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ABSTRACT: This paper, investigates the load-bending capabilities for 2-span continuous beams under constant
uniformly distributed load (udl) using the slope-deflection method and Staad pro v8i software. The results obtained
reveal a standard deviation of 0.012, 0, and O for support moments 1, 2, and 3 respectively and coefficient of variation
of 1.19%, 0%, and 0% for support moments 1, 2, and 3 respectively. For the span moments 1, and 2 respectively the
standard deviation and coefficient of variation obtained were 0.05, 0.02, and, 5.25%, 1.52% respectively. This

showed a very good agreement between the staad pro derived model equations and the slope deflection method.
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A continuous beam is a multi-span structural element
with supports, under the action of external forces,
(Kassimali, 2012). The bending moments in a member
are needed for design, hence structural engineers apply
structural analysis softwares for accurate and timely
results, especially when an approximate method is
required for preliminary designs (Adam et al., 2015;
Almayah, 2018). Several design materials containing
coefficients are readily available such as Reynolds and
Steedman (1999), and the American Wood Council,
2007. Fawzy (2018) examined the effects of the
sectional area of a cantilever beam and the maximum
length in the control of deflection with the aid of
Python 3.4 program. Al-Shammaa and Al-Mamoori,
(2021) created a simplified graph for selecting the
cross sectional dimensions using a neural network
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model proposed by Couto (2022). In order to assist
engineers in quick and accurate design results, Hong
et al; 2022 developed an Al-based design approach for
predicting various design parameters using design
charts. The accuracy was confirmed from structural
calculations. Kwan et al. (2002); (Shanmukesh et al.
2020) established a relationship between the flexural
strength and ductility of a simply supported
parallelogram-shaped slab, using both mathematical,
experimental and finite element procedures. Hong et
al, (2022) created a forward Lagrange network based
artificial neural networks (ANNSs) for the optimization
of ductile doubly reinforced concrete (RC) beams. To
increase the accuracy of the nominal flexural strength
capacity of FRP-reinforced beams, Protchenko et al.
(2021), presented a new empirical coefficient to be
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applied into the ACI 440.1R-15 flexural design
technique. Okonkwo and Madu, (2023) made
provisions for design tables and charts to lessen design
requirements in reinforced concrete beams made of
plain and fiber-reinforced geopolymer concrete (GPC,
FRGPC). AlHamaydeh and Amin, (2021), developed
data on the moment capacities of axially loaded
columns. El-Borhamy and Dabaon, (2024) derived a
mathematical model to determine the axial critical
loads in tapered columns exposed to varying cross
sections by applying the Galerkin's method. Charts
were put forward in order to elucidate their elastic
stability. The objective of this paper is to investigate the
load-bending capabilities for 2-span continuous beams
under constant uniformly distributed load (udl) using
the slope-deflection method and Staad pro va8i
software.

MATERIALS AND METHODS

Slope - Deflection Method: Equation 1 is the equation
for the Slope Deflection Method analysis of beam
structures (Hibbeler, 2015).

M =2Ek(26, + 6 —3y)+(FEM), 1

Where, M, = Internal near end moment of the span;
E,k = Modulus of elasticity, and span stiffness; k :%;
ey, 8x= slopes; y = displacement; FEM,= support
fixed end moment.

For fixed ends,

wi?
FEM), =
( In 12 2
0,=0,=0, y, =y,; =5 =0,

W, =W, =W

Through substitutions and applying the equilibrium
conditions we obtain the support moments as follows:
(Hibbeler, 2015).

w1, -1 wl?
27240, +1,) 12 3

Cwl, (1,0 -1 wl?

271231, +1,) 12 4
_wl(,” -7 wil?
27120, +1,) 12 3
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Wll(lzz _|12) WI22
32 = + 6
24(1, +1,) 12
From the free body diagram of each beams span we
obtain the span moments as follows (Hibbeler, 2015).

\A
Mspan,lz_Mlz 2(\/ Ll ) 7
2L
V,. L
Mspan,z =-M 23 +%
2(V; —Vyg) 8

Where Mgpqy 1 is the first span moment; My, 5 is
the second span moment; V,; is the node 2 reaction
for span 1; V,p isthe node 2 reaction for span 2; V;
is the reaction at node 1; V5 s the reaction at node
3

Model Staad pro Moment coefficient Formulation:
The proposed structure is the two span continuous

beam of Lengths L, and L,, with span ratlos

ranging from 0.5 to 1.0. Joints 1, and 3 are flxed
supports and pinned supported at joint 2 as shown in
fig.1.

pinned
Span 2

Lj_ " LE

i T
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Spanl

Fig. 1: The 2-span continuous beam model

RESULTS AND DISCUSSIONS

Table 2 displays the average values of the span and
support moment coefficients for case 1 to case 11. Due
to the nature of the moment coefficients for the node 1
and the span 1 moment coefficients as shown in
Tables 3 as there seem to be a variation in the results
of moment coefficients for all example cases, the
values of their coefficients are used in plotting the
graphs of Fig.2, to Fig.16. Table 1 shows the beam
dimensions for all eleven cases.

Where; Exp.Casel, L, is the length of span 1 for
example case 1; Exp.Case2, L, is the length of span 1
for example case 2; Exp.Case3, L, is the length of
span 1 for example case 3; Exp.Case4, L, is the length
of span 1 for example case 4; Exp.Caseb, L, is the
length of span 1 for example case 5; E and | are
constant for both spans.
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Table 1: Beam dimensions for all Cases

Parameters Cases
1 2 3 4 5 6 7 8 9 10 11
L
L—l 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
2

Exp.Casel, L,(m) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
Exp.Case2, L,(m) 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5
Exp.Case3, L,(m) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
Exp.Case4, L,(m) 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5
Exp.Case5, L,(m) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0

3213

A uniformly distributed load of w;= w,= 25KN/m are
considered as member loads along span 1 and span 2.
Support moment coefficients has been calculated
using the equations obtained from the Staad pro
analysis for case 1 to case 11 using equations 9, 10,
and 11:

2
M sppt,l — WlM 01|-1

9

Mspp[,Z = Wchsz2 10
2

M sppt,3 wW,M;L, 11

Where, Mg, is the support moment at node 1;
Mgy 2 is the support moment at node 2; Mg, 5 is the
support moment at node 3; w; is the udl along span
1; w, is the udl along span 2; M., is the support
moment coefficient at node 1; M., is the support
moment coefficient at node 2; M5 is the support
moment coefficient at node 3; L, is the span length
between node 1 and 2; L, is the span length between

Similarly, the span moment coefficient has been
calculated from equation 12, and equation 13:

2
Mspan,l = WlMCBLl 12

M :WZMC4L22

span,2

13

Where, Mgp,qy,, is the span moment along span 1;
Mgpan,2 1S the span moment along span 2; wy is the udl
along span 1; w, is the udl along span 2; M5 is the
span 1 moment coefficient; M., is the span 2 moment
coefficient.

Application Example: The mathematical equations are
applied to ten (10) verification examples in other to
validate the accuracy of the equations derived from the
staadpro analysis. The parameters for the ten
verification examples are shown in table 3.

node 2 and 3
Table 2: Average values of moment coefficients
L
CASE .. (m) NODE1 NODE2 NODE3 SPAN1  SPAN2

1 0.50 0.010 0.062 0.094 0.025 0.047

2 0.55 0.028 0.062 0.094 0.024 0.047

3 0.60 0.042 0.063 0.093 0.025 0.046

4 0.65 0.053 0.064 0.093 0.028 0.047

5 0.70 0.061 0.065 0.092 0.031 0.046

6 0.75 0.067 0.067 0.091 0.033 0.046

7 0.80 0.072 0.070 0.090 0.035 0.045

8 0.85 0.076 0.073 0.088 0.037 0.045

9 0.90 0.079 0.076 0.087 0.039 0.043

10 0.95 0.081 0.079 0.085 0.040 0.043

11 1.00 0.083 0.083 0.083 0.042 0.042

Table 3: Parameters for the verification examples
Ferification L, L, Ly (L — L)% [AL} L, —AL (L, — AL)%
Examples L, fm) fm) o il i L

V1 0,504 2.0 578 49.65 2.86 0.04 1.38
72 0,508 3.00 5.51 45.24 291 0.09 3.00
73 0,508 3.10 6.10 4518 300 .10 323
Vi 0,508 4.20 825 45.09 4.05 0.15 357
Vi 0523 3.15 602 47.67 287 0.28 B.ES
Ve 0.383 435 744 41.53 308 1.36 2897
V7 0612 3.85 529 38719 244 1.41 36.62
V3 0.7533 3.65 483 24.43 1.13 2147 67.67
Ve 0,525 4.10 443 745 0.33 3.77 51.95
W10 0.333 3.75 3.53 4.538 0.13 3.57 5320
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The following equations are obtained: Where ; Mcicqsersppe 1S the support  moment

C1,Case2,span

C1,Case3,span

=T =2 22 £ £

Cl,Cased,span —

crcaer ot = 0-0028(L, —1,)* =0.0232(L, — L) +0.052 1 4
crcaserpp = 0-0032(L, —L;)? —0.0210(L, —L,)+0.060 55
crcasagp = 0-0035(L, —L,)? —0.018YL, - L) +0.066
crcasss = 0-0041(L, —L,)* ~0.0178(L, - L,) +0.070
crca g = ~0.0019(L, —L;)? +0.0156(L, - L,) ~0.0034 ¢
=-0.0024(L,
=-0.0020(L,

16
17

~L,)? +0.0137(L, - L) +0.0034 1
~L,)* +0.0107(L, - L) +0.0119,

=-0.0018(L, - L,)* +0.0080(L, - L,) +0.0200 54

coefficient for case 1. Mcq casezsppe 1S the support

moment coefficient for case 2; Mc¢q cqse3,5ppe 1S the
support moment coefficient for case 3; M¢q cqases sppt
is the support moment coefficient for case 4;
M1 case1,span 1S the span moment coefficient for case
15 My casez,span 1S the span moment coefficient for
case 2; Mcq cases span 1S the span moment coefficient
for case 3; Mcycaseaspan 1S the span moment
coefficient for case 4.
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The following relationships are extracted from the M, o,e—((0.02r2—0.146r+0.0051)(Ly—L1)?]-[(0.1172 28
graphs: —0.1637+0.077)(Ly—L1)]+[(0.4897—0.321%2-0.112)]
2 2
(L, = L) s =0.023r" ~ 0.014r +0.0051 22 M ¢4 span=[(~0.09+0.053r+0.012) (Lo~ L1)]~[(~0.0472 29
_ 2 +0.0457-0.011) (L3 —L1)?]—[(0.0537+0.0972~0.053)]
(L, — L) =0.11r° —0.1631r +0.0773 23 T
(L, = L))%span =—0.04r% +0.0452r —0.0107 24 Where M¢ysppe = moment coefficient for nodel;
_ _ _L
(L~ L)gpan = 0.09r% +0.0525r +0.0118 - Mcy span = Moment coefficient for span 1, and r = i
_ 2
KCspan =0.09r" +0.0531r —0.0525 26 The moment coefficients using equations 28 and 29
have also been inputed into a computer-based
K — _0.32r%+0.4888r —0.112 spreadsheet application built in Mlcrosof_t _Excel.
Csppt 0.3 0.4888r -0 3 27 Table 4, and table 5 show that the coefficient of

Where K, is the coefficient of the constants.

Where equations 22 and 23 are for node 1 support,
equations 24 and 25 are for span 1, equation 26 is for
the span 1, and equation 27 is for node 1 support.
Substituting equations 22, 23, 24, 25, 26, and 27 into
equations 14,15,16,17,18,19, 20, and 21 gives the
following equations 28, and 29 for node 1 and span 1
moment coefficients to two significant figures:

variation for support moments 1, 2, and 3 was 1.19%,
0%, and 0%, while the standard deviation for those
moments was 0.012, 0, and 0. The standard deviation
and coefficient of variation for span moments 1 and 2,
respectively, were 0.05 and 0.02, or 5.25% and 1.52%.
This demonstrated a very high degree of agreement
between the slope deflection equation and the model
equations generated using Staad Pro.

Table 4: Comparisms of span moment coefficients for Slope-deflection method and the staad pro analysis model equation

Varification | Minen: J Fo S— Pavanz Mipanz Mepanz
Examplas (ENm) | (ENmy | (ENem) (Em) FPopana Popanz

V1 548 20 3528 3858 0.55 0.9

V2 684 6.71 4134 41.04 058 0.95

] 729 7.30 4408 43.72 055 0.95

V4 13.33 1542 80.59 7557 0.85 0.95

Vi 72 753 4254 4262 055 0.95

Va 13.19 14.61 6322 6428 0.50 0.95

V7 10,535 11.13 4655 46.01 085 0.55

VE 11.3E 1256 26.73 26.39 .88 0.55

Ve 16.77 15.31 21.19 2259 059 0.54

V10 14.29 14,41 16.41 1658 059 .95

Mazan 0.85 0.9

D 005 0.02

Cov (%) 3.25 152

Table 5: Comparisms of support moment coefficients for Slope-deflection method and the staad pro analysis model equation
Vanfication ¥ F— | — L P— S P— | S— My sppr | Masppe M s

Examplas (F ) (ENm) (Em) (Fm) (ENm) {ENm) Py spie Py spim Py e
V1 036 1.56 31.84 3143 | 7776 e 023 0.5% 0.5
Vi 083 1.8% 3438 3414 | 31.8a B208 044 0.5 .59
hE] 0.56 1.3% 38.13 3768 1 §7.21 8744 051 0.5 5%
e 155 1.11 106,36 © 10530 1 13832 13995 057 0.9 59
W3 2.65 347 36.72 36.25 1 83.00 B325 078 0.5 5%
Ve 1552 532 8723 8640 1 12518 2925 0.8% 0.5 59
w7 1435 1314 62.87 6235 1 8124 f2.01 0.98 0.5% (]
VE 2179 2165 3968 3927 ¢ 5318 5288 056 0.5 .59
e 3549 33.62 38.09 3831 ¢+ 4235 4224 0.8% 0.5% (]
V10 28.57 2813 30.74 3045 3281 3238 0.8% 0.5% .59
Wlazn = (V& to V10) 0.98 0.5% .59
Standard Deviation={V6 to V10 0012 0.00 000
Coafficient of varaton(%a) = (W& to V10) 115 0.00 000

Conclusion: Using the staad pro software, the moment
coefficients for a two-span continuous beam under a

constant, evenly distributed load over spans 1 and 2
have been derived. As a result, a mathematical

OGBONNA, U. K; EBOI, E. O.



Load-Bending Moment Capabilities for 2-Span Continuous Beams under Constant Uniformly....

equation that illustrates the model equations derived
from this parametric study is used to solve moment
coefficient problems in the ten example verification.
For quick design and design checks, practicing
engineers might find value in using the model
equations.
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