𝑢𝑝𝑥∈𝑋𝑑𝑋(𝑥, (𝑓′𝑜 𝑓)(𝑥)) ≤ 2𝜀 and 

𝑠𝑢𝑝𝑦∈𝑌𝑑𝑌(𝑦, (𝑓 𝑜 𝑓′)(𝑦)) ≤ 𝜀. 

 

For every 𝜀 > 0, if 𝑑𝒢ℋ(𝑋, 𝑌) < 𝜀 then ∃2𝜀- 𝒢ℋ 

approximation from 𝑋 to 𝑌; and ∃ an 𝜀- 𝒢ℋ 

approximation 𝑓: 𝑋 → 𝑌 so that 𝑑𝒢ℋ(𝑋, 𝑌) < 2𝜀. 

 

Definition 7 (Nhan-phu, 2019): Let 𝑋 and 𝑌 be metric 

spaces with metric d . We define an alternative 𝒢ℋ- 

distance between 𝑋 and 𝑌𝑑𝒢ℋ(𝑋, 𝑌), as follows; 

𝑑𝒢ℋ(𝑋, 𝑌) ∶= 𝑖𝑛𝑓{𝜀 > 0 ∶ 𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 𝜀 −

𝒢ℋ 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛𝑠 𝑓: 𝑋 → 𝑌, 𝑔: 𝑌 → 𝑋} if the 

infimum exists, and 𝑑𝒢ℋ(𝑋, 𝑌) = ∞, if the infimum 

does not exist. 

 

Definition 8 (Nhan-phu, 2019): Suppose 𝑋 and 𝑌 are 

metric spaces and  𝜀, 𝛿 > 0. Then, 𝑋 and 𝑌 are (𝜀, 𝛿)-

approximations of each other if there exists an 𝜀-net 
{𝑥1, . . , 𝑥𝑚} in 𝑋 and an 𝜀-net {𝑦1, … , 𝑦𝑚} in 𝑌 

satisfying; 

 

|𝑑𝑋(𝑥𝑖 , 𝑥𝑗) − 𝑑𝑌(𝑦𝑖 , 𝑦𝑗)| < 𝛿, for every 1 ≤ 𝑖, 𝑗 ≤ 𝑚. 

 

Definition 9 (Funcondo, M and Zhengchao, X, 2021): 

Let 𝑋 a metric space and 𝑊𝑝(𝑋) = (𝑃𝑝(𝑋), 𝑑𝑤,𝑝). 

Then 𝑊𝑝(𝑋) is 𝑙𝑝 – Wasserstein hyperspace of 𝑋. Note 

that when 𝑋 is compact, 𝑃𝑝(𝑋) = 𝑃(𝑋) for any 𝑝 ∈

[1, ∞), where 𝑃(𝑋) is the family of all Borel 

probability measures on  metric space 𝑋. 

 

Definition 10 (Panareto, 2020): Optimal transport is a 

process of transferring one probability distribution to 

another. 

 

MATERIALS AND METHODS 
According to Dong (2021). The Gromov – Hausdorff 

distance between two maps 𝑔: 𝑋 → 𝑋 and ℎ: 𝑌 → 𝑌 of 

metric spaces 𝑋 and 𝑌 is defined and designate by  

 

𝑑𝒢ℋ(𝑔, ℎ) =

 𝑖𝑛𝑓 {

ϵ > 0: ∃ 𝜖 − 𝑖𝑠𝑜𝑚𝑒𝑡𝑟𝑖𝑐𝑠 𝑖: 𝑋 → 𝑌 𝑎𝑛𝑑  
 𝑗: 𝑌 → 𝑋 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑑(ℎ𝑜𝑖, 𝑖𝑜𝑔)

< 𝜖 𝑎𝑛𝑑  𝑑(𝑗𝑜ℎ, 𝑔𝑜𝑗) < 𝜖
}…. (1) 

 

From equation (1), we get a notion of convergence for 

maps: If 𝑋𝐿 is a sequence of metric spaces, we say that 

a sequence of maps ℎ𝐿: 𝑋𝐿 → 𝑋𝐿 converges to map 

𝑔: 𝑌 → 𝑌 of a metric space 𝑋, shortly designated as 

ℎ𝐿 → 𝑔, if lim
𝐿→∞

𝑑𝒢ℋ(𝑔, ℎ𝐿) = 0.  But, ℎ𝐿 → 𝑔 does not 

indicate that map ℎ𝐿 converges to 𝑔 in the sence of 

Gromov. In fact, the constant sequence ℎ𝐿 = 𝑔 always 

satisfies ℎ𝐿 → 𝑔 while ℎ𝐿 converges to 𝑔 in the 

Gromov sense only if 𝑔 is continuous. By (Donjuan 
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et.al, 2021) let (𝑋, 𝑑) be a metric space. For any  𝑝 ∈
[1, ∞), the set of probability Borel measures 𝜇 is 

designated by 𝑃𝑝(𝑋), which satisies that there exists 

some 𝑥𝑛 ∈ 𝑋 such that ∫ 𝑑𝑝(𝑥, 𝑥𝑛)𝑑𝜇(𝑥) < ∞
𝑋

. Note 

that if 𝑋 is bounded, then 𝑃𝑝(𝑋)corresponds with 

𝑃(𝑋), the set of all probability Borel measures of 𝑋. 

For every probability Borel measures 𝜇, 𝑣 on X, the 

set of all probability Borel measures on 𝑋 × 𝑋 with 

marginal 𝜇 and 𝑣 is designated byΠ(𝜇, 𝑣). This means 

that 𝜋 ∈ Π(𝜇, 𝑣) if and only if 𝜋 is a Borel subsets 

𝐴, 𝐵 ∈ 𝑋. 

 

By (Facundo, M and Zhengchao, X, 2021), for every 

𝑝 > 0, every 𝜇, 𝑣 ∈ 𝑃𝑝(𝑋), and 𝜋 ∈ Π(𝜇, 𝑣),

𝑀𝑝(𝜋) = ∫ 𝑑𝑃
𝑋×𝑋

(𝑥1, 𝑥2)𝑑𝜋(𝑥1, 𝑥2) and the map 𝑊𝑝 

is defined on  product 𝑃𝑝(𝑋) × 𝑃𝑝(𝑋) by 𝑊𝑝(𝜇, 𝑣) =

𝑀𝑝(𝜋)
𝜋∈Π(𝜇,𝑣)

𝑖𝑛𝑓
 , where 𝜇, 𝑣 ∈ 𝑃𝑝(𝑋) map 𝑊𝑝 defined a 

metric on 𝑃𝑝(𝑋) (Xu, et.al, 2019). Note that if 𝑋 is 

compact, then 𝑃𝑝(𝑋) is also compact (Facundo M and 

Zhengchao, X, 2021), then, for every 𝜇, 𝑣 ∈ 𝑃𝑝(𝑋), the 

set of all 𝜋 ∈ Π(𝜇, 𝑣) such that  𝑀𝑝(𝜋𝑜) =

𝑀𝑝(𝜋)
𝜋∈Π(𝜇,𝑣)

𝑖𝑛𝑓
could be designated by 𝑂𝑝𝑡𝑝(𝜇, 𝑣). So, 

if 𝑋 is a polish space endowed with a metric 𝑑, then 

𝑂𝑝𝑡𝑝(𝜇, 𝑣) ≠ ∅ for every 𝜇, 𝑣 ∈ 𝑃𝑝(𝑋). 

 

By (Demetci et.al, 2020), let (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌) be 

compact metric spaces and 𝜙: 𝑋 → 𝑌 be a Borel map. 

Then, we have induced (pushforward) map 

𝜙∗: 𝑃(𝑋) → 𝑃(𝑌), 𝜇 → 𝜙∗𝜇, where 𝜙∗𝜇(𝐴) =

𝜇(𝜙−1(𝐴)), for every Borel set 𝐴 ⊂ 𝑌. 

We are going to consider the following properties as 

in (Alexander, et.al, 2018) 

 

For every map 𝑓: 𝑋 → 𝑋 and 𝑔: 𝑌 → 𝑌 of the metric 

spaces 𝑋 and 𝑌 respectively to achieve some of our 

results: 

(i) If 𝑋 = 𝑌, then 𝑑𝒢ℋ(𝑔, ℎ) ≤ 𝑑(𝑔, ℎ). 

(ii) 𝑑𝒢ℋ(𝑋, 𝑌) ≤ 𝑑(𝑓, 𝑔) and 𝑑𝒢ℋ(𝑋, 𝑌) =

𝑑𝒢ℋ(𝐼𝑑𝑋, 𝐼𝑑𝑌) where 𝐼𝑑𝑋 and 𝐼𝑑𝑌 are identity of 𝑋 

and 𝑌 respectively. 

(iii) If 𝑋 and 𝑌 are compact and  ℎ is isometry, 

then 𝑑𝒢ℋ(𝑔, ℎ) = 0. 

(iv) Symmetry property hold, that is, 

𝑑𝒢ℋ(𝑔, ℎ) = 𝑑𝒢ℋ(ℎ, 𝑔). 

(v) For any map 𝑡: 𝑇 → 𝑇, on any metric space 𝑇, 

one has the triangle inequality 𝑑𝒢ℋ(𝑔, ℎ) ≤

𝑑𝒢ℋ(𝑔, 𝑡) + 𝑑𝒢ℋ(𝑡, ℎ). 

(vi) Definite property hold, 𝑑𝒢ℋ(𝑔, ℎ) ≥ 0 and if 

𝑋 and 𝑌 are bounded, then 𝑑𝒢ℋ(𝑔, ℎ) < ∞. 

(vii) If 𝑋 is compact and there is a sequence of 

isometrics ℎ𝑛: 𝑌𝑛 → 𝑌𝑛 such that lim
𝑛→∞

𝑑𝒢ℋ(𝑔, ℎ𝑛) = 0  

then 𝑔 is also an isometry. 

 

RESULTS AND DISCUSSION 
Suppose 𝑋 is a metric space and Wasserstein 

hyperspace, 𝑊𝑝(𝑋) = (𝑊𝑝(𝑋), 𝑑𝑤,𝑝). Then, the space  

𝑊𝑝(𝑋) is known as the 𝑙𝑝- Wasserstein hyperspace of 

metric space 𝑋. If 𝑃𝑝(𝑋) = 𝑃(𝑋), it implies that 𝑋 is 

compact. Then, for every 𝑝 ≥ 1, the set  𝑃𝑝(𝑋) is the 

collection of all Borel probability measures on 𝑋. The 

following two Theorems 1 and 2 are existing results 

concerning Wasserstein hyperspaces, see (Villani, 

2018) for proofs. 

 

Theorem 1: For 𝑝 ≥ 1, if 𝑋 is Polish , then the 

Wasserstein space 𝑊𝑝(𝑋) is also a Polish space. 

 

Theorem 2: For 𝑝 ≥ 1, if 𝑋 is compact, then the 

Wasserstein space  𝑊𝑝(𝑋) is also a compact space. 

 

Theorem 3 (Mikhailov, 2018): Suppose𝑋 and 𝑌 are 

compact metric spaces such that there exists a (non - 

necessarily compact) metric space 𝑍 and isometric 

embedding 𝜑𝑋: 𝑋 → 𝑍 and 𝜑𝑌: 𝑌 → 𝑍. Then, we have 

the following equation of Hausdorff distance with 

respect to embeddings𝜑𝑋: 𝑋 → 𝑍 and 𝜑𝑌: 𝑌 →

𝑍,𝑑ℋ
𝐻(𝑍)

((𝜑𝑋)∗(Η(X)), (𝜑𝑌)∗(Η(Y)) =

𝑑ℋ
𝑍  (𝜑𝑋(𝑋), 𝜑𝑌(𝑌)) 

 

Lemma 1 (Nhan, 2019): Let (𝑋, 𝑑1) and (𝑌, 𝑑2) be two 

compact metric spaces and the maps 𝑓, 𝑔: 𝑋 → 𝑌 are 

measurable. Then for every 𝑝 ∈ [1, ∞), 𝜇 ∈ 𝑃(𝑋), we 

have 𝑊𝑝
𝑝(𝑓∗𝜇, 𝑔∗𝜇) ≤ ∫ 𝑑𝑌

𝑝
(𝑓(𝑥1), 𝑔(𝑥1))

𝑋
 𝑑𝜇(𝑥1) 

Since the Wasserstein extensor 𝑊𝑝 sends the metric 

space 𝑋 ∈ ℳinto Wasserstein hyperspace 𝑊𝑝(𝑋) ∈

ℳ, then this Wasserstein extensor defines a map from 

ℳ 𝑡𝑜 ℳ analogously to the case of Gromov – 

Ηausdorff such that 𝑊𝑝: ℳ → ℳ. Moreover, the map 

𝑊𝑝 sending 𝑥 to Dirac measure 𝛿𝑥 ∈ 𝑃(𝑋) is a 

isometric embedding from 𝑋 into 𝑃(𝑋). Therefore, the 

map 𝑊𝑝: ℳ → ℳ is a metric extensor, which we call 

the 𝑙𝑝- Wasserstein extensor in the consequence. 

Inspired by Theorem 3 and Lemma 1, we obtained the 

following results: 

 

Theorem 1: Given that 𝛼 and 𝛽 are actions of a 

topological group G on a compact metric spaces 𝑋 and 

𝑌, respectively. If 𝑓: 𝑋 → 𝑌 is an 𝜀-measurable 𝒢ℋ −
 approximation, then for any 𝑝 ∈ [1, ∞), the 

pushforward map 𝑓∗: 𝑊𝑝(𝑋) → 𝑊𝑝(𝑌) is  
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𝜀~-measurable 𝒢ℋ − approximation, where 

 

𝜀~=8 𝜀 + √{9𝑝(𝐷(𝑋)𝑝−1 + 𝐷(𝑌)𝑝−1)𝜀}
𝑝

…..… (1) 

 

Proof:  Let ∅1, ∅2 ∈ 𝑃(𝑋) and 𝜇 ∈ 𝑂𝑃𝑡(∅1, ∅2) be 

any coupling. Then the pushforward map (𝑓 × 𝑓)∗𝜇 ∈
Π(𝑓∗∅1, 𝑓∗∅2) and hence 

𝑑𝑤,𝑝
𝑌 (𝑓∗∅1, 𝑓∗∅2) ≤ (∫ 𝑑𝑌

𝑃(𝑦1, 𝑦2)𝑑((𝑓
𝑌×𝑌

× 𝑓)∗𝜇)(𝑥2, 𝑦2)) = 

∫ 𝑑𝑌
𝑃

𝑋×𝑋
(𝑓(𝑥1), 𝑓(𝑦2))𝑑𝜇(𝑥1,𝑦1)…………..(2) 

 

As the function 

 

𝑡(𝑥) = 𝑥𝑝, 𝑥 ≥ 0……………………….… (3) 

 

and by differentiating equation (3), we have 

 

𝑡1(𝑥) = 𝑝𝑥𝑝−1…………...…………….… (4) 

 

Then, by equation (3) and (4), we have for every 

𝑥, 𝑦 ≥ 0: 

 

|𝑥𝑝 − 𝑦𝑝| ≤ 𝑃|𝑥 − 𝑦|𝑚𝑎𝑥{𝑥𝑝−1, 𝑦𝑝−1} ≤ 𝑃|𝑥 −
𝑦|(𝑥𝑝−1 + 𝑦𝑝−1)…………………………..(5) 

 

Therefore, for every 𝑥1, 𝑦1 ∈ 𝑋,Lemma 1 and 

equation(2) yields 

 

|𝑑𝑤,𝑝
𝑌 (𝑓(𝑥1), 𝑓(𝑦1)) − 𝑑𝑤,𝑝

𝑋 (𝑥1, 𝑦1)|

≤ 𝑃|𝑑𝑤,𝑝
𝑌 (𝑓(𝑥1), 𝑓(𝑦1))

− 𝑑𝑤,𝑝
𝑋 (𝑥1, 𝑦1)| ≤ 

(𝑑𝑤,𝑝−1
𝑌 (𝑓(𝑥1), 𝑓(𝑦1)) + 𝑑𝑤,𝑝−1

𝑋 (𝑥1, 𝑦1))….(6) 

 

Hence, 

 

|𝑑𝑤,𝑝
𝑌 (𝑓(𝑥1), 𝑓(𝑦1)) − 𝑑𝑤,𝑝

𝑋 (𝑥1, 𝑦1)| ≤

𝑃𝐷|𝑑𝑤,𝑝
𝑌 (𝑓(𝑥1), 𝑓(𝑦1)) − 𝑑𝑤,𝑝

𝑋 (𝑥1, 𝑦1)| ≤

𝑃𝐷𝜀…… (7) 

 

Where 𝐷 is diameter of  𝑥𝑝−1+ 𝑦𝑝−1.  

 

It follows that    

 

𝑊𝑝(𝑓∗𝜙1, 𝑓∗𝜙2) ≤ 𝑊𝑝(𝜙1, 𝜙2) + 𝑝𝐷𝜀…      (8) 

 

Hence, by equation (8), 𝑙𝑝 − Wasserstein of 

Pushforward of  𝜙1 and 𝜙2 is given as 

𝑊𝑝(𝑓∗𝜙1, 𝑓∗𝜙2) ≤ √(𝑊𝑝(𝜙1, 𝜙2) + 𝑝𝐷𝜀)
𝑝

≤

𝑊𝑝(𝜙1, 𝜙2) + √(𝑃𝐷𝜀)
𝑝

…………………..…    (9) 

Therefore, from equation (9), we have 

 

𝑊𝑝(𝑓∗𝜙1, 𝑓∗𝜙2)  ≤ √(𝑊𝑝(𝜙1, 𝜙2) + 𝑝𝐷𝜀)
𝑝

≤

𝑊𝑝(𝜙1, 𝜙2) + √(𝑃𝐷𝜀)
𝑝

………………………...(10) 

 

Next, assume 𝑔 is the inverse of 𝑓. Then, in the 

Gromov sense, let 𝑔: 𝑌 → 𝑋 be the measurable 𝒢ℋ −
 approximate inverse of 𝑓. Then 𝑔 is a 9𝜀 − 𝒢ℋ 

approximation from 𝑌 to 𝑋 and if  

 

𝑑𝑋(𝑥, 𝑓1𝜊𝑓(𝑥)) ≤ 4𝜀𝑥∈𝑋
𝑆𝑢𝑝

 and 

𝑑𝑌(𝑦, 𝑓𝜊𝑔(𝑦)) ≤ 4𝜀𝑦∈𝑌
𝑆𝑢𝑝

. …………………….(11) 

 

If we Apply the same process as stated above, from 

(10) and (11), we get the following for the  𝑙𝑝- 

Wasserstein hyperspace for Pushforward of 𝑔∗  and 𝑓∗, 

 

𝑊𝑝(𝑔∗(𝑓∗𝜙1), 𝑔∗(𝑓∗𝜙2)) ≤ 𝑊𝑝(𝑓∗𝜙1, 𝑓∗𝜙2) +

√(𝑞𝑃𝐷𝜀)
𝑝

…………………………………... (12) 

 

As stated in equation above, 

since 𝑑𝑋(𝑥, 𝑔𝑜𝑓(𝑥)) ≤ 4𝜀𝑥∈𝑋
𝑆𝑢𝑝

, by considering Lemma 

1 above, we get 

 

𝑊𝑝(𝑓∗𝜙, 𝑔∗𝜙) ≤ ∫ 𝑑𝑌
𝑝

(𝑓(𝑥), 𝑔(𝑥))𝑑𝜙(𝑥)
𝑋

…… (13) 

 

for the 𝑙𝑝 −  Wasserstein hyperspace for Pushforward 

of 𝑔∗  and 𝑓∗and also, we have the following for the 

𝑙𝑝 −  Wasserstein hyperspace for Pushforward of 

composition of 𝑔∗ and 𝑓 with respect to  𝜙1, 𝜙2, 

 

𝑊𝑝(𝑔∗𝜊 𝑓)∗𝜙1,𝜙2
≤ 4𝜀 and 𝑊𝑝((𝑔𝑜𝑓)∗𝜙1, 𝜙2) ≤

4𝜀……………………………………….        . (14) 

 

Therefore, by equations(12), (13), and (14), the 𝑙𝑝 −
  Wasserstein hyperspace between 𝜙1 𝑎𝑛𝑑 𝜙2 is thus; 

 

𝑊𝑝(𝜙1, 𝜙2) ≤ 𝑊𝑝(𝜙1, 𝑔∗(𝑓∗𝜙1)) +

𝑊𝑝(𝑔∗(𝑓∗𝜙1), 𝑔∗(𝑓∗𝜙2)) + 𝑊𝑝(𝑔∗(𝑓∗𝜙2), 𝜙2) ≤ 8𝜀 +

𝑊𝑝(𝑓∗𝜙1, 𝑓∗𝜙2) +

√(𝑞𝑃𝐷𝜀)
𝑝

…………………………………… (15) 

 

Finally, for every 𝜙 ∈ 𝑝(𝑌), 𝑔 ∈ 𝐺, let  

𝜇 ∈ Π((𝛽, 𝑔 𝑜 𝑓)∗𝜙1(𝑓 𝑜𝛼, 𝑔)∗𝜙1). Since for every 

𝑔 ∈ 𝐺, 𝑑𝑠𝑢𝑝(𝑓𝜊𝛼, 𝑔, 𝛽, 𝑔 𝜊𝑓) ≤ 𝜀, Then, by Lemma 1 

with equation (15) above, we have 

𝑊𝑝((𝛽)∗, 𝑔 𝑜𝑓∗(𝜙1), 𝑓∗𝜊(𝛼)∗, 𝑔(𝜙1))

= 𝑊𝑝((𝛽, 𝑔𝜊𝑓)∗𝜙1, (𝑓𝜊𝛼, 𝑔)∗𝜙1) 

≤ ∫ 𝑑𝑌
𝑃(𝑥2, 𝑦2)𝑑𝜇

𝑌𝑋𝑌

(𝑥2, 𝑦2) 
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= ∫ 𝑑𝑋
𝑝

(𝛽, 𝑔𝑜𝑓(𝑥), 𝑓𝑜𝛼, 𝑔(𝑥1))𝑑𝜙1(𝑥1) ≤ 𝜀𝑝 <
𝑋

𝜀~𝑝, by using equation (1). This ends the proof. 

 

Theorem 2: Let 𝛼 and 𝛽 be isometrically conjugated 

actions of a finitely generated topological group G on 

compact metric spaces 𝑋 and 𝑌. For 𝑝 ∈ [1, ∞), let 

𝛼 ∈ 𝑊𝑝(𝑋) and 𝛽 ∈ 𝑊𝑝(𝑌), where 𝑊𝑝(𝑋) is 𝑙𝑝 −  

Wasserstein hyperspace of 𝑋 and 𝑊𝑝(𝑌) is 𝑙𝑝 −  

Wasserstein hyperspace of 𝑌. Then, 𝛼 is topologically 

𝒢ℋ – stable if and only if 𝛽 is topologically 𝒢ℋ – 

stable. 

 

Proof: Let 𝑋 and 𝑌 be compact metric spaces and 𝐺 be 

finitely generated group. Let 𝛼 ∈ 𝑊𝑝(𝑋) and 𝛽 ∈

𝑊𝑝(𝑌) be isometrically conjugated actions. Here we 

need to  prove that if 𝛼 is topologically 𝒢ℋ – stable, 

then, 𝛽 is topologically 𝒢ℋ – stable. 

 

Since 𝐺 generated by a finite set 𝐹. Then, for a finite 

generator 𝐹 of 𝐺  Let 𝜀 > 0 and 𝛿 > 0 be given by the 

definition of the topological 𝒢ℋ – stability of 𝛼 with 

respect to 𝐹. Provided that 𝛼 and 𝛽 are isometrically 

conjugated, since 𝛼 and 𝛽 are isometric, then, 

𝑑𝒢ℋ,𝐹𝑊𝑝(𝛼, 𝛽) = 0 in a Gromov sense. Now, 

choose𝛾 ∈ 𝑊𝑝(𝑍) (where 𝑊𝑝(𝑍) is the 𝑙𝑝 −  

Wasserstein hyperspace of metric space 𝑍 such that 

𝑑𝒢ℋ,𝐹𝑊𝑝(𝛽, 𝛾) <
𝛿

2
. ……………………………..(16) 

 

From equation (16), the Gromov – Hausdorff distance 

of 𝑙𝑝 −  Wasserstein hyperspace between the isometric 

conjugated actions 𝛼 and 𝛾 under the finite generator 

set 𝐹 is 

 

𝑑𝒢ℋ,𝐹𝑊𝑝(𝛼, 𝛾) ≤ 2 (𝑑𝒢ℋ,𝐹𝑊𝑝(𝛼, 𝛽) −

𝑑𝒢ℋ,𝐹𝑊𝑝(𝛽, 𝛾)) < 𝛿………………………….. (17) 

 

Thus, by the definition of topological stability of 

action 𝛼 we have a continuous 𝜀 – isometry 𝑖: 𝑍 → 𝑋 

such that the composition 𝛼𝑔𝜊𝑖 = 𝑖𝜊𝛾𝑔……….. (18) 

 

for every 𝑔 ∈ 𝐺. Since 𝛼 and 𝛽 are isometrically 

conjugated, we have an isometry 𝑗: 𝑌 → 𝑋 such that 

𝛼𝑔 = 𝑗𝜊𝛽𝑔𝜊𝑗−1 for every 𝑔 ∈ 𝐺. By replacing 

composition in equation (18), we have 𝑗𝜊𝛽𝑔𝜊𝑗−1𝜊𝑖 =

𝑖𝜊𝛾𝑔, ∀𝑔 ∈ 𝐺. 

 

Let us define 𝑚 = 𝑗−1𝜊𝑖: 𝑍 → 𝑌, we have 𝑗𝜊𝛽𝑔𝜊𝑚 =

𝑗𝜊𝑚𝜊𝛾𝑔, so, 𝛽𝑔𝜊𝑚 = 𝑚𝜊𝛾𝑔, for every 𝑔 ∈ 𝐺. 

Provided that 𝑗 is an isometry and 𝑖 is a continuous 𝜀 

– isometry. Therefore, 𝛽 is topologically 𝒢ℋ – stable 

with respect to 𝐹. Hence, from equation(17) , we get 

equation of Gromov – Hausdorff distance of 𝑙𝑝 −  

Wasserstein hyperspace between the isometric 

conjugated actions 𝛼, 𝛽 and 𝛾 under the finite 

generator set 𝐹 as𝑑𝒢ℋ,𝐹
𝑊(𝑌)(𝛼, 𝛽) ≤ 2 (𝑑𝒢ℋ,𝐹

𝑊(𝑋)(𝛼, 𝛽) −

𝑑𝒢ℋ,𝐹
𝑊(𝑌)(𝛼, 𝛾)) < 𝛿. 

 

Theorem 3: Given that 𝑋, 𝑌 and 𝑍 are compact metric 

spaces and 𝑖: 𝑋 → 𝑍 and 𝑗: 𝑌 → 𝑍 are isometric 

embeddings. Then, for 𝑝 ≥ 1, there is a Borel 

measurable map 𝑡: 𝑋 → 𝑌suchthat for any 𝑥 ∈

𝑋,   𝑑𝑍(𝑥, 𝑡(𝑥)) ≤ 𝛿 + 𝜀. Then, the Hausdorff 

distance between isometric embeddings is 

 

𝑑ℋ

𝑊𝑝(𝑍)
((𝑖)∗ (𝑊𝑝(𝑋)) , (𝑗)∗ (𝑊𝑝(𝑌))) ≥

𝑑ℋ
𝑍 (𝑖(𝑋), 𝑗(𝑌)). 

 

Proof: Let  {𝑥𝑛}𝑛∈𝑁 be an 𝜀 – net of compact metric 

space 𝑋. Suppose {𝑥𝑚}𝑚∈𝑀 of 𝑋 is a Voronoi cell 

defined as 

 

𝑋𝑚 = {𝑥 ∈ 𝑋: 𝑑𝑋(𝑥, 𝑥𝑚)} =
 𝑑𝑋(𝑥, 𝑥𝑖)𝑖≤𝑥≤𝑛

𝑚𝑖𝑛 ………………………………...(19) 

 

We can adjust the Voronoi cell (equation 19) in such 

a way that they will be disjoint. For example, let 𝑌1 =
𝑋1 and 𝑌𝑚 = 𝑋𝑚 − ⋃ 𝑋𝑖

𝑚−1
𝑖=1  for 𝑚 ≥ 1…….........(20) 

From equation (20), let {𝑋𝑚}1≤𝑚≤𝑛 denote the cell 

after our adjustment. Since the map 𝑡: 𝑋 → 𝑌 is Borel 

measurable, the cell is Borel measurable. Then, for 

each 𝑥𝑚, we let 𝑦𝑚 ∈ 𝑌 such that 

 

𝑑𝑧(𝑥𝑚, 𝑦𝑚) ≤ 𝛿………………………………....(21) 

 

Then, we define the map 𝛿: 𝑋 → 𝑌 by mapping 𝑥 to 

𝑦𝑚 if 𝑥 ∈ 𝑋𝑚 which implies that the map 𝛿: 𝑋 → 𝑌 is 

measurable. Moreover, for such 𝑥 ∈ 𝑋𝑚, there is an 𝜀 

– net {𝑥𝑘}1≤𝑚≤𝑛, and one has that 

 

𝑑𝑍(𝑥, 𝑥𝑚) = 𝑑𝑋(𝑥, 𝑥𝑚) ≤ 𝜀………………… (22) 

 

Therefore, by triangle inequality, using equations 

(21) and (22), we have 𝑑𝑍(𝑥, 𝑡(𝑥)) ≤ 𝑑𝑍(𝑥, 𝑥𝑚) +

𝑑𝑍(𝑥𝑚, 𝑦𝑚) ≤ 𝛿 + 𝜀, which proves the first 

statement. 

 

To provide proof for the second statement, recall that 

from the definition of Hausdorff distance, we have; 

 

𝑑ℋ
𝑍 (𝑋, 𝑌) =

max { 𝑑𝑍(𝑥, 𝑦),𝑥∈𝑋 𝑦∈𝑌
sup 𝑖𝑛𝑓

𝑑𝑍(𝑥, 𝑦)}𝑦∈𝑌 𝑥∈𝑋
sup  𝑖𝑛𝑓

…….(23) 

 

Then, without loss of generality, we assume that the 

Hausdorff distance 
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𝑑ℋ
𝑍 (𝑋, 𝑌) = 𝑑𝑍(𝑥, 𝑦)𝑦∈𝑌 𝑥∈𝑋

sup  𝑖𝑛𝑓
………….…….(24) 

 

Suppose 𝑥 ∈ 𝑋, 𝑎𝑛𝑑 𝑦 ∈ 𝑌 such that the distance 

between 𝑥1 and 𝑦1 is defined as 

 

𝑑𝑍(𝑥1, 𝑦1) = 𝑑𝑍(𝑥, 𝑦)𝑦∈𝑌 𝑥∈𝑋
sup  𝑖𝑛𝑓

………………..… (25) 

 

Since metric spaces 𝑋 and 𝑌 are compact, this 

guarantee the validity of existence of the point 

(𝑥1, 𝑦1), for  𝑥1 ∈ 𝑋 and 𝑦1 ∈ 𝑌 . Then, consider Dirac 

delta measure 𝛿𝑦1
∈ 𝑝(𝑌) and any 𝜇𝑋 ∈ 𝑋. Then, we 

can identify the Dirac delta measure 𝛿𝑦1
 with 

(𝜙𝑌)∗𝛿𝑦1
∈ 𝑝(𝑍) and 𝜇𝑋 with  (𝜙𝑌)∗𝜇𝑋 ∈ 𝑝(𝑍). 

Then, for any 𝑝 ≥ 1, we have Wasserstein distance 

between Dirac delta measure 𝛿𝑦1
 and measure 𝜇𝑋 ∈ 𝑋 

as; 

 

𝑑𝑊,𝑝
𝑍 (𝛿𝑦1

, 𝜇𝑋) = ∫ 𝑑𝑍(𝑥, 𝑦1)𝑝𝑑𝜇𝑋(𝑥)
𝑋

≥

𝑑𝑍(𝑥1, 𝑦1)…………………………………... (26) 

 

Then, for 𝑝 > 1, we have 𝑑𝑊,𝑝>1
𝑍 (𝛿𝑦1

, 𝜇𝑋) =

𝑑𝑍𝑥∈𝑠𝑢𝑝(𝜇𝑋)
𝑠𝑢𝑝 (𝑥1, 𝑦1)…………………………. (27) 

 

Therefore, from  equation (24), (25),(26)and (27), we 

have, for 𝑝 ≥ 1, 

 

  𝑑ℋ
𝑊𝑝(𝑍)

(𝑊𝑝(𝑋), 𝑊𝑝(𝑌)) ≥ 𝑑𝑊,𝑝
𝑍

𝜇𝑋∈𝑝(𝑋)
𝑖𝑛𝑓

(𝛿𝑦1
, 𝜇𝑋) ≥

𝑑𝑍(𝑥1, 𝑦1) = 𝑑ℋ
𝑍 (𝑥1, 𝑦1). 

 

This proves the theorem. 

 

Theorem 4: For any 𝑋 ∈ ℳ and a metric space 𝑌 

which is not necessarily compact. For any 𝑝 ≥ 1, if 

𝑓: 𝑋 → 𝑌 is an isometric embedding, then the map 

𝑓∗: 𝑊𝑝(𝑋) → 𝑊𝑝(𝑌) is isometric embedding and the 

homeomorphism of 𝑋 which is isometric to a 

topologically 𝒢ℋ – stable is itself topologically 𝒢ℋ – 

stable. 

 

Proof: For 𝛼1, 𝛼2 ∈ 𝑝(𝑋), let 𝜇 ∈ 𝐶(𝛼1, 𝛼2) be any 

coupling, consider pushforward map 𝜇∗ = (𝑓 × 𝑓)∗𝜇, 

where 𝑓 × 𝑓: 𝑋 × 𝑋 → 𝑌 × 𝑌 takes (𝑥, 𝑥1) to 

(𝑓(𝑥), 𝑓(𝑥1)) ⇒ 𝑓∗𝛼1, 𝑓∗𝛼2 ∈ 𝑃𝑝(𝑌) and the 

pushforward 𝜇∗ ∈ 𝐶(𝑓∗𝛼1, 𝑓∗𝛼2). Then, for 𝑝 ≥ 1, we 

have the following: 

 

𝑑𝑤,𝑝
𝑌 (𝑓∗𝛼1, 𝑓∗𝛼2) ≤ √∫ 𝑑𝑌

𝑝(𝑦1, 𝑦2)𝑑𝜇∗(𝑦1 , 𝑦2)
𝑌×𝑌

𝑝

 

=  √∫ 𝑑𝑌
𝑝

𝑓(𝑥1), 𝑓(𝑥2)𝑑𝜇∗(𝑥1, 𝑥2)
𝑌×𝑌

𝑝

 

= √∫ 𝑑𝑋
𝑝(𝑥1, 𝑥2)𝑑𝜇∗(𝑥1, 𝑥2)

𝑋×𝑋

𝑝

……………… (28) 

 

The equality in equation (28) holds due to the fact that 

f is an isometric embedding. Now, for 𝑝 > 1, 

(𝑓 × 𝑓)(𝑠𝑢𝑝(𝜇)) = 𝑠𝑢𝑝(𝜇∗), provided that 𝑓 is an 

isometric embedding. Then,  

 

𝑑𝑤,𝑝>1
𝑌 (𝑓∗𝛼1, 𝑓∗𝛼2) ≤ 𝑑𝑌(𝑦1 , 𝑦2)(𝑦1,𝑦2)∈sup (𝜇∗)

𝑠𝑢𝑝

=  𝑑𝑌(𝑦1 , 𝑦2)(𝑦1,𝑦2)∈𝑓×𝑓sup (𝜇)
𝑠𝑢𝑝

= 𝑑𝑌(𝑦1 , 𝑦2)(𝑥1,𝑥 2)∈𝑓×𝑓sup (𝜇)
𝑠𝑢𝑝

 

.= 𝑑𝑋(𝑥1, 𝑥2)(𝑥1,𝑥2)∈sup (𝜇)
𝑠𝑢𝑝

…… (29) 

 

By taking the infimum over 𝜇 ∈ 𝐶(𝛼1, 𝛼2) in 

equation (29), we have , for 

 

𝑝 ≥ 1, 𝑑𝑤,𝑝
𝑌 (𝑓∗𝛼1, 𝑓∗𝛼2) ≤ 𝑑𝑤,𝑝

𝑋 (𝛼1, 𝛼2)………..(30) 

 

Provided that 𝑓 is continuous, 𝑓(𝑋) is compact in 𝑌 

and hence closed, we have  

 

𝑑𝑤,𝑝
𝑌 (𝑓∗𝛼1, 𝑓∗𝛼2) = 𝑑𝑤,𝑝>1

𝑓(𝑋)
(𝑓∗𝛼1, 𝑓∗𝛼2) ≤

𝑑𝑤,𝑝
𝑋 (𝛼1, 𝛼2)…………………………………….(31) 

 Provided that 𝑓−1 ∶ 𝑓(𝑋) → 𝑋 is also an isometric 

embedding, we have 

 

𝑑𝑤,𝑝
𝑋 (𝛼1, 𝛼2) = 𝑑𝑤,𝑝

𝑋 (𝑓∗
−1𝜊𝑓∗𝛼1, 𝑓∗

−1𝜊𝑓∗𝛼2) ≤

𝑑𝑤,𝑝
𝑓(𝑋)

(𝑓∗𝛼1, 𝑓∗𝛼2). ……………………...… ….. (32) 

 

Therefore, from equation (31) and (32), we have 

 

𝑑𝑤,𝑝
𝑋 (𝛼1, 𝛼2) = 𝑑𝑤,𝑝

𝑌 (𝑓∗𝛼1, 𝑓∗𝛼2)……………… (33) 

 

Thus, 𝑓∗ is an isometric embedding. 

 

Next, in the case of the Gromov-Hausdorff stability, 

for 𝑃 ≥ 1, let 𝑓: 𝑋 → 𝑋 and 𝑔: 𝑊𝑝(𝑋) → 𝑊𝑝(𝑋) be 

homeomorphism of compact metric space 𝑋 and its 

Wasserstein hyperspaces 𝑊𝑝(𝑋) respectively. 

Suppose 𝑓 and 𝑔 are isometric while 𝑓 is topologically 

Gromov-Haursdorff stable, fix another isometry 

ℎ: 𝑊𝑝(𝑋) → 𝑋 such that 𝑓 = ℎ𝑜𝑔𝑜ℎ−1. Let 𝜀 > 0 and 

𝛿 > 0 be given by the topological Gromov-Hausdorff 

stability of 𝑓. Let ℎ1: 𝑌1 → 𝑌1 be a homeomorphism 

of a compact metric space 𝑌1 such that 

 

𝑑𝒢ℋ

𝑊𝑝(𝑋)
(𝑔, ℎ1) <

𝛿

2
…………………………….…(34) 

 

Then, 
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𝑑𝒢ℋ

𝑊𝑝(𝑋)
(𝑓, ℎ) ≤ 2 (𝑑𝒢ℋ

𝑊𝑝(𝑋)
(𝑓, ℎ) + 𝑑𝒢ℋ

𝑊𝑝(𝑋)
(𝑔, ℎ1)) <

2.
𝛿

2
= 𝛿……………………………………...(35) 

 

Thus, by the choice of 𝛿 in equation (34) and (35), 

there is a continuous 𝜀 – isometry 𝑣: 𝑌1 → 𝑋 such that 

𝑓𝜊𝑣 = 𝑣𝜊ℎ1 and ℎ𝜊𝑔𝜊ℎ1 = 𝑣𝜊ℎ1. Then, by defining 

𝑣1 = ℎ𝜊𝑣, we get a continuous 𝜀 – isometry 𝑣1: 𝑌1 →
𝑊𝑝(𝑋) which satisfying 𝑔𝜊𝑣1 = 𝑣1𝜊ℎ1. Therefore, 𝑔 

is topologically Gromov-Hausdorff stable. This ends 

the proof. In the next result, we are going to follow the 

technique of Lemma 2 below to achieve our aim in the 

Gromov sense. 

 

Lemma 2 (Victor MP and Yoav, Z, 2020): The 

Wasserstein space 𝑊𝑝(𝑋) is complete and separable if 

and only if 𝑋 does. 

 

Theorem 5: Let 𝑋1 and 𝑋2 be two separable metric 

spaces. Let 𝜀 > 0 and 𝑓: 𝑋1 → 𝑋2 be an 𝜀 −
𝒢ℋapproximation. If 𝑔: 𝑋2 → 𝑋1 be the inverse 𝜀 −
𝒢ℋ approximation of 𝑓. Then, (i) for each 

𝑑𝑋1
(𝑓(𝑥1), 𝑓1(𝑥1)) ≤ 2𝜀, and  

𝑑𝑋2
(𝑔(𝑥2), 𝑔1(𝑥2)) ≤ 2𝜀𝑥2∈𝑋2

𝑠𝑢𝑝
, there exist a 5𝜀 − 𝒢ℋ 

approximation 𝑓1: 𝑋1 → 𝑋2 such that 𝑓1 is measurable 

for every 𝑥1 ∈ 𝑋1 (ii) for each 

𝑑𝑋1𝑥1∈𝑋1

𝑠𝑢𝑝
(𝑥1, (𝑔𝜊𝑓)(𝑥1)) ≤ 4𝜖 and 

𝑑𝑋2𝑥2∈𝑋2

𝑠𝑢𝑝
(𝑥2, (𝑓𝜊𝑔1)(𝑥2)) ≤ 4𝜖, there  exist a 9𝜀 −

𝒢ℋ approximation 𝑔1: 𝑋2 → 𝑋1 such that 𝑔1 is 

measurable. 

 

Proof: Since 𝑋1 is separable metric space, by Lemma 

2, there exist a countable everywhere dense subset 
{𝑥𝑛}𝑛∈𝑁 of 𝑋1. We put 𝐵𝑛 = 𝐵𝜀

1(𝑥𝑛) and 𝐵𝑛+1 =

𝐵𝜀
1(𝑥𝑛+1) ∖ ⋃ 𝐵𝜀

1(𝑥𝑗)𝑛
𝑗=1 , for 𝑛 ≥ 1. Then, the 

sequence {𝐵𝑛}𝑛∈𝑁 which is a disjoint covering of 𝑋1 

and 𝐵𝑛 is measurable for every 𝑛 ∈ 𝑁 so that for every 

𝑥1 ∈ 𝑋1, ∃ a unique 𝑛 ∈ 𝑁 such that 𝑥1 ∈ 𝐵𝑛. We can 

now define the measurable map 𝑓1: 𝑋1 → 𝑋2 by 

𝑓(𝑥1) = 𝑓(𝑥𝑛) such that for every 𝑥1 ∈ 𝐵𝑛,  we have 

 

𝑑𝑋1
(𝑓(𝑥1), 𝑓1(𝑥1)) = 𝑑𝑋1

(𝑓(𝑥1), 𝑓(𝑥𝑛)) ≤

𝑑𝑋1
(𝑥1, 𝑥𝑛) + 𝜀 ≤ 2𝜀……………………      (36) 

Therefore, for every 𝑥1, 𝑥1 ∈ 𝑋1, from equation (36), 

we get   |𝑑𝑋1
(𝑓1(𝑥1), 𝑓1(𝑥1)) − 𝑑𝑋1

(𝑥1, 𝑥1)| ≤

|𝑑𝑋1
(𝑓1(𝑥1), 𝑓1(𝑥1)) − 𝑑𝑋1

(𝑓(𝑥1), 𝑓(𝑥1)))|    +

|𝑑𝑋1
(𝑓1(𝑥1), 𝑓(𝑥1)) − 𝑑𝑋1

(𝑓(𝑥1), 𝑓(𝑥1))| +

|𝑑𝑋1
(𝑓(𝑥1), 𝑓(𝑥1)) − 𝑑𝑋1

(𝑥1, 𝑥1)|  

 

≤ 𝑑𝑋1
(𝑓1(𝑥1), 𝑓(𝑥1)) + 𝑑𝑋1

(𝑓1(𝑥1), 𝑓(𝑥1)) + 𝜀 ≤

5𝜀………………………………………… (37) 

 

Therefore, 𝑓1 is a measurable 5𝜀 − 𝒢ℋ 

approximation from 𝑋1 to 𝑋2. 

(ii) provided that 𝑋2 is  separable, we can also find 

9𝜀 − 𝒢ℋ approximation 𝑔1: 𝑋2 → 𝑋1 such that 𝑔1 is 

measurable and 𝑑𝑋2
(𝑔(𝑥2), 𝑔1(𝑥2)) ≤ 2𝜀𝑥2∈𝑋2

𝑠𝑢𝑝
. 

 

For every 𝑥1 ∈ 𝑋1,  

𝑑𝑋1
(𝑥1, 𝑔1𝜊𝑓(𝑥))

≤ 𝑑𝑋1
(𝑥1, 𝑔𝜊𝑓(𝑥1))

+ 𝑑𝑋1
(𝑔𝜊𝑓(𝑥1), 𝑔1𝜊𝑓(𝑥1)) 

 

≤ 2𝜀 + 2𝜀 = 4𝜀 ………………………..….(37) 

 

and for every 𝑥2 ∈ 𝑋2.  

 

𝑑𝑋2
(𝑥2, 𝑓𝑜𝑔1(2)) ≤ 𝑑𝑋2

(𝑥2, 𝑓𝜊𝑔(𝑥2))

+ 𝑑𝑋2
(𝑓𝜊𝑔(𝑥2), 𝑓𝜊𝑔1(𝑥2)) 

≤ 𝜀 + 𝑑𝑋2
(𝑔(𝑥2), 𝑔1(𝑥2)) + 𝜀 

≤ 4𝜀………………………………….… (38) 

 

Then, by adding equation (37) to (38), we have 

 

𝑑𝑋1
(𝑥1, 𝑔1𝜊𝑓(𝑥)) + 𝑑𝑋2

(𝑥2, 𝑓𝑜𝑔1(2)) ≤ 4𝜀 + 4𝜀 +

𝜖 ≤ 9𝜖. 

 

Therefore, 𝑔1is a measurable 9𝜖- 𝒢ℋ approximation 

from 𝑋2 to 𝑋1. 

 

Conclusion: We concluded that Wasserstein 

hyperspace is a mapping which sends one probability 

distribution to another with the help of distance 

preserving map. So, for this, we conclude that the 

Wasserstein hyperspace is an isometric space. 
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