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Integral transforms are powerful operational methods 

for solving linear differential and integral equations 

(Debnath and Bhatta, 2007). The Laplace transform, 

introduced by the French mathematician Pierre-Simon 

Laplace (1749 – 1827), is a one-parameter integral 

transform. It was systematically developed by the 

British physicist Oliver Heaviside (1850 – 1925) to 

simplify the solution of many differential equations 

that describe physical processes. Laplace-type integral 

transforms are those that have the exponential kernel. 

There are, generally, two classes of Laplace-type 

integral transforms, namely: one-parameter Laplace-

type integral transforms and two-parameter Laplace-

type integral transforms. The first one-parameter 

Laplace-type integral transform, called the Elzaki 

transform, was introduced by (Elzaki, 2011). Since 

then, more than thirty-one-parameter Laplace-type 

integral transforms have been proposed by different 

scholars. These include the Aboodh transform 

(Aboodh, 2013), the Mahgoub transform (Mahgoub, 

2013), the Kamal transform (Abdelilah & Hassa, 

2016), the Mohand transform (Mahgoub, 2017), the 

Sawi transform (Mahgoub, 2019), the Iman transform 

(Iman, 2023), just to mention few. The first two-

parameter Laplace-type integral transform, called the 

Sumudu transform, was introduced by G.K. Watugala 

(Watugala, 1993). Since then, only very few two-

parameter Laplace-type integral transforms have been 

proposed, such as the Natural transform (Khan and 

Khan, 2008), the Shehu transform (Maitama and Zhao, 

2019), the ZZ transform (Zafar, 2016), the NE 

transform (Musta, 2023), etc. Why the two-parameter 

Laplace-type integral transforms when one-parameter 

Laplace-type integral transforms can solve many 

differential and integral equations that describe 

physical phenomena? Well, by introducing an 

additional parameter, one can discover new interesting 

properties of the transforms (two-parameter Laplace-

type integral transforms) and extend their range of 

application. This is mainly because the operational 

calculus involved in proposing and applying a new 

two-parameter Laplace-type integral transform is more 
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complicated than the case of one-parameter Laplace-

type integral transforms. The two-parameter Laplace-

type integral transform offers certain advantages over 

the one-parameter Laplace-type integral transform, 

such as allowing for more flexibility in representing 

functions and systems with multiple variables and 

parameters, and is useful for solving higher-

dimensional partial differential equations and 

problems involving more than one independent 

variable. Hence, the objective in this paper is to 

evaluate the application of two-parameter Laplace-

type R-transform to solve linear ordinary differential 

equations.  

 

Definition  

The 𝑅-transform of a function 𝑓(𝑡) is defined as:  

 

𝑅{𝑓(𝑡)} = 𝐴(𝑠, 𝑢) = 𝑠 ∫ 𝑓(𝑢𝑡)𝑒−
𝑡
𝑠 

∞

0

𝑑𝑡   (1) 

 

R-Transform of Some Functions: In this section, we 

find the R-transform of some simple functions.  

 

(i) Let 𝑓(𝑡) = 𝑎, then  

 

𝑅{𝑎} = 𝑠 ∫ 𝑎𝑒−
𝑡
𝑠 

∞

0

𝑑𝑡                       

 

 𝑅{𝑎}  = −𝑎𝑠2 [𝑒−
𝑡
𝑠]

0

∞

= −𝑎𝑠2[0 − 1]

= 𝑎𝑠2                       (2) 
 

(ii) Let 𝑓(𝑡) = 𝑡, then  

 

𝑅{𝑡} = 𝑠 ∫ 𝑢𝑡 𝑒−
𝑡
𝑠 

∞

0

𝑑𝑡        

 

= 𝑠𝑢 ∫ 𝑡 𝑒−
𝑡
𝑠 

∞

0

𝑑𝑡              

 

Integrating by parts, we have: 

 

𝑅{𝑡} =  𝑠3𝑢                 (3) 
 

(iii) Let 𝑓(𝑡) = 𝑡2, then  
 

𝑅{𝑡2} = 𝑠 ∫ (𝑢𝑡)2 𝑒−
𝑡
𝑠 

∞

0

𝑑𝑡        

 

      = 𝑠𝑢2 ∫ 𝑡2 𝑒−
𝑡
𝑠 

∞

0

𝑑𝑡         

 

Integrating by parts, we have:  

 

𝑅{𝑡2} = 2𝑠4𝑢2          (4) 
 

(iv) Let 𝑓(𝑡) = 𝑡3, then  
 

𝑅{𝑡3} = 𝑠 ∫ (𝑢𝑡)3 𝑒−
𝑡
𝑠 

∞

0

𝑑𝑡            

      = 𝑠𝑢3 ∫ 𝑡3 𝑒−
𝑡
𝑠 

∞

0

𝑑𝑡         

 

Integrating by parts, we have:  

 

𝑅{𝑡3} = 6𝑠5𝑢3             (5) 
 

(v) In general, if 𝑛 > 0 is an integer,  

 

Then 𝑅{𝑡𝑛} = 𝑛! 𝑠𝑛+2𝑢𝑛        
 

(vi) Let 𝑓(𝑡) = 𝑒𝑎𝑡, then  

 

𝑅{𝑒𝑎𝑡} = 𝑠 ∫ 𝑒𝑎𝑢𝑡  𝑒−
𝑡
𝑠 

∞

0

𝑑𝑡 

 

 = 𝑠 ∫  𝑒−(
1
𝑠

−𝑎𝑢)𝑡  
∞

0

𝑑𝑡       

 

𝑅{𝑒𝑎𝑡} =
𝑠2

1 − 𝑎𝑠𝑢
         (6)  

 

Similarly,  𝑅{𝑒−𝑎𝑡} =
𝑠2

1+𝑎𝑠𝑢
 

 

(vii) Let 𝑓(𝑡) = 𝑠𝑖𝑛𝑎𝑡, then  

 

𝑅{𝑠𝑖𝑛𝑎𝑡} = 𝑠 ∫ 𝑠𝑖𝑛𝑎𝑢𝑡 𝑒−
𝑡
𝑠 

∞

0

𝑑𝑡       

 

  = 𝑠 ∫ (
𝑒𝑖𝑎𝑢𝑡 − 𝑒𝑖𝑎𝑢𝑡

2𝑖
) 𝑒−

𝑡
𝑠

∞

0

𝑑𝑡 

 

𝑅{𝑠𝑖𝑛𝑎𝑡} =
𝑎𝑠3𝑢

1 + (𝑎𝑠𝑢)2
           (7) 

 

(viii) Let 𝑓(𝑡) = 𝑐𝑜𝑠𝑎𝑡, then  

 

𝑅{𝑐𝑜𝑠𝑎𝑡} = 𝑠 ∫ 𝑐𝑜𝑠𝑎𝑢𝑡 𝑒−
𝑡
𝑠 

∞

0

𝑑𝑡                

 

= 𝑠 ∫ (
𝑒𝑖𝑎𝑢𝑡 − 𝑒𝑖𝑎𝑢𝑡

2
) 𝑒−

𝑡
𝑠 

∞

0

𝑑𝑡 

 

𝑅{𝑐𝑜𝑠𝑎𝑡} =
𝑠2

1 + (𝑎𝑠𝑢)2
        (8) 
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(ix) Let 𝑓(𝑡) = 𝑠𝑖𝑛ℎ𝑎𝑡, then  

 

𝑅{𝑠𝑖𝑛ℎ𝑎𝑡} = 𝑠 ∫ 𝑠𝑖𝑛ℎ𝑎𝑢𝑡 𝑒−
𝑡
𝑠 

∞

0

𝑑𝑡      

 

  = 𝑠 ∫ (
𝑒𝑎𝑢𝑡 − 𝑒−𝑎𝑢𝑡

2
) 𝑒−

𝑡
𝑠

∞

0

𝑑𝑡 

 

𝑅{𝑠𝑖𝑛ℎ𝑎𝑡} =
𝑎𝑠3𝑢

1 − (𝑎𝑠𝑢)2
        (9) 

 

(x) Let 𝑓(𝑡) = 𝑐𝑜𝑠ℎ𝑎𝑡, then  

𝑅{𝑐𝑜𝑠ℎ𝑎𝑡} = 𝑠 ∫ 𝑐𝑜𝑠ℎ𝑎𝑢𝑡 𝑒−
𝑡
𝑠 

∞

0

𝑑𝑡          

 

  = 𝑠 ∫ (
𝑒𝑎𝑢𝑡 + 𝑒𝑎𝑢𝑡

2
) 𝑒−

𝑡
𝑠

∞

0

𝑑𝑡 

 

𝑅{𝑐𝑜𝑠ℎ𝑎𝑡} =
𝑠2

1 − (𝑎𝑠𝑢)2
       (10) 

 

Theorem 3.1 

Let 𝐵(𝑠, 𝑢) be the Y-transform of [𝑅(𝑓(𝑡)) =

𝐴(𝑠, 𝑢)], then: 

 

(i) 𝑅{𝑓′(𝑡)} =
1

𝑠𝑢
𝐴(𝑠, 𝑢) −

𝑠

𝑢
𝑓(0)        (11) 

 

(ii) 𝑅{𝑓′′(𝑡)} =
1

(𝑠𝑢)2 𝐴(𝑠, 𝑢) −
1

𝑢2 𝑓(0) −
𝑠

𝑢
𝑓′(0)           (12) 

 

   (𝑖𝑖𝑖)    𝑅{𝑓(𝑛)(𝑡)} =
1

(𝑠𝑢)𝑛 𝐴(𝑠, 𝑢)

− ∑
𝑠2−𝑛+𝑘

𝑢𝑛−𝑘 𝑓(𝑘)

𝑛−1

𝑘=0

(0)             (13) 

 

Proof  

(i)  R{𝑓′(𝑡)} = 𝑠 ∫ 𝑓′(𝑢𝑡)𝑒−
𝑡
𝑠 

∞

0

𝑑𝑡       

 

Integrating by parts, we have:  

 

 R{𝑓′(𝑡)} = 𝑠 {[𝑒−
𝑡
𝑠 (

1

𝑢
𝑓(𝑢𝑡))]

0

∞

− ∫
1

𝑢
𝑓(𝑢𝑡) (−

𝑒−
𝑡
𝑠

𝑠
) 𝑑𝑡

∞

0

}      

= 𝑠 {[
1

𝑢
𝑓(𝑢𝑡)𝑒−

𝑡
𝑠]

0

∞

+
1

𝑠𝑢
∫ 𝑓(𝑢𝑡)𝑒−

𝑡
𝑠𝑑𝑡

∞

0

}      

 

= 𝑠 [−
𝑓(0)

𝑢
+

1

𝑠2𝑢
𝐴(𝑠, 𝑢)]    

 

=   
1

𝑠𝑢
𝐴(𝑠, 𝑢) −

𝑠

𝑢
𝑓(0)    

 

(𝑖𝑖)   R{𝑓′′(𝑡)} = 𝑠 ∫ 𝑓′′(𝑢𝑡)𝑒−
𝑡
𝑠 

∞

0

𝑑𝑡 

 

Let 𝑔(𝑡) = 𝑓′(𝑡), ⟹ 𝑔′(𝑡) = 𝑓′′(𝑡) 

 

So that, 

R{𝑓′′(𝑡)} = 𝑠 ∫ 𝑔′(𝑢𝑡)𝑒−
𝑡
𝑠 

∞

0

𝑑𝑡    

Using integrating by parts:  

 R{𝑓′′(𝑡)}  = 𝑠 {[
1

𝑢
𝑔(𝑢𝑡)𝑒−

𝑡
𝑠]

0

∞

+
1

𝑠𝑢
∫ 𝑔(𝑢𝑡)𝑒−

𝑡
𝑠𝑑𝑡

∞

0

}     

 

= 𝑠 {−
𝑓′(0)

𝑢
+

1

𝑠𝑢 
[−

𝑓(0)

𝑢
+

1

𝑠2𝑢
𝐴(𝑠, 𝑢)]}        

 

=
1

(𝑠𝑢)2
𝐴(𝑠, 𝑢) −

1

𝑢2
𝑓(0) −

𝑠

𝑢
𝑓′(0)    

 

(iii) This can be proved by mathematical 

induction.  

 

Theorem 3.2 (Linearity Property of the R-transform) 

Let 𝑓1(𝑡) and 𝑓2(𝑡) be two functions of 𝑡 and 𝑐1 and 

𝑐2 be any two constants, then  

 

𝑅{𝑐1𝑓1(𝑡) ± 𝑐2𝑓2(𝑡)}
= 𝑐1𝑅{𝑓1(𝑡)} ± 𝑐2𝑅{𝑓2(𝑡)}   (14) 

 

Proof 

Using the definition of the R-transform, we have that:  
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𝑅{𝑐1𝑓1(𝑡) ± 𝑐2𝑓2(𝑡)}

= 𝑠 ∫ [𝑐1𝑓1(𝑢𝑡)
∞

0

± 𝑐2𝑓2(𝑢𝑡)]𝑒−
𝑡
𝑠 𝑑𝑡     

 

 = 𝑠 {∫ [𝑐1𝑓1(𝑢𝑡)]𝑒−
𝑡
𝑠 

∞

0

𝑑𝑡

± ∫ [𝑐2𝑓2(𝑢𝑡)]𝑒−
𝑡
𝑠 

∞

0

𝑑𝑡}     

 

     = 𝑠 {𝑐1 ∫ 𝑓1(𝑢𝑡)𝑒−
𝑡
𝑠 

∞

0

𝑑𝑡 ± 𝑐2 ∫ 𝑓2(𝑢𝑡)𝑒−
𝑡
𝑠 

∞

0

𝑑𝑡} 

 

  = 𝑐1𝑠 ∫ 𝑓1(𝑢𝑡)𝑒−
𝑡
𝑠 

∞

0

𝑑𝑡 ± 𝑐2𝑠 ∫ 𝑓2(𝑢𝑡)𝑒−
𝑡
𝑠𝑑𝑡 

∞

0

 

 

     = 𝑐1𝑅{𝑓1(𝑡)} ± 𝑐2𝑅{𝑓2(𝑡)}                   
 

Alternative Notation: We make our working neater 

by adopting the following notation.  

 

Let 𝑦(0) = 𝑦0, 𝑦′(0) = 𝑦1,   𝑦
′′(0) =

𝑦2, … , 𝑦(𝑛)(0) = 𝑦𝑛  
 

Also, we denote the R-transform of 𝑦 by 𝑦̅,  

 

i.e. 𝑦̅ = 𝑅{𝑦} = 𝑅{𝑓(𝑡)} = 𝐴(𝑠, 𝑢) 

 

So, 𝑅{𝑦} = 𝑅{𝑓(𝑡)} = 𝑦̅ 

 𝑅{𝑦′} = R{𝑓′(𝑡)} ==
1

𝑠𝑢
𝐴(𝑠, 𝑢) −

𝑠

𝑢
𝑓(0) 

        𝑅{𝑦′′} = R{𝑓′′(𝑡)} =
1

(𝑠𝑢)2 𝐴(𝑠, 𝑢) −
1

𝑢2 𝑓(0) −
𝑠

𝑢
𝑓′(0)   

 

Applications: In this section, we will apply the R-

transform to solve some linear ordinary differential 

equations with constant coefficients.  

 

Example 1 

Consider first order differential equation  

 

𝑦′ + 𝑦 = 0,       𝑦(0) = 1              (15) 

 

Take the R-transform of both sides of (15):  
1

𝑠𝑢
𝑦̅ −

𝑠

𝑢
𝑦0 + 𝑦̅ = 0                

𝑦̅ =
𝑠2

1 + 𝑠𝑢
               

 

𝑦(𝑥) = 𝑅−1 { 
𝑠2

1 + 𝑠𝑢
} = 𝑒−𝑥         (16) 

 

Example 2 

Consider first order differential equation  

 

𝑦′ + 2𝑦 = 𝑥,       𝑦(0) = 1        (17) 

 

Take the R-transform of both sides of (17):  

 
1

𝑠𝑢
𝑦̅ −

𝑠

𝑢
𝑦0 + 2𝑦̅ = 𝑢           

 

𝑦̅  =  
𝑠4𝑢3 + 𝑠2𝑢

𝑢 + 2𝑠𝑢
          

 

𝑦̅ =
1

2
𝑠3𝑢 +

5

4
[

𝑠2

1 + 2𝑠𝑢
] −

1

4
𝑠2        

𝑦(𝑥) = 𝑅−1 {
1

2
𝑠3𝑢 +

5

4
[

𝑠2

1 + 2𝑠𝑢
] −

1

4
𝑠2   }         

 

𝑦(𝑥) =
1

2
𝑥 +

5

4
 𝑒−2𝑥 −

1

4
          (18) 

 

Example 3 

Consider second order differential equation  

 

𝑦′′ + 𝑦 = 0,       𝑦(0) = 𝑦′(0) = 1       (19) 
 

Take the R-transform of both sides of (19):  

 
1

(𝑠𝑢)2
𝑦̅ −

1

𝑢2
𝑦0 −

𝑠

𝑢
𝑦1 + 𝑦̅ = 0        

𝑦̅ =
𝑠3𝑢

1 + (𝑠𝑢)2
+

𝑠2

1 + (𝑠𝑢)2
     

𝑦(𝑥) = 𝑅−1 { 
𝑠3𝑢

1 + (𝑠𝑢)2
+

𝑠2

1 + (𝑠𝑢)2
}       

𝑦(𝑥) = 𝑠𝑖𝑛𝑥 + 𝑐𝑜𝑠𝑥       (20) 

Example 4 

Consider second order differential equation  

 
𝑦′′ − 3𝑦′ + 2𝑦 = 0,       𝑦(0) = 1, 𝑦′(0) = 4    (21) 
 

Take the R-transform of both sides of (21):  
1

(𝑠𝑢)2
𝑦̅ −

1

𝑢2
𝑦0 −

𝑠

𝑢
𝑦1 − 3 (

1

𝑠𝑢
𝑦̅ −

𝑠

𝑢
𝑦0) + 2𝑦̅ = 0    

 

𝑦̅ =  
𝑠2(1 + 𝑠𝑢)

2(𝑠𝑢)2 − 3𝑠𝑢 + 1
               

 

Expressing in partial fractions, we have: 

 

𝑦̅ =   
3𝑠2

1 − 2𝑠𝑢
−

2𝑠2

1 − 𝑠𝑢
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𝑦(𝑥) = 𝑅−1 {
3𝑠2

1 − 2𝑠𝑢
−

2𝑠2

1 − 𝑠𝑢
}   

 

𝑦(𝑥) = 3𝑒2𝑥 − 2𝑒𝑥       (22) 

 

Conclusion: In this paper, we introduce a new integral 

transform called the R-transform. We have shown that 

the R-transform has very interesting properties. We 

have applied the new integral transform to solve some 

linear ordinary differential equations with constant 

coefficients.   
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