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ABSTRACT: This paper, investigates the load-bending capabilities for 2-span continuous beams under constant 

uniformly distributed load (udl) using the slope-deflection method and Staad pro v8i software. The results obtained 

reveal a standard deviation of 0.012, 0, and 0 for support moments 1, 2, and 3 respectively and coefficient of variation 

of 1.19%, 0%, and 0% for support moments 1, 2, and 3 respectively. For the span moments 1, and 2 respectively the 
standard deviation and coefficient of variation obtained were 0.05, 0.02, and, 5.25%, 1.52% respectively. This 

showed a very good agreement between the staad pro derived model equations and the slope deflection method. 
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A continuous beam is a multi-span structural element 

with supports, under the action of external forces, 

(Kassimali, 2012). The bending moments in a member 

are needed for design, hence structural engineers apply 

structural analysis softwares for accurate and timely 

results, especially when an approximate method is 

required for preliminary designs (Adam et al., 2015; 

Almayah, 2018). Several design materials containing 

coefficients are readily available such as Reynolds and 

Steedman (1999), and the American Wood Council, 

2007. Fawzy (2018) examined the effects of the 

sectional area of a cantilever beam and the maximum 

length in the control of deflection with the aid of 

Python 3.4 program. Al-Shammaa and Al-Mamoori, 

(2021) created a simplified graph for selecting the 

cross sectional dimensions using a neural network 

model proposed by Couto (2022). In order to assist 

engineers in quick and accurate design results, Hong 

et al; 2022 developed an AI-based design approach for 

predicting various design parameters using design 

charts. The accuracy was confirmed from structural 

calculations. Kwan et al. (2002); (Shanmukesh et al. 

2020) established a relationship between the flexural 

strength and ductility of a simply supported 

parallelogram-shaped slab, using both mathematical, 

experimental and finite element procedures. Hong et 

al, (2022) created a forward Lagrange network based 

artificial neural networks (ANNs) for the optimization 

of ductile doubly reinforced concrete (RC) beams. To 

increase the accuracy of the nominal flexural strength 

capacity of FRP-reinforced beams, Protchenko et al. 

(2021), presented a new empirical coefficient to be 
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applied into the ACI 440.1R-15 flexural design 

technique. Okonkwo and Madu, (2023) made 

provisions for design tables and charts to lessen design 

requirements in reinforced concrete beams made of 

plain and fiber-reinforced geopolymer concrete (GPC, 

FRGPC). AlHamaydeh and Amin, (2021), developed 

data on the moment capacities of axially loaded 

columns. El-Borhamy and Dabaon, (2024) derived a 

mathematical model to determine the axial critical 

loads in tapered columns exposed to varying cross 

sections by applying the  Galerkin's method. Charts 

were put forward in order to elucidate their elastic 

stability. The objective of this paper is to investigate the 

load-bending capabilities for 2-span continuous beams 

under constant uniformly distributed load (udl) using 

the slope-deflection method and Staad pro v8i 

software.  

 

MATERIALS AND METHODS 
Slope - Deflection Method: Equation 1 is the equation 

for the Slope Deflection Method analysis of beam 

structures (Hibbeler, 2015). 

 

NFNN FEMEkM )()32(2  
 

 

Where,    𝑀𝑁= Internal near end moment of the span; 

E,k = Modulus of elasticity, and span stiffness; k =
𝐼

𝐿
; 

ɵ𝑁, ɵ𝐹= slopes;  = displacement; 𝐹𝐸𝑀𝑁= support 

fixed end moment. 
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Through substitutions and applying the equilibrium 

conditions we obtain the support moments as follows: 

(Hibbeler, 2015). 
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From the free body diagram of each beams span we 

obtain the span moments as follows (Hibbeler, 2015). 
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𝑊ℎ𝑒𝑟𝑒 𝑀𝑠𝑝𝑎𝑛,1 is  the first span moment; 𝑀𝑠𝑝𝑎𝑛,2 
is 

the second span moment;
 
𝑉2𝐿  is the node 2 reaction 

for span 1; 
 
𝑉2𝑅  

is the node 2 reaction for span 2; 
 
𝑉1    

is the reaction at node 1; 
 
𝑉3    is the reaction at node 

3
 

 

Model Staad pro Moment coefficient Formulation: 

The proposed structure is the two span continuous 

beam of Lengths 𝐿1  and 𝐿2 , with span ratios 
𝐿1

𝐿2
 

ranging from 0.5 to 1.0. Joints 1, and 3 are fixed 

supports and pinned supported at joint 2 as shown in 

fig.1.  
 

 
Fig. 1: The 2-span continuous beam model 

 

RESULTS AND DISCUSSIONS 
Table 2 displays the average values of the span and 

support moment coefficients for case 1 to case 11. Due 

to the nature of the moment coefficients for the node 1 

and the span 1 moment coefficients as shown in 

Tables 3 as there seem to be a variation in the results 

of moment coefficients for all example cases, the 

values of their coefficients are used in plotting the 

graphs of Fig.2, to Fig.16. Table 1 shows the beam 

dimensions for all eleven cases. 

 

Where; Exp.Case1, 𝐿1  is the length of span 1 for 

example case 1; Exp.Case2, 𝐿1 is the length of span 1 

for example case 2; Exp.Case3, 𝐿1  is the length of 

span 1 for example case 3; Exp.Case4, 𝐿1 is the length 

of span 1 for example case 4; Exp.Case5, 𝐿1  is the 

length of span 1 for example case 5; E and I are 

constant for both spans. 

2 

1 
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Table 1: Beam dimensions for all Cases 

Parameters 
Cases 

1 2 3 4 5 6 7 8 9 10 11 
𝐿1

𝐿2

 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 

Exp.Case1, 𝐿1(m) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 

Exp.Case2, 𝐿1(m) 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 

Exp.Case3, 𝐿1(m) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 

Exp.Case4, 𝐿1(m) 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 

Exp.Case5, 𝐿1(m) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 

 

A uniformly distributed load of 𝑤1= 𝑤2= 25KN/m are 

considered as member loads along span 1 and span 2. 

Support moment coefficients has been calculated 

using the equations obtained from the Staad pro 

analysis for case 1 to case 11 using equations 9, 10, 

and 11: 
2

1111, LMwM Csppt 
                9 

 
2

2222, LMwM Csppt 
               10 

 
2

2323, LMwM Csppt            11 

 

Where, 𝑀𝑠𝑝𝑝𝑡,1  is the support moment at node 1; 

𝑀𝑠𝑝𝑝𝑡,2 is the support moment at node 2; 𝑀𝑠𝑝𝑝𝑡,3 is the 

support moment at node 3; 𝑤1   is the udl along span 

1; 𝑤2   is the udl along span 2; 𝑀𝐶1 is the support 

moment coefficient at node 1; 𝑀𝐶2 is the support 

moment coefficient at node 2; 𝑀𝐶3 is the support 

moment coefficient at node 3; 𝐿1   is the span length 

between node 1 and 2; 𝐿2   is the span length between 

node 2 and 3 

 

Similarly, the span moment coefficient has been 

calculated from equation 12, and equation 13: 

 
2

1311, LMwM Cspan 
         12 

 
2

2422, LMwM Cspan 
       13

 

 

Where, 𝑀𝑠𝑝𝑎𝑛,1  is the span moment along span 1; 

𝑀𝑠𝑝𝑎𝑛,2 is the span moment along span 2; 𝑤1 is the udl 

along span 1; 𝑤2 is the udl along span 2; 𝑀𝐶3 𝑖s the 

span 1 moment coefficient; 𝑀𝐶4 𝑖s the span 2 moment 

coefficient. 

 

Application Example: The mathematical equations are 

applied to ten (10) verification examples in other to 

validate the accuracy of the equations derived from the 

staadpro analysis. The parameters for the ten 

verification examples are shown in table 3. 

Table 2: Average values of moment coefficients  

CASE 
𝐿1

𝐿2
 (𝑟𝑛) NODE 1 NODE 2 NODE 3 SPAN 1 SPAN 2 

1 0.50 0.010 0.062 0.094 0.025 0.047 
2 0.55 0.028 0.062 0.094 0.024 0.047 

3 0.60 0.042 0.063 0.093 0.025 0.046 

4 0.65 0.053 0.064 0.093 0.028 0.047 
5 0.70 0.061 0.065 0.092 0.031 0.046 

6 0.75 0.067 0.067 0.091 0.033 0.046 

7 0.80 0.072 0.070 0.090 0.035 0.045 
8 0.85 0.076 0.073 0.088 0.037 0.045 

9 0.90 0.079 0.076 0.087 0.039 0.043 

10 0.95 0.081 0.079 0.085 0.040 0.043 
11 1.00 0.083 0.083 0.083 0.042 0.042 

Table 3: Parameters for the verification examples 
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The following equations are obtained:  

052.0)(0232.0)(0028.0 12

2

12.1,1  LLLLM spptCaseC  14 

060.0)(0210.0)(0032.0 12

2

12,2,1  LLLLM spptCaseC   15 

066.0)(0189.0)(0035.0 12

2

12,3,1  LLLLM spptCaseC       16 

070.0)(0178.0)(0041.0 12

2

12,4,1  LLLLM spptCaseC       17 

0034.0)(0155.0)(0019.0 12

2

12,1,1  LLLLM spanCaseC    18 

0034.0)(0137.0)(0021.0 12

2

12,2,1  LLLLM spanCaseC 19 

0119.0)(0107.0)(0020.0 12

2

12,3,1  LLLLM spanCaseC 20 

0200.0)(0080.0)(0018.0 12

2

12,4,1  LLLLM spanCaseC    21 

𝑊ℎ𝑒𝑟𝑒 ;  𝑀𝐶1,𝑐𝑎𝑠𝑒1,𝑠𝑝𝑝𝑡 is the support moment 

coefficient for case 1
; 

𝑀𝐶1,𝑐𝑎𝑠𝑒2,𝑠𝑝𝑝𝑡  is the support 

moment coefficient for case 2; 𝑀𝐶1,𝑐𝑎𝑠𝑒3,𝑠𝑝𝑝𝑡  is the 

support moment coefficient for case 3; 𝑀𝐶1,𝑐𝑎𝑠𝑒4,𝑠𝑝𝑝𝑡 

is the support moment coefficient for case 4; 

𝑀𝐶1,𝑐𝑎𝑠𝑒1,𝑠𝑝𝑎𝑛 is the span moment coefficient for case 

1;
 
𝑀𝐶1,𝑐𝑎𝑠𝑒2,𝑠𝑝𝑎𝑛  is the span moment coefficient for 

case 2; 𝑀𝐶1,𝑐𝑎𝑠𝑒3,𝑠𝑝𝑎𝑛 is the span moment coefficient 

for case 3; 𝑀𝐶1,𝑐𝑎𝑠𝑒4,𝑠𝑝𝑎𝑛  is the span moment 

coefficient for case 4. 
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The following relationships are extracted from the 

graphs: 

0051.0014.0023.0)( 22

12  rrLL sppt
                      22 

0773.01631.011.0)( 2

12  rrLL sppt                    23 

0107.00452.004.0)( 22

12  rrLL span
               24 

0118.00525.009.0)( 2

12  rrLL span                  25 

0525.00531.009.0 2  rrK
spanC              26 

 

1123.04888.032.0 2  rrK
spptC               27 

 

Where 𝐾𝐶  is the coefficient of the constants. 

 

Where equations 22 and 23 are for node 1 support, 

equations 24 and 25 are for span 1, equation 26 is for 

the span 1, and equation 27 is for node 1 support. 

Substituting equations 22, 23, 24, 25, 26, and 27 into 

equations 14,15,16,17,18,19, 20, and 21 gives the 

following equations 28, and 29 for node 1 and span 1 

moment coefficients to two significant figures: 

𝑀𝐶1,𝑠𝑝𝑝𝑡=[(0.02𝑟2−0.146𝑟+0.0051)(𝐿2−𝐿1)2]−[(0.11𝑟2

−0.163𝑟+0.077)(𝐿2−𝐿1)]+[(0.489𝑟−0.32𝑟2−0.112)]
                                                                                                     

       28
 

𝑀𝐶1,𝑠𝑝𝑎𝑛=[(−0.09+0.053𝑟+0.012)(𝐿2−𝐿1)]−[(−0.04𝑟2

+0.045𝑟−0.011)(𝐿2−𝐿1)2]−[(0.053𝑟+0.09𝑟2−0.053)]
                                                                                                    

         29 

 

Where 𝑀𝐶1,𝑠𝑝𝑝𝑡   = moment coefficient for node1; 

𝑀𝐶1,𝑠𝑝𝑎𝑛  = moment coefficient for span 1, and 𝑟 =
𝐿1

𝐿2

  

The moment coefficients using equations 28 and 29 

have also been inputed into a computer-based 

spreadsheet application built in Microsoft Excel. 

Table 4, and table 5 show that the coefficient of 

variation for support moments 1, 2, and 3 was 1.19%, 

0%, and 0%, while the standard deviation for those 

moments was 0.012, 0, and 0. The standard deviation 

and coefficient of variation for span moments 1 and 2, 

respectively, were 0.05 and 0.02, or 5.25% and 1.52%. 

This demonstrated a very high degree of agreement 

between the slope deflection equation and the model 

equations generated using Staad Pro. 

 
Table 4: Comparisms of span moment coefficients for Slope-deflection method and the staad pro analysis model equation 

 
Table 5: Comparisms of support moment coefficients for Slope-deflection method and the staad pro analysis model equation 

 
 

Conclusion: Using the staad pro software, the moment 

coefficients for a two-span continuous beam under a 

constant, evenly distributed load over spans 1 and 2 

have been derived. As a result, a mathematical 
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equation that illustrates the model equations derived 

from this parametric study is used to solve moment 

coefficient problems in the ten example verification. 

For quick design and design checks, practicing 

engineers might find value in using the model 

equations. 
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