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ABSTRACT: Monkey pox causes a rash which can be uncomfortable, itchy, and painful and its early detection 

is vital to every control mechanisms. Hence, the objective of this paper was the development and simulation of a 

mathematical model for monkey-pox transmission disease in Nigeria using Ordinary Differential Equations. The 

feasible region of the model was verified and solutions positivity was shown. We achieved the disease free 

equilibrium and computed effective reproduction number, Re of the model system. We show the global stability of 
disease free equilibrium and we found that the disease free equilibrium of the model system is globally 

asymptotically stable if Re < 1 and 0),( 21 XXG


. The model system is considered mathematically and 

epidemiologically well posed. Furthermore, the simulations of the model shows that the average secondary cases of 
disease increases as exposed individual increases and rate of infection increases. Again, the effective reproduction 

number reduces as vaccination increases and it is observed that as exposed nonhuman transmits at low rate than 

symptomatic reduced, it reduces the secondary cases of the disease. 
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Monkey-Pox Transmission Disease   

 

Monkey-pox disease is recognized as pathogens, 

disturbing animals and humans, it is among the family 

of orthopox virus, other families are small pox and 

cow pox viruses (Essbauer et al., 2009). The disease 

causes lymph nodes to swell. The backache, fever, 

muscle aches, headache and swollen lymph nodes are 

all the symptoms. The virus can is transmitted from 

non-human to human and as well as human to human. 

The incubation period is from 7-14 days. The 

appearance of fever displayed after 1-3 days and the 

infection lasted for 2-4 weeks (Essbauer et al., 2009). 

Persons who have had close contact with individuals 

confirmed to have disease must be vaccinated for 

14days after exposure (CDC, 2003a, 2003b). Monkey-

pox (MPX) epidemic was first discovered in 1958 

(Magnus, et al., 1959). The disease was reported in 

humans in 1970 (Breman et al., 1986). The incubation 

time is 7–14 days, the disease lasted for 2 to 4 weeks 

(Centres for Disease Control, 2003) and the fatality 

ratio is 1% to 10% (Rimoin, et al., 2007). Monkey pox 

is endemic in Nigeria and the infection has been 

conveyed in numerous countries in Africa, including 
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Nigeria. From the beginning of the outbreak in 2017 

to 2018, there were 269 suspected cases in 25 states 

and one case in territory with the confirmed cases of 

115 in 16 states were reported in Nigeria. 7 deaths 

were verified plus 4 in patients with pre-existing 

immune compromised situations. In 2018, a total of 76 

were reported and 37 were confirmed and two deaths 

were recorded. Nigeria reported a total number of 558 

in April 2022, as suspected cases, of which confirmed 

cases were 231. In 2022, Nigeria reported 46 

suspected cases and no deaths recorded. Until year 

2023, where the total confirmed cases is 988 from 

September 2017 to January 1, 2023 out of total 

suspected cases of 2635 (NCDC, 2023). 

Mathematical models have been helpful in gaining 

insight of transmission of disease (Lasisi, et al., 2018; 

Lasisi, and Adeyemo, 2021; Lasisi and Fahad, 2024; 

Lasisi and Suleiman, 2024). The focus of this work is 

on global stability for mathematical model of 

transmission of monkey-pox infection and effects of 

public awareness and vaccination in Nigeria. 

Therefore, a mathematical modeling for monkey pox 

disease was developed by (Lasisi, et al., 2011) with six 

(6) compartments. In this work, we therefore 

complement and extend the work of the 

aforementioned authors by having nine (9) 

compartments. The objective of this paper is the 

development and simulation of a mathematical model 

for monkey-pox transmission disease in Nigeria using 

Ordinary Differential Equations. 

 

MATERIALS AND METHODS 
Formulation of a model for the monkey pox disease in 

nonhuman and human population was done in this 

research, we have population size of both human and 

nonhuman as Nh(t) and Np(t). The populations are 

compartmentalized into classes in Figure 1. The 

human population is subdivided into five class such as, 

susceptible, Sh(t), vaccination class, Vh(t), exposed 

class, Eh(t), infected class, Ih(t), and recovery class, 

Rh(t). The total nonhuman population model 

subdivided into susceptible class, Sp(t), infected class, 

Ip(t), exposed,  Ep(t) and recovery, Rp(t). As showed in 

the in Figure 1, individuals come into susceptible class 

through immigration and birth ( ℎ
), the proportion 

of vaccinated human immigrants (f) come into 

vaccinated class and proportion of unvaccinated 

immigrants (1-f) come into the susceptible class. The 

work does not consider the immigration of infection 

individual, because we assumed they have be 

vaccinated. The susceptible persons vaccinated at rate 

of 𝛾 and loss the vaccination at the rate of 𝜔. Contact 

of susceptible human from primate is at the rate 𝜎𝑝1
, 

Sh are exposed to disease at the rate of  h and infected 

at the rate of  𝛽ℎ, the natural death is 𝜇ℎ and die due to 

the disease is at the rate of 𝛿ℎ and recovery at a rate of 

𝜌ℎ . The susceptible nonhuman (primates), Sp is 

generated from the daily recruitment of persons 

through births at the  𝑝
 and natural death rate of 𝜇𝑝. 

Individuals become exposed to the virus at the rate of 

p  and move to the infected class at the rate of 𝛽𝑝. 

Nonhuman (primate) infected die due to the disease at 

the rate of 𝛿𝑝 and recovery at the rate of 𝜌𝑝. Figure 1 

is the flowchart representation of the model: 

 

                                                (1 − 𝑓) ℎ             𝜇ℎ                  𝜇ℎ                𝜇ℎ 

             𝑓 ℎ 

                                                                                                   

                                                         

                                           𝑝 

                                                          𝜇𝑝                 𝜇𝑝            𝜇𝑝 + 𝛿𝑝            𝜇𝑝 

From the flow chart representation of the disease in 

figure 1 and assumptions, the dynamics of the monkey 

pox disease is described by ordinary differential 

equations 1 to 11. 

 

hhhhhhh

h SSSVf
dt

dS
  )1(  (1) 

hhhhhh

h EES
dt

dE
        (2) 

𝜔 
𝛽ℎ 𝛼ℎ 𝜌ℎ 

𝜇ℎ 
𝛾 

𝐼ℎ 𝐸ℎ 𝑅ℎ 
𝑆ℎ 𝑉ℎ 

𝛼ℎ 

 

𝛿ℎ 
𝜇ℎ 

𝛼𝑝 𝛽𝑝 𝜌𝑝 
𝑅𝑝 𝐼𝑝 𝐸𝑝 𝑆𝑝 
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hhhhhhhh

h IIIE
dt

dI
       (3) 

hhhhh

h VVSf
dt

dV
       (4) 

hhhh

h RI
dt

dR
       (5) 

ppppp

p
SS

dt

dS
       (6) 

pppppp

p
EES

dt

dE
       (7) 

pppppppp

p
IIIE

dt

dI
       (8) 

pppp

p
RI

dt

dR
       (9) 

 

Where, 

)
)()(

( 1

h

khhh

p

pppp

h
N

IE

N

IE 






   and 

)
)(

( 2

p

pppp

p
N

IE 



   

𝑁ℎ = 𝑆ℎ + 𝐸ℎ + 𝐼ℎ + 𝑉ℎ + 𝑅ℎ     (10) 

 

𝑁𝑝 = 𝑆𝑝 + 𝐸𝑝 + 𝐼𝑝 + 𝑅𝑝     (11) 

 

𝑆ℎ  Becomes infected from both 𝐼𝑝  and 𝐼ℎ . 𝜎𝑝1  is 

effective contact product rate and probability of 𝑆ℎ 

becomes infected from 𝐼𝑝  and 𝜎ℎ  is effective contact 

product rate and probability of 𝑆ℎ  becomes infected 

from 𝐼ℎ . Correspondingly, the Sp becomes infected 

from infected nonhuman, where 𝜎𝑝2𝑖𝑠 effective 

contact product rate and probability of nonhuman is 

becomes infected per contact with an infected 𝐼𝑝 

(Bhunu and Mushayabase, 2011). The adjustment 

parameter 𝜀ℎ is the assumption that exposed human 

transmits at a rate lower than symptomatic humans. 

The adjustment parameter 𝜀𝑝  is for the assumption 

that exposed nonhuman transmits at a rate lower than 

symptomatic nonhuman and Monkey pox mortality is 

negligible due to human hunter. 

  

Analysis of the Model Equations:  

Theorem 1: The following biological feasible region 

of the model equations (1) - (9) 

Ω = {𝑆ℎ , 𝐸ℎ ,  𝐼ℎ , 𝑉ℎ, 𝑅ℎ, 𝑆𝑝 , 𝐸𝑝 , 𝐼𝑝, 𝑅𝑝)  ∈  ℜ +
9 ∶ 

{𝑆ℎ  + 𝐸ℎ  +  𝐼ℎ  + 𝑉ℎ  + 𝑅ℎ ≤ 
 ℎ

𝜇ℎ
; 𝑆𝑝 + 𝐸𝑝 + 𝐼𝑝 +

𝑅𝑝 ≤
  𝑝

𝜇 𝑝
 }  is attracting and positively invariant. 

Proof: Adding all the model equations in (1) - (9), 

we get 

                 
𝑑𝑁ℎ

𝑑𝑡
=  ℎ

− 𝜇ℎ𝑁ℎ − 𝛿ℎ𝐼ℎ   

And            
𝑑𝑁𝑝

𝑑𝑡
=  𝑝

− 𝜇𝑝𝑁𝑝 − 𝛿𝑝𝐼𝑝 

So that       
𝑑𝑁ℎ

𝑑𝑡
≤  ℎ

− 𝜇ℎ𝑁ℎ and  
𝑑𝑁𝑝

𝑑𝑡
≤  𝑝

−

𝜇𝑝𝑁𝑝     (12) 

It follows from (Bauch and Earn, 2003), the gronwall 

inequality, that 

          𝑁ℎ(𝑡) ≤ 𝑁ℎ(0)𝑒−𝜇ℎ(𝑡) + 
 ℎ

𝜇ℎ
 {1 − 𝑒−𝜇ℎ(𝑡)}  

And   𝑁𝑝(𝑡) ≤ 𝑁𝑝(0)𝑒−𝜇𝑝(𝑡) + 


𝑝

𝜇𝑝
 {1 − 𝑒−𝜇𝑝(𝑡)} (13) 

In specific, 𝑁 ℎ ≤


 ℎ

𝜇 ℎ
 , if only 𝑁 ℎ(0) ≤

  ℎ

𝜇 ℎ
 , also  

𝑁 𝑝 ≤ 


 𝑝

𝜇 𝑝
 , if only 𝑁 𝑝(0) ≤  


 𝑝

𝜇 𝑝
. And Ω is 

positively invariant. Therefore, it is enough to 

consider the model equations dynamics (1) - (9) in Ω. 

In this region, the model system can be considered as 

been mathematically and epidemiologically well 

posed.   

Theorem 2: (Non-negativity Solution of the Model 

system). Let 𝑡 0 >  0, the initial conditions satisfied 

𝑆ℎ(0) > 0, 𝐸ℎ(0) > 0, 𝐼ℎ(0) > 0, 𝑉ℎ(0) >
0, 𝑅ℎ(0) > 0, 𝑆𝑝(0) > 0, 𝐸𝑝(0) > 0, 𝐼𝑝(0) >

0, 𝑅𝑝(0) > 0, then the solutions 𝑆ℎ(𝑡), 𝐸ℎ(𝑡), 𝐼ℎ(𝑡),

𝑉ℎ(𝑡), 𝑅ℎ(𝑡), 𝑆𝑝(𝑡), 𝐸𝑝(𝑡), 𝐼𝑝(𝑡), 𝑅𝑝(𝑡) of the model 

equations (1)-(9) are nonnegative for all 𝑡 ≥ 0. 

Proof:  

Proving that for all  𝑡 ∈ [0, 𝑡0], 𝑆ℎ(𝑡),
𝐸ℎ(𝑡), 𝐼ℎ(𝑡), 𝑉ℎ(𝑡), 𝑅ℎ(𝑡), 𝑆𝑝(𝑡), 𝐸𝑝(𝑡), 𝐼𝑝(𝑡), 𝑅𝑝(𝑡) 

will be nonnegative in ℜ+
9 , Since all the parameters 

used in the system are positive. Thus, it is clear from 

equation (1) that  
𝑑 𝑆ℎ

𝑑𝑡
= (1 − 𝑓)

h + 𝜔V − 𝛾𝑆ℎ − 𝛼ℎ𝑆ℎ − 𝜇ℎ𝑆ℎ ≥

− (𝛾 + 𝛼ℎ + 𝜇ℎ)𝑆ℎ  

So that,     

𝑆ℎ(𝑡) ≥ 𝑆ℎ(0)e {− ∫(𝛾+𝛼ℎ+𝜇ℎ)𝑑𝑡}     (14) 

The similar approach can be used to show 

that 𝐸ℎ(𝑡) > 0, 𝐼ℎ(𝑡) > 0, 𝑉ℎ(𝑡) > 0, 𝑅ℎ(𝑡) >
0, 𝑆𝑝(𝑡) > 0, 𝐸𝑝(𝑡) > 0, 𝐼𝑝(𝑡) > 0, 𝑅𝑝(𝑡) > 0. Thus, 

for all 𝑡 ∈ [0, 𝑡0], 𝑆ℎ(𝑡), 𝐸ℎ(𝑡), 𝐼ℎ(𝑡), 𝑉ℎ(𝑡), 𝑅ℎ(𝑡), 

𝑆𝑝(𝑡), 𝐸𝑝(𝑡), 𝐼𝑝(𝑡), 𝑅𝑝(𝑡) will be nonnegative and 

remain in ℜ+
9  
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The Equilibrium State: At equilibrium point, we 

setting the model equations to zero, we have 
𝑑𝑆ℎ

𝑑𝑡
=

𝑑𝐸ℎ

𝑑𝑡
=

𝑑𝐼ℎ

𝑑𝑡
=

𝑑𝑉ℎ

𝑑𝑡
=

𝑑𝑅ℎ

𝑑𝑡
=

𝑑𝑆𝑝

𝑑𝑡
=

𝑑𝐸𝑝

𝑑𝑡
=

𝑑𝐼𝑝

𝑑𝑡
=

𝑑𝑅𝑝

𝑑𝑡
= 0     (15) 

From (3), we have 

 𝐸ℎ =
(𝜌ℎ+𝜇ℎ+𝛿ℎ)𝐼ℎ

𝛽ℎ
     (16) 

Substitute (16) into (2), we have 

𝐼ℎ (
(𝜎ℎ𝜀ℎ(𝜌ℎ+𝜇ℎ+𝛿ℎ)+𝜎ℎ𝛽ℎ)𝑆ℎ

𝛽ℎ𝑁ℎ
−

(𝛽ℎ+𝜇ℎ)(𝜌ℎ+𝜇ℎ+𝛿ℎ)

𝛽ℎ
) =

0     (17) 

Equation (17) gives,  

𝐼ℎ = 0 Or   (
(𝜎ℎ𝜀ℎ(𝜌ℎ+𝜇ℎ+𝛿ℎ)+𝜎ℎ𝛽ℎ)𝑆ℎ

𝛽ℎ𝑁ℎ
−

(𝛽ℎ+𝜇ℎ)(𝜌ℎ+𝜇ℎ+𝛿ℎ)

𝛽ℎ
) = 0     (18) 

From (8), we have 

𝐸𝑝 =
(𝜌𝑝+𝜇𝑝+𝛿𝑝)𝐼𝑝

𝛽𝑝
     (19) 

Substitute (19) into (7), we have 

 𝐼𝑝 (
(𝜎𝑝2𝜀𝑝(𝜌𝑝+𝜇𝑝+𝛿𝑝)+𝜎𝑝𝛽𝑝)𝑆𝑝

𝛽𝑝𝑁𝑝
−

(𝛽𝑝+𝜇𝑝)(𝜌𝑝+𝜇𝑝+𝛿𝑝)

𝛽𝑝
) =

0     (20) 

Equation (20) gives 

𝐼𝑝 = 0 or 
(𝜎𝑝2𝜀𝑝(𝜌𝑝+𝜇𝑝+𝛿𝑝)+𝜎𝑝𝛽𝑝)𝑆𝑝

𝛽𝑝𝑁𝑝
−

(𝛽𝑝+𝜇𝑝)(𝜌𝑝+𝜇𝑝+𝛿𝑝)

𝛽𝑝
= 0     (21) 

Substitute 𝐼ℎ = 0 in (9) into (16) and (5), we have 

𝐸ℎ = 𝑅ℎ = 0     (22) 

Find  𝑉.ℎ in (4) and (1), and equating them, we get 

 𝑉ℎ =
𝑓.Πh+γ.𝑆ℎ

( 𝜔 + 𝜇ℎ )
=

γ𝑆ℎ+αhSh+𝜇ℎSh−(1−f)Πh

𝜔
     (23)   

Implies,  

(𝑓Πh + γ𝑆ℎ) 𝜔 =[ γ𝑆ℎ + αhSh + 𝜇ℎSh − (1 −
f)Πh] ( 𝜔 + 𝜇ℎ) 

Since 𝐼ℎ =  0, then αh = 0, and we have  

Sh =
𝑓𝜔Πh+[Π .h𝜔+Πh𝜇ℎ−fΠh𝜔−fΠh𝜇ℎ]

γ𝜔 + γ𝜇ℎ+𝜇ℎ𝜔+𝜇ℎ
2−γ𝜔

     (24) 

 Reduced to 

Sh
0 =

Πh𝜔+Πh𝜇ℎ−fΠh𝜇ℎ

γ𝜇ℎ+𝜇ℎ𝜔+𝜇ℎ
2      (25) 

If the absence of vaccination, then Sh
0 =

Πh

𝜇ℎ
  

Putting equation (25) into ( 4 ), we get 

𝑉ℎ
0 =

𝑓Πh𝜇ℎ𝜔+𝑓Πh 𝜇ℎ
2+𝛾Πh𝜔+𝛾Πh𝜇ℎ

(γ𝜇ℎ+𝜇ℎ𝜔+𝜇ℎ
2)(𝜔+𝜇ℎ)

     (26) 

Substitute 𝐼𝑝 = 0 in (21) into (19) and (9), we have 

𝐸𝑝 = 𝑅𝑝 = 0     (27) 

From (6), we have 

𝑆𝑝
0 =

Πp

μp
     (28) 

The DFE state is derived below, 

 

 𝐸0 = { 𝑆ℎ
∗, 𝐸ℎ

∗,   𝑉ℎ
∗,   𝐼ℎ

∗ ,   𝑅ℎ
∗,   

𝑆𝑝
∗,   𝐸𝑝

∗,   𝐼𝑝
∗,   𝑅𝑝

∗ } 

 

= {
Πh𝜔+Πh𝜇ℎ−fΠh𝜇ℎ

γ𝜇ℎ+𝜇ℎ𝜔+𝜇ℎ
2 , 0,

𝑓Πh𝜇ℎ𝜔+𝑓Πh 𝜇ℎ
2+𝛾Πh𝜔+𝛾Πh𝜇ℎ

(γ𝜇ℎ+𝜇ℎ𝜔+𝜇ℎ
2)(𝜔+𝜇ℎ)

,

0, 0,
Πp

μp
, 0, 0, 0}     (29) 

 

Effective Reproduction Number (𝑅𝑒): We compute the 

effective basic reproduction number according to (Van 

den Driessche and Watmough, 2002), using next 

generation matrix. Therefore, effective basic 

reproduction number is the spectral radius of 𝐹𝑉−1 

 

𝐹𝑉  − 1 = [
𝜕𝐹𝑖(𝐸

0)

𝜕𝑥𝑖
] [

𝜕𝑉𝑖(𝐸
0)

𝜕𝑥𝑖
]
−1

     (30) 

 

Where, 𝐸0is the disease free equilibrium, 𝐹𝑖 is the new 

infection in compartment 𝑖 and 𝑉𝑖 is the movement of 

infection from one compartment 𝑖  to another. So, 

𝑅0 = 𝜌(𝐹𝑉−1)  is spectral radius ( 𝜌 ) of the next 

generation matrix 𝐹𝑉−1 , the linearization of system 

(1)-(9) give 𝐹 𝑎𝑛𝑑 𝑉, obtained from the Jacobian 

matrix with the disease free equilibrium. Vector 

𝐹 𝑖𝑠 𝑡ℎ𝑒 inflow 𝑎𝑛𝑑 𝑉 is the outflow from 

compartments 𝐸ℎ , 𝐸𝑝, 𝐼ℎ and 𝐼𝑃. We get  
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 𝑣 = (

 𝑣1

 𝑣2

 𝑣3

𝑣4

) =

[
 
 
 
 𝐴1𝐸ℎ

 𝐴2𝐼ℎ
 𝐴3𝐸𝑝

𝐴4𝐼𝑝 ]
 
 
 

     (33) 

Where, 𝐴1 = 𝛽ℎ + 𝜇ℎ  ; 𝐴2 = 𝜌ℎ + 𝜇ℎ + 𝛿ℎ ;  𝐴3 =
𝛽𝑝 + 𝜇𝑝 ;  𝐴4 = 𝜌𝑝 + 𝜇𝑝 + 𝛿𝑝    

𝑉 = (

𝐴1

0
0
0

   

0
 𝐴2

0
0

   

0
0

 𝐴3

0

   

0
0
0
𝐴4

)     (34) 

From (34), we have 
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At disease free equilibrium point, and since 𝑁ℎ ≤ Πℎ

𝜇ℎ.
 

and 𝑁𝑝 ≤ Π𝑝.

𝜇𝑝.
  we get 
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from (36), we get 
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𝐹𝑉−1 = [
𝜕𝐹𝑖(𝐸

0)

𝜕𝑥𝑗
] [

𝜕𝑉𝑖(𝐸
0)

𝜕𝑥𝑗
]−1     (38) 

Multiplying (37) and (35) together, we have 
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Equation (39) implies, 
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Characteristics equation of (40), gives /𝐹𝑉−1 − 𝜆𝐼/= 0  
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Determinant of (41) gives 
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To solve (43), we get 
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The reproduction number is given below, 
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2  is the spectral radius of )( 1FV   
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Hence, the effective reproduction number can be represented as,   

                          ph RRR 0      (49) 
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Global Stability of Disease Free Equilibrium (DFE):  

Theorem 3: The disease free equilibrium of the model system is GAS if Re < 1 

Proof: 
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The DFE is now denoted as, 
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A linear differential equation solving gives, 
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This shows that 
000000 NRSRVS pphhh   as t  regardless of the value of

00000 ,,, pphhh andRSRVS . Therefore, )0,( 0*

.1 NX   is globally asymptotically stable. 

To show if the second condition is true: ),(),( 21221 XXGAXXXG 
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Then,  ),(.),( 21221 XXGXAXXG 

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It is clear that, 0),( 21 XXG


. Therefore the proof is complete. It implies, disease free equilibrium of the 

model system is GAS if Re < 1. 

 

RESULTS AND DISCUSSION 
The calculation and estimation of the parameters 

values was done based on the availability of 

information from the Nigeria Centre for Disease 

control (NCDC), on situation report of Monkey-pox 

disease between 2017 to 2023, as mentioned in Table 

1  

 
Table 1: Update on Monkey-pox Disease in Nigeria from 2017 to 2023 

Cases of Monkey pox Number 

per year 

Confirmed cases from Dec. 2017 to January 2023 988 

Suspected cases from 2017 to 2023 2635 

Deaths 2017–2023 15 

Confirmed cases in 2017 88 

Confirmed cases in 2018 49 

Confirmed cases in 2019 47 
Confirmed cases in 2020 8 

Confirmed cases in 2021 34 

Confirmed cases in February 2022 7 

Confirmed cases in February 2023 762 

(NCDC, 2023) 

 

 
Fig. 2: Chart for data of confirmed cases, suspected cases and death 

for monkey pox for 2017-2023 
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Fig. 3: Graphical Representation for infected monkey pox 

individual per year for 2017-2023 

 

According to United Nation 2023 to 2024 report, the 

life expectancy for Nigerian at birth is 56.05 years. 

This gives the Natural Death rate as inverse of the life 

expectancy which is  𝜇ℎ =
1

56.05
= 0.01784 per year. 

The birth rate is 38.03 per year per 1000 people; this 

gives the rate as 
38.03

1000
= 0.03803/year. However, the 

recruitment rate due to birth in Nigeria is     ℎ
=

Nℎ ∗ 𝜇ℎ = 3,568,000 . According to NCDC (2023), 

there were 2635 suspected cases, where total 

confirmed cases were at 988, resulting in 15 deaths. 

This implies, Recovery rate is 𝛾ℎ =
998−15

998
= 0.985. 

Also, Death rate due to the disease, it is cleared that 15 

people out of 988 died of the infection of monkeypox 

in Nigeria between 2017 to 2023, which implies, 𝛿ℎ =
15

998
= 0.0152. We have infection rate = (confirmed 

cases / Total Population)*100 = 0.000494.   

 

The natural death rate of monkey, according to 

Primate Info Net (PIN), the life span of monkeys in the 

forest is 15-30 years, meanwhile, 𝜇𝑚 =
1

30
 𝑜𝑟 

1

15
=

(0.033 𝑜𝑟 0.067). The Natural Death rate of Monkey, 

according to Pandrillus foundation (2008), it is about 

8,000 drill monkey found in cross river state of 

Nigeria. However, 50,000 monkeys are estimated for 

Nigeria, hence, the recruitment rate of monkeys is 

given by, 𝑚
= 𝑁𝑚 ∗ 𝜇𝑚 = 1,665. The vaccination 

rate of monkeypox infection is 10.1%, so fraction of 

vaccination against monkeypox (f) is 𝑓 =
10.1

100
=

0.0101. Vaccination last upto 3-5 years and can also 

protect around 85% from monkeypox. So, 𝜑1 =
1

5
=

0.2 𝑜𝑟 
1

10
= 0.1 𝑎𝑛𝑑 𝜑2 =

1

85
= 0.012 . Other 

unavailable data have been assumed in the 

simulations. 

 

Table 2: Values of the parameters 

Para

mete

r 

Definition Value Source 

βh Exposed Rate of Human 0.005 Assume

d 

𝛼ℎ Infection Rate of Human 0.000494 

per year 

Table 1 

 ℎ
 Recruitment Rate of 

Human 
3,568,000 Table 1 

𝛾ℎ Recovery Rate of Human 0.985 per 

year 

Table 1 

𝜇ℎ Natural Death Rate of 

Human 

0.01784 

per year 

Table 1 

𝛿ℎ Death Rate Due to Disease 0.0152 
per year 

Table 1 

𝜑1 Loss of Vaccination Rate 0.1 - 0.2 

/year 

Table 1 

𝜑2 Vaccination Rate 0.012/yea

r  

Table 1 

F Proportion of vaccinated 
human immigrants 

0. .0101 Table 1 

∅ Effectiveness of 

Vaccination Drug 

0 – 1 Assume

d 

𝛼𝑚 Infection Rate of Monkey 0.004 Table 1 

𝛾𝑚 Recovery Rate of Monkey 0.50  Assume
d 

𝑚
 Recruitment Rate of 

Monkey 
1,665 Table 1 

𝜃𝑚2
 Exposed Rate of Monkey 0.003 Assume

d 

𝜇𝑚 Natural Death of Monkey 0.033 – 

0.067 

Table 1 

𝛿𝑚 Death Due to infection of 
monkey 

0.020 Assume
d 

𝜏ℎ Exposed rate for human 

transmits lower than 
symptomatic humans  

0.010 Assume

d 

𝜏𝑚 Exposed rate for non-

human transmits lower than 
symptomatic non-humans 

0.010 Assume

d 

𝑁ℎ Nigeria Population 200,000,0

00 

Estimate

d 

𝑁𝑚 Population of 

Monkey in Nigeria 

50,000 Assum

ed 

We used table 2 to simulate our model system with 

equation (45) and (48) by using Maple 17 Software for 

the graphic representation of the reproduction 

numbers. In fig. 4, we simulated the vaccination rate 

on effective reproduction number, we found in figure 

4, that average secondary cases of disease increases as 

exposed individual increases, varying the vaccination, 

we observed that effective reproduction number 

reduces as vaccination increases. Figure 5 shows the 

simulation of Monkey pox infection rate with 

changing in recovery rate of infected individual, it is 

observed that average secondary cases of infection 

increase as infection rate increases. Figure 6 shows the 

simulation of loss of vaccination against effective 

reproduction number, it is observed that average 

effective reproduction number of monkey pox 

infection increases as loss of vaccination of individual 

increases. 
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Figure 7 shows the simulation of Infection rate of non-

human with effective reproduction number of non-

human, it is observed that effective reproduction 

number of monkey infection increases as infection 

individual of non-human increases. In the figure 8, we 

observed that effective reproduction number of the 

monkey pox disease among the non-human increases 

as exposed rate of non-human increases. 

 

 

Fig. 4: Varying Rate of Vaccination ( ), 

 

 
Fig. 5: Varying Rate of Recovery 

 

 
Fig. 6: Varying Rate of Vaccination 

 

 
Fig. 7: Varying Rate of Recovery for the primate 

 
Fig. 8: varying the exposed rate for non-human transmits lower 

than symptomatic non-humans. 

 

Conclusion: This research work have developed and 

simulated a mathematical model for monkey pox 

transmission disease. The model was considered as 

been mathematically and epidemiologically well 

posed. The non-negativity of the solutions for the 

model system implies that the solutions were positive 

and remains in region. The disease free equilibrium 

and effective reproduction number of the model were 

obtained. The disease free equilibrium of the model 

equations is asymptotically stable globally (GAS) if 

Re < 1. It is observed that the average secondary cases 

of monkey pox infection increases as loss of 

vaccination of individual increases and reduces as 

vaccination increases  
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