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ABSTRACT: One of the most crucial factors taken into account when evaluating the performance of Tungsten 

Inert Gas (TIG) welding is the Electrode Melting Rate, which shows how much of the heat deposited by the welding 

operation is used to generate melting. A dense weld pool forms in the field of welding when there is a good melting 

rate. Therefore, this paper investigates the use of tungsten inert gas welding on mild steel weldment to optimize 

welding process variables on electrode melting rate employing Artificial Neural Networks and Response Surface 
Methodology in the analysis. The ideal electrode melting rate of 4.6539 mm/s can be achieved by combining the 

following parameters: wire diameter of 2.55 mm, welding speed of 3.02 mm/s, and welding current of 208.22A, 

according to the RSM results. R values of 0.9119 were displayed by the RSM for the electrode melting rate. A 
regression plot of the ANN results indicates that the total R value is 0.93807. Because the Artificial Neural Network's 

output fits the experimental data more closely than the Response Surface Methodology's, it is chosen as the superior 
predictive model.  
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Welding with tungsten inert gas (TIG), renowned for 

its precision and versatility, is a favored welding 

technique in industries where high-quality welds are 

imperative (Chaturvedi and Vendan, 2022). One of 

these critical intricacies is the electrode melting rate, a 

parameter that often operates behind the scenes but 

wields substantial influence over the welding process. 

In this research, we delve into the significance of 

electrode melting rate in TIG welding, the factors that 

govern it, its measurement, control, and its profound 

implications for welding quality and efficiency. 

Achieving deep penetration in TIG welding is pivotal, 

particularly when joining thick materials (Pavan et al., 

2021). The importance of electrode melting rate in 

TIG welding cannot be overstated. It directly affects 

the amount of filler material delivered to the weld 

pool, influencing weld penetration and overall quality 

(Wu and Krivtsun, 2020). Deep penetration is essential 

for guaranteeing the weld's structural integrity and the 

reliability of the joint (Schmoeller et al., 2022). 

Optimizing electrode melting rate is the key to 

achieving deep penetration while maintaining weld 

quality (Mvola et al., 2018). This optimization process 

involves meticulous adjustment of welding 
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parameters, thoughtful selection of electrode material 

and geometry, and appropriate shielding gas 

management (Aldalur et al., 2023). The importance of 

electrode melting rate in TIG welding cannot be 

understated. It is a fundamental aspect that dictates the 

rate at which the tungsten electrode, an essential 

component of the TIG welding torch, melts during the 

welding process (Shravan et al., 2023). This melting 

process directly affects the stability of the arc, the 

transfer of filler material into the welding area, and, 

ultimately, the quality of the resulting weld (Yang et 

al., 2020). Several factors contribute to the modulation 

of electrode melting rate. Foremost among these is the 

control over welding variables. Variables such as arc 

voltage, welding current, and speed of travel directly 

influence the electrode's heating and melting 

characteristics (Zhang et al., 2023). Meticulous 

adjustment of these parameters allows welders to 

attain the desired electrode melting rate for a particular 

welding application. The choice of electrode material, 

its purity, and its diameter play pivotal roles in 

determining electrode melting rate. Different electrode 

materials exhibit varying melting points and 

conductivity, impacting the rate at which the electrode 

melts (Lekshmi et al., 2023). Additionally, the 

geometry of the electrode tip, such as its shape and 

size, affects the melting process and the characteristics 

along the arc. The choice and flow rate of the shielding 

gas enveloping the welding arc significantly affect the 

arc's stability and, consequently, the electrode's 

melting rate. Shielding gas control is vital for 

maintaining an optimal environment for controlled 

electrode melting (Astafeva and Astafev, 2018). 

Accurate measurement of electrode melting rate is 

paramount for TIG welding quality monitoring and 

process management. Various methods are employed 

for this purpose, including direct observation, high-

speed imaging, and monitoring the length of the 

electrode consumed during welding (Cho et al., 2022). 

These techniques provide valuable insights into the 

melting rate and allow welders to adjust their approach 

as needed. Control over electrode melting rate is a 

hallmark of a skilled TIG welder. It requires a deep 

understanding of welding parameters and electrode 

characteristics. The ability to fine-tune welding 

parameters to achieve the desired melting rate is 

essential for producing consistent and high-quality 

welds. The implications of electrode melting rate 

reach far beyond the technical aspects of welding. 

Precision is the essence of TIG welding, and the 

controlled melting of the tungsten electrode is the key 

to achieving this precision. It directly influences the 

stability of the arc, the transfer of filler material, and 

the resulting weld quality. A controlled melting rate 

ensures a stable and focused arc, which is critical for 

intricate and high-precision welding applications, such 

as aerospace and medical device manufacturing (He & 

Xing, 2019). Efficiency is another critical dimension 

influenced by electrode melting rate. An optimized 

melting rate not only ensures precise welds but also 

contributes to the efficiency of the welding process. 

Higher efficiency translates to increased productivity 

and cost savings in various welding operations. 

Experimental studies play a pivotal role in validating 

predictive models and optimizing electrode melting 

rates. Researchers conduct experiments to measure 

actual melting rates, assess weld quality, and evaluate 

the mechanical properties of the welded joint under 

varying welding conditions (Chinnadurai et al., 2021). 

Empirical data serve as the foundation for the 

validation and refinement of predictive models (Wang 

et al., 2018).  Electrode melting rate in TIG welding is 

a subtle yet crucial component of precision welding. It 

is a parameter that, when harnessed with expertise, 

allows TIG welders to create consistent, high-quality 

welds. Control over electrode melting rate is a 

testament to the skill and craftsmanship required in the 

world of TIG welding, where the controlled melting of 

the tungsten electrode ultimately shapes the precision 

and quality of the final product. In this study, advanced 

predictive models was applied to dynamically 

optimize electrode melting rates during TIG welding. 

Additionally, exploring innovative electrode materials 

and shielding gas compositions holds promise for 

further elevating weld quality and efficiency. 

Collaborative efforts and the integration of Industry 

4.0 concepts will be instrumental in driving innovation 

in this critical area of welding technology. Therefore, 

the objective of this paper as to investigates the use of 

tungsten inert gas welding on mild steel weldment to 

optimize welding process variables on electrode 

melting rate employing Artificial Neural Networks 

and Response Surface Methodology 

 

MATERIALS AND METHODS 
One of the most effective welding techniques 

employed in this study is the gas tungsten arc welding 

method to join the test coupons. The mild steel dish is 

cleaned and bevelled before the welding process. To 

shield the weld specimen from acclimate interaction 

when welds are being created, pure argon gas was 

employed. Mild steel plates were used as weld samples 

in which the joints were carefully welded, and the 

resulting measurements meticulously recorded. 

Twenty different sets of experiments were conducted 

for this research. To enable the connecting of two mild 

steel plates of 60 x 40 x 10mm, welding current, 

welding rate, and wire diameter were adjusted 

throughout each trial run.  

 

Response Surface Methodology (RSM): Engineers 

seeking the circumstances that will accelerate their 
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target process would go for Response Surface 

Methodology (RSM). Response Surface Methodology 

(RSM) is an extensively employed improvement 

technique for assessing welding process performance 

and determining the optimal values for desired 

responses. RSM includes a group of statistical and 

theoretical tools that are effective in designing and 

forecasting reactions affected by a variety of input 

factors, all having the overarching goal of optimizing 

these responses. The optimization of the response 

surface methodology relies on a second-order 

polynomial equation, which is provided as a response 

algorithm within user-friendly statistical software. 

This facilitates straightforward comparisons of the 

performance of various approximating functions of 

different orders. 

 

Artificial Neural Network (ANN): Neural networks 

serve as invaluable data mining tools for uncovering 

concealed patterns within databases. These networks 

operate as widely distributed, massively parallel 

processors with a built-in capability for assimilating 

experiential learning and accessibility for various 

applications. In two key aspects, they share a 

resemblance with the human brain in the sense that the 

acquisition of knowledge occurs through learning, and 

this knowledge is kept in using strength of interneuron 

connections referred to as synaptic weights. 

 

RESULTS AND DISCUSSION 
Modeling and Optimization using Response Surface 

Methodology (RSM): To substantiate the 

appropriateness in the context of the quadratic model 

used for examining the test results, sum of squares for 

the sequential model in the electrode melting rate was 

calculated, as shown in Table 1. To assess the capacity 

of the quadratic formulation in elucidating the inherent 

variation linked to the experimental data, and the 

inability to fit test was conducted each response, 

individually. A model exhibiting a pronounced fit 

insufficience is not suitable for making predictions. 

The outcomes of the calculated fit lack test for droplet 

velocity are detailed in Table 2. Considering the 

results of Table 3, it was also discovered that the cubic 

polynomial showed a substantial lack of fit and was 

therefore excluded from the analysis of the model, but 

the quadratic polynomial demonstrated a modest but 

not significant lack of fit. The statistics pertaining to 

the droplet velocity response, derived from the model 

sources, are presented in Table 3. 

 
Table 1: Sum of squares for the sequential model of Electrode melting rate 

 Sum of  Mean F p-value  

Origin Squares df Square Value Prob. > F  

Mean vs Total 432.93 1 432.93    

Linear vs Mean 1.14 3 0.38 0.34 0.7973  

2FI vs Linear 3.53 3 1.18 1.07 0.3962  

Quadratic vs 2FI 12.66 3 4.22 25.19 < 0.0001 Suggested 

Cubic vs Quadratic 0.13 4 0.033 0.13 0.9672 Aliased 

Residual 1.54 6 0.26    

Total 570.43 20 22.60    

 
Table 2: Droplet velocity lack of fit test 

 Sum of  Avg F p-value  

Origin Squares Df Square Value Prob.> F  

Linear 8.46 11 0.77 5.70 0.0337  

2FI 7.23 8 0.90 6.70 0.0255  

Quadratic 0.28 5 0.057 0.42 0.8170 Suggested 

Cubic 0.16 1 0.16 1.15 0.3316 Aliased 

Pure Error 0.67 5 0.13    

 
Table 3: Summary stats for the model  droplet velocity 

Origin 

 
Std. 

Dev. 

R-Squared Adjusted 

R-Squared 

Predicted 

R-Squared 

PRESS  

Linear 0.76 0.3121 0.1833 -0.0445 13.88  

2FI 0.78 0.4053 0.1308 -0.1375 15.11  

Quadratic 0.31 0.9278 0.8628 0.7600 3.19 Suggested 

Cubic 0.51 0.9375 0.8021 -1.6578 35.31 Aliased 

 

The model fit statistics in brief include the standard 

deviation, R- squared, adjusted R-squared, anticipated 

R- squared, and predicted error sum of squares 

(PRESS) statistic for every comprehensive model. The 

ideal standards for determining the top source for 

models are a minimal standard deviation an R- squared 

value close to 1, and PRESS is comparatively low. 

Considering the outcomes presented in Table 4, the 

algorithm for quadratic polynomials was 

recommended, as opposed to the cubic polynomial 
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model, omitted. Consequently, this analysis used the 

quadratic polynomial model.  An ANOVA was 

performed to determine the algorithm's importance, 

and to assess the individual contributions of each 

variable, as well as the quadratic and cumulative 

impacts on every response. the Model F-value had 

11.50 which indicates that the algorithm is indeed 

important. Only 0.13% of the time is there a 

probability that such a big "Model F-Value" possibly 

because of unpredictable noise. Model terms with 

"Prob > F" values < 0.0500 are considered significant. 

In this case, variables A, B, C, A B, A C, A2, B2, and 

C2 are all essential model terms. Higher values of 

0.1000 suggest that the model terms don't matter. The 

"Lack of Fit F-value" of 1.08 suggests that when 

weighed against pure inaccuracy, the Lack of Fit is not 

substantial. A "Lack of Fit F-value" this large could 

be, 98.78% of the time noise is to blame. An 

insignificant mismatch is positive, as it indicates the 

significance of the algorithm. To verify the 

effectiveness of the quadratic model in reducing the 

electrode melting rate, the GOF statistics can be found 

in Table 4. Based on the results presented in Table 5, 

it is evident that "Predicted R-Squared" value of 

0.8332 closely aligns with the "Adj R-Squared" value 

of 0.8325. The adequate precision, which checks the 

signal-to-noise ratio, is a key indicator. A ratio larger 

than 4 is deemed acceptable. In this case, the computed 

ratio of 10.553, as observed in Table 5, indicates a 

highly adequate signal. This suggests that the 

algorithm is dependable and could be effectively 

utilized to explore the creative area and efficiently 

minimize the electrode melting rate. To assess model 

of the response surface's statistical properties, 

electrode melting rate normal probability plot with 

studentized residuals is displayed in Figure1. It can be 

observed that the points on the plot generally follow a 

straight line, despite some slight scatter. There is no 

discernible pattern such as an S-shaped curve apart 

from the linear trend. This suggests that the residuals 

exhibit a normal distribution, and there is no need for 

data transformation to enhance the analysis. 

Additionally, the studentized residuals' normal 

probability plot was utilized to evaluate the estimated 

residuals' normality. This plot, which represents the 

amount of standardized deviations of real values 

relative to expected values, was used to verify whether 

the (observed - anticipated) residuals adhere to a 

regular circulation. This assessment is crucial for 

evaluating the adequacy of an analytical framework. 

The outcomes in Figure 1 indicate that the computed 

residuals exhibit an approximate normal distribution, 

affirming that the developed model is satisfactory. 

 

To detect for the existence of mega patterns or 

expanding variance a plot of residuals and the 

predicted was produced for Electrode melting rate that 

is depicted in Figure 2.  

 
Table 4: GOF statistics for minimizing Electrode melting rate 

Std. Dev. 0.41 R – Squared 0.9119 

Avg 4.65 Adj R – Squared 0.8325 

C.V. % 8.80 Pred R - Squared 0.8332 

P.R.E.S.S 3.36 Adeq Precision 10.553 

 

 
Fig 1: Electrode melting rate normal probability plot with 

studentized residuals 

 

 

 
Fig 2: Plot of Residual vs. Predicted electrode melting rate 

 

As evident the graph shows, the data dots are closely 

aligned with the fit line. The algorithm demonstrates 

its ability to effectively forecast the majority of the 

data dots. To identify potential outliers results from the 

experiment show a Cook's distance plot was created 

for various outcomes. Cook's distance serves as a 

measurement of the regression's magnitude results 

would alter if a particular point (observation) were 

excluded, the evaluation revealed. A dot with a 
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significantly high Cook's distance compared to the 

rest, it can be unusual and warrants further 

investigation. The electrode melting rate's Cook's 

distance plot is illustrated in Figure 3. 

 

 
Fig 3: Cook's distance for  Electrode melting rate 

 

The maximum and bottom limits of the Cook's 

distance plot are 1.00 and 0.00, respectively. 

Test results falling below lower limit, or exceeding the 

upper bound are typically regarded as anomalies and 

should be subject to a thorough investigation. The 

results in Figure 3 indicate that the data used in this 

analysis do not contain any apparent outliers, 

affirming the reliability results of the trial. To explore 

the impacts of welding current and the welding rate on 

the electrode melting rate, 3-D surface plots were 

generated, as depicted in Figure 4, using the following 

procedure: 

 
Fig 4: 3D Plot of Welding Current and Welding Speed on 

Electrode Melting Rate 

 

Using 3-D surface plots, researchers may examine 

how welding current and wire diameter affect the 

electrode melting rate, as shown in Figure 5, were 

created through the following process: 

 

 
Fig 5: 3D Plot of Welding Current and Wire Diameter on 

Electrode Melting Rate 

 

Using 3D surface plots, researchers may examine how 

welding speed and wire diameter affect the electrode 

melting rate, as displayed in Figure 6, were created 

using the following procedure: 

 

 
Fig 6: 3D Plot of wire diameter and welding speed on the rate of 

melting of the electrode 

 

The 3-D surface plot, as depicted in Figure 6, 

illustrates the connection involving the input 

parameters (welding current, welding speed, and wire 

diameter) and the reaction parameter (Electrode 

melting rate). This plot provides a three-dimensional 

visualization to offer a vivid understanding within the 
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reaction surface. While not as effective as contour 

plots for determining locations and reaction values, it 

can provide a more intuitive depiction about the top. 

In this plot, as the color of the curved top becomes 

darker, it signifies a proportional decrease in the 

electrode melting rate. When there is a colored 

depression in the center of the upper surface suggests 

that some points, for simpler recognition, it is faintly 

tinted, are located underneath the surface. Upon 

examination of the surface plot in Figure 6, it becomes 

apparent that the color of the surface gets lighter 

towards the current and also the welding speed. The 

implication is that an increase in current and welding 

speed will lead to a proportionate increase in Electrode 

melting rate. Numerical optimization was 

implemented to determine the desirability of the 

overall model. In the numerical optimization phase, 

design expert was used minimize the electrode melting 

rate response as shown in Table 5. 

 
Table 5: Numerical optimal solutions 

Number Current Welding speed Wire diameter Electrode melting Desirability  

1 208.22 3.02 2.55 4.6539 0.673 Selected 

2 210.00 244 2.88 5.46051 0.666  

3 210.00 241 2.87 5.4096 0.665  

 

Modeling and prediction utilizing an artificial neural 

network (ANN): Neural networks are composed of 

interconnected nodes, and the specific types of 

connections and patterns of connectivity among these 

nodes can vary. However, the most common type of 

connection is the layered connection; the squared 

nodes boxes are used to represent the input nodes. 

Input nodes, also known as input neurons, serve the 

role of transmitting input signals. They do not perform 

any calculations, such as the weighted sum, and they 

do not apply any activation functions. Output nodes, 

on the other hand, produce the final output of the 

neural network. The middle nodes in a neural network, 

hidden layers are those that exist between the input and 

output layers. They are labeled ‘hidden’ given that 

they cannot be reached via the exterior of the neural 

network and do not directly interact with the input or 

output. Over time, neural networks have evolved from 

a simple architecture to more complex configurations, 

known as deep neural networks. The input matrix 

contains current, weld speed and wire diameter, 

making it a 3x20 matrix since 20 runs were conducted. 

Figure 7 depicts the Network attributes interphase for 

predicting weld electrode melting rate response, 

hence, the feedforward backpropagation method was 

selected among other network types to achieve the 

most favorable results. 

 

Figure 8 shows the performance curve for the trained 

network, indicating that the best validation 

performance was achieved at epoch 4 while Figure 9 

shows the neural network gradient plot for predicting 

electrode melting rate  responses. 

 

In the MATLAB software, an epoch represents a 

complete iteration of the training process for the neural 

network. This means that once all the data vectors in 

your training set have been processed through your 

training algorithm, one epoch has been completed. The 

actual time duration of an epoch can vary depending 

on the training method employed. In this case, the 

optimal prediction for the transverse responses was 

achieved at epoch 4, even though a total of 6 epochs 

were used in the iteration process. This suggests that 

the model's performance had stabilized and further 

iterations did not significantly improve the results. 

 

 
Fig 7: Network attributes interphase for predicting weld electrode 

melting rate response 

 

Figure 8 illustrates how many epochs there are used 

during the training process. Each epoch stands for one 

complete training iteration of the algorithm.  
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Fig 8: Performance curve using a trained network 

 

 
Fig 9: Neural network gradient plot 

 

In this case, a total of 6 epochs were used, and it's 

apparent from the chart the most accurate forecast was 

obtained at the 4th epoch. The dotted red lines in 

Figure 9, used for validation checks, clearly indicate 

that the lowest error occurred at epoch 4, reinforcing 

the idea that the model's performance was optimized 

at that point. Figure 10 displays the instruction, testing, 

and validation plots with a correlation coefficient (R) 

exceeding 70%. This indicates a robust prediction for 

the Fume Formation Rate. Each plot's dotted diagonal 

line represents the best-fit line, and a correlation of 1 

along this line would signify a perfect prediction. 

While the correlation coefficient may not reach 1 in 

this case, a value above 70% suggests a strong and 

reliable predictive relationship for the Fume 

Formation Rate. 

 

 
Fig 10: Training, validation, and testing for electrode melting rate 

responses in a regression plot 

 
Table 6: Experimental electrode melting vs ANN prediction. 

 Current weld wire Exp ANN Prediction Error 

1 200.00 2.80 2.80 6.0301 5.29436682422187 0.735733175778132 

2 190.00 3.20 2.40 4.7224 4.71155009163901 0.0108499083609956 

3 210.00 3.20 3.20 4.0000 3.99599540005464 0.00400459994536195 

4 210.00 3.20 2.40 3.3370 3.30159876089171 0.0354012391082867 

5 190.00 2.40 2.40 4.1330 4.13231186678608 0.000688133213917475 

6 216.82 2.80 2.80 5.3370 5.26393567532366 0.0730643246763387 

7 200.00 2.80 2.13 5.2342 5.22961788746490 0.00458211253510044 

8 210.00 2.40 3.20 5.1116 5.11148703211439 0.000112967885611326 

9 200.00 2.80 2.80 4.8241 5.29436682422187 -0.470266824221868 

10 183.18 2.80 2.80 4.9081 4.90780845263214 0.000291547367864631 

11 200.00 2.80 3.47 4.8241 3.95814340360403 0.865956596395972 

12 190.00 3.20 3.20 4.5379 4.53696310306167 0.000936896938331877 

13 200.00 2.80 2.80 5.0301 5.29436682422187 -0.264266824221868 

14 200.00 2.80 2.80 5.0301 5.29436682422187 -0.264266824221868 

15 200.00 2.80 2.80 6.0301 5.29436682422187 0.735733175778132 

16 200.00 2.13 2.80 3.3420 3.34196254955168 3.74504483180438e-05 

17 200.00 2.80 2.80 5.7751 5.29436682422187 0.480733175778132 

18 210.00 2.40 2.40 5.3370 5.33562895983747 0.00137104016253353 

19 200.00 3.47 2.80 2.1700 2.33852999882220 -0.168529998822198 

20 190.00 2.40 3.20 3.3378 3.33778157326300 1.84267369998103e-05 
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Conclusion: A close examination of the molten metal 

transfer rate and droplet diameter required for deep 

penetration during globular to spray was experimented 

with three (3) process parameters namely: welding 

current, welding speed and wire diameter to predict 

and to optimize the MMTR and droplet diameter 

required for deep penetration with electrode melting 

rate using RSM and ANN. Welding current and 

welding speed are the parameters having the most 

significant effect on deep penetration and transfer 

modes .The results from this study shows that ANN is 

a better predictive tool than RSM 
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