
 
 

*Corresponding Author Email: alberto.kindole@tarura.go.tz 

*ORCID: https://orcid.org/0009-0006-5768-8039 
*Tel: +255759398340 

PRINT ISSN 1119-8362 

Electronic ISSN 2659-1499 

Full-text Available Online at 

https://www.ajol.info/index.php/jasem 

https://www.bioline.org.br/ja 

 

J. Appl. Sci. Environ. Manage.  

Vol. 28 (8) 2493-2501 August 2024 

 

Validation of a Model Developed for Value Engineering Approach Performance on 

Gravel Roads Maintenance Projects in Tanzania 

 
1,2*KINDOLE, A; 1MSAMBICHAKA, J; 1TEKKA, R; 1LINGWANDA, M 

 

1Department of Civil Engineering, College of Engineering and Technology, Mbeya University of Science and Technology, P. O. Box 131, 
Mbeya, Tanzania 

2Tanzania Rural and Urban Roads Agency, P. O. Box 1840, Mbeya, Tanzania 

 
*Corresponding Author Email: alberto.kindole@tarura.go.tz 

*ORCID: https://orcid.org/0009-0006-5768-8039 

*Tel: +255759398340 
 

Co-Authors Email: jvmfatti@gmail.com; ramsotekka@yahoo.co.uk; mwajuma13@yahoo.com 

 

ABSTRACT: A validated model offers a consistent framework for decision-makers to understand the critical 

factors influencing performance across different data sets. Gravel roads (GR) are vital in Tanzania, comprising over 

75% of the road network, with 65% in poor condition. Value engineering (VE) has emerged as a promising tool to 

enhance GR maintenance, accounting up to 83.3% of the variance, as demonstrated by a model developed using 
partial least squares structural equation modeling (PLS-SEM). This paper therefore evaluates the validation of a 

Model Developed for Value Engineering Approach Performance on Gravel Roads Maintenance Projects in Tanzania 
using split data methodology and the PLSpredict tool in SmartPLS, which assesses the out-of-sample predictive 

power of PLS-SEM. The results revealed that the model exhibits medium predictive relevance for the corresponding 

constructs, with 65.38% and 61.22% of indicators in the PLS-SEM yielding smaller prediction errors compared to 
the naïve linear regression model (LM) benchmark for training and validation data sets, respectively. These findings 

validate the model’s ability to predict future data effectively, supporting its use for decision-making and strategic 

planning. The study concludes that adopting a VE approach to enhance GR maintenance projects in Tanzania and 
other regions is crucial, given the model’s predictive relevance across different data sets. 
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In Tanzania, significant investments have been made 

in the development and maintenance of road 

infrastructure, including gravel roads. Despite these 

efforts, gravel roads have persistently remained in 

poor condition, facing numerous performance 

challenges (NAO, 2023). Given that gravel roads 

constitute a large proportion of the road network, there 

is a pressing need for alternative maintenance 

approaches to improve their condition and 

performance. Traditional gravel road maintenance 

practices have not effectively addressed the ongoing 

performance issues. This necessitates the exploration 

of innovative solutions such as value engineering 

(VE). According to Aigbavboa et al., (2016), VE is a 

method that enhances the value of construction 

projects by identifying and eliminating unnecessary 

materials, methods, and processes. Wei et al., (2022) 

further assert that VE has been successfully used for 

over 70 years to improve project value by substituting 

materials and methods with less expensive alternatives 

without compromising functionality. To address the 

challenges in gravel roads maintenance, a model that 

integrates the value engineering principles and 

activities and gravel roads maintenance performance 

factors with structural equation modeling (SEM) 

approach was developed. SEM is a powerful technique 

for analyzing relationships among variables. In this 

context, SEM was utilized to identify critical VE 

phases and associated indicators alongside 

maintenance performance factors such as cost, quality, 
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time, social, relational, and environmental aspects. 

Any developed model must be validated to examine its 

performance to give a sanity check by addressing 

oversights, providing additional insights and verifying 

that performance is as reported. Model validation is 

crucial to ensure that the proposed model adequately 

fits its intended purpose and that the constructs and 

indicators used are statistically significant and robust. 

For gravel roads maintenance projects, a valid model 

assists in the optimal allocation of resources, including 

materials, personnel, equipment, and plants, and 

informs policy formulation. Validation also helps 

identify areas for model improvement by adjusting 

indicators with abnormal measurement issues or 

structural model specifications. Harrington (2017) 

emphasized the importance of using training and 

validation datasets to estimate the generalization 

performance of the model accurately. Numerous 

model validation methods exist in the literature, 

including Goodness-of-Fit Indices, Reliability 

Testing, Validity Testing, Predictive Validity, Cross-

Validation (data splitting), Diagnostic Checks, Model 

Modification Indices, and External Validation (Yun et 

al., 2018). Combining these methods can lead to a 

more comprehensive validation of the SEM model. 

This study adopted cross-validation by splitting the 

data into training and validation subsets and employed 

predictive validity using the PLSpredict tool in 

SmartPLS. Shmueli et al., (2022) recommend 

including PLSpredict in the evaluation of PLS-SEM 

for its predictive capabilities. Consequently, this paper 

examines the potential of the data split technique and 

PLSpredict in validating SEM models since model 

validation is a critical step in developing effective and 

sustainable modeling frameworks. For Tanzania, a 

well-validated SEM model entailing value engineering 

approach on gravel roads maintenance, will enable 

more informed decision-making and better policy 

formulation, leading to organized and reliable 

maintenance of roads infrastructure. This paper 

therefore evaluates the validation of a Model 

Developed for Value Engineering Approach 

Performance on Gravel Roads Maintenance Projects in 

Tanzania. 

 

MATERIALS AND METHODS 
Data Split Methodology for Validation of a Model: 

This study adopted the technique of splitting data into 

training and testing sets, which is a fundamental 

approach involving the division of data into parts, 

commonly with an 80:20, 70:30, or 50:50 split 

(LeewayHertz, 2023). Specifically, this study utilized 

a 70:30 split, where approximately 70% of the data 

was used for training the model and 30% for testing its 

performance. The testing data also included the 

validation data. The advantage of this technique lies in 

its ability to evaluate the model’s response to new, 

unseen data. To avoid data sampling bias, the data for 

this study were randomly selected from the 213 total 

responses using the Statistical Package for Social 

Sciences (SPSS) tool. This involved selecting a 

random sample of cases and applying the 70:30 data 

split. As a result, 157 records (70%) were used for 

training data, and 69 records (30%) were used for test 

or validation data. This distribution allowed the 

training set to include 70% of the most available 

dataset, forming the "knowledge" base of the model. 

The remaining 30% of the dataset was used as the 

validation and test dataset to fine-tune the model 

parameters, assess the permissible error, and evaluate 

the model’s predictive performance. The holdout set 

data technique was not employed because there was no 

overfitting of hyper parameters Table 1 illustrates the 

technique of splitting data into training and 

validation/test data. 

 
Table 1: Splitting data into training and validation/testing sets 

Training data 

 (For fitting) 

Validation/test data 

 (For evaluating model performance) 

 
70% 

 
30% 

 

The crux of all validation methods is data division, 

which is crucial for simulating how the model would 

react when subjected to data it has never encountered 

before. 

 

Model Validation Using PLSpredict in SmartPLS: 

Model validation using PLSpredict in SmartPLS is a 

rigorous process designed to ensure that the Partial 

Least Squares Structural Equation Modeling (PLS-

SEM) model possesses adequate predictive power 

(Shmueli et al., 2019). This study systematically 

adhered to the PLSpredict steps for SEM model 

validation. According to Sharma et al., (2023), model 

validation using PLSpredict involves several steps to 

assess the predictive power of a PLS-SEM model: 

Building the PLS-SEM Model was the first step which 

involved carefully specifying all constructs, indicators, 

and relationships, including calculating path 

coefficients, outer loadings, and (R2) values. Secondly, 

performing PLSpredict analysis. This step entails 

navigating the PLSpredict tool in SmartPLS and 

running the analysis and thirdly evaluating predictive 

performance which involved assessing metrics such as 

mean absolute error (MAE), root mean squared error 

(RMSE), and Q2_predict, and comparing the predicted 

and actual values. In interpreting Q2_predict values; 

for endogenous constructs, a positive Q2_predict 

values indicate predictive relevance. To evaluate the 

predictive capabilities of the model, PLSpredict should 

be included in the evaluation of PLS-SEM results as 

suggested by Hair et al., (2022). Based on the 

procedures suggested by Shmueli et al., (2016), the 

current PLSpredict algorithm in the SmartPLS 

software allows researchers to obtain prediction error 

summaries such as RMSE, MAE, and mean absolute 

percentage error (MAPE). This study utilized these 

metrics to interpret findings in conjunction with a 

naïve linear regression model (LM) benchmark. The 

LM benchmarks were obtained by running a linear 
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regression of each dependent construct's indicators on 

the exogenous constructs in the PLS path model. When 

comparing the RMSE or MAE values with the LM 

values, Shmueli et al., (2019) highlighted the 

following criteria: That if all indicators in the PLS-

SEM analysis have lower RMSE or MAE values 

compared to the LM benchmark, the model has high 

predictive power, and if the majority (or the same 

number) of indicators in the PLS-SEM analysis yields 

smaller prediction errors compared to the LM, this 

indicates medium predictive power. Similarly, if a 

minority of the dependent construct’s indicators 

produce lower PLS-SEM prediction errors compared 

to the LM benchmark, the model has low predictive 

power and lastly if the PLS-SEM analysis yields lower 

prediction errors in terms of RMSE (or MAE) for none 

of the indicators, the model lacks predictive power. 

This study followed these processes to ensure the 

development of a robust SEM model with appropriate 

predictive power. The SEM model being validated 

portrays the impact of value engineering 

implementation on the performance of gravel roads 

maintenance projects in Tanzania. 

 

RESULTS AND DISCUSSION 
The analysis employed the PLSpredict tool within 

SmartPLS for both the training and validation/test 

datasets, which were split in a 70%:30% ratio as 

illustrated in Figure 1, detailing the total data split 

technique. The results obtained from PLSpredict for 

both datasets provided critical metrics essential for 

assessing the model’s predictive power, with primary 

emphasis placed on metrics such as root mean squared 

error (RMSE), mean absolute error (MAE), mean 

absolute percentage error (MAPE), and Q2_predict 

values. These outputs represent the latest 

advancements in PLSpredict results, crucial for 

evaluating the model’s predictive efficacy (Liengaard 

et al., 2021). Based on findings from the training data 

(157 records) and the test/validation data (69 records), 

structural equation models (SEM) were developed 

depicting the impact of value engineering (VE) 

implementation on the overall maintenance 

performance of gravel roads in Tanzania.  

 

These models, illustrated in Figures 4 and 5 for 

training and test/validation data respectively, integrate 

five VE phases linked with relevant activities and 

gravel road maintenance performance factors 

encompassing cost, time, quality, social and relational 

factors, and environmental impacts. After excluding 

statistically insignificant variables with low outer 

loading values (<0.7 for both models), internal 

consistency and model fit tests were conducted 

following the guidelines of Hair et al., (2016). 

Summaries of these results are presented in Tables 1 

and 2, affirming the models’ acceptability and their 

suitability for validating the core SEM model 

developed. Both models demonstrated construct 

reliability and validity, meeting established thresholds 

such as Rho_A ≥ 0.70, Cronbach’s alpha ≥ 0.70, 

composite reliability (CR) ≥ 0.70, and average 

variance extracted (AVE) ≥ 0.5, as recommended by 

Hair et al., (2016) and Wong (2013). Model fit was 

evaluated with the standardized root mean square 

residual (SRMR), deemed acceptable at ≤ 0.08, and the 

unweighted least squares discrepancy (d_ULS), where 

lower values indicate better fit. Results of the model fit 

tests in Table 3 for both training and validation/test 

datasets met these criteria, confirming the robustness 

of the models. The overall impact of VE 

implementation on gravel road maintenance project 

performance was assessed within the framework of the 

PLS algorithm, utilizing bootstrapping and 

blindfolding techniques. Results indicated that the 

training data yielded a coefficient of determination R2 

of 0.836, while the test/validation data yielded an R2 

value of 0.858, demonstrating excellent model 

performance as both values exceeded the acceptable 

threshold of R2≥ 0.20. This highlights the significance 

of validation in ensuring the models are robust, 

acknowledging their potential limitations and 

assumptions for extrapolation to out-of-sample data 

(Hair et al., 2022). 

 

Comparing PLS-SEM and LM Benchmark Results 

using PLSpredict Tool: Model validation using 

PLSpredict in SmartPLS represents a contemporary 

and robust process for assessing the predictive 

adequacy of models (Shmueli et al., 2016). According 

to Shmueli et al., (2016), the PLSpredict algorithm 

facilitates the computation of prediction error statistics 

such as root mean square error (RMSE), mean absolute 

error (MAE), and mean absolute percentage error 

(MAPE). These metrics serve to evaluate the 

predictive performance of the partial least squares path 

(PLS-SEM) model for both manifest variables (MV) 

and latent variables (LV). Notably, RMSE and MAE 

are applicable to both MV and LV results, whereas 

MAPE is solely computed for MV results. In this 

study, the focus was on manifest variables criteria. The 

results presented in Tables 3 and 4 illustrate the 

model's constructs or indicators incorporated in the 

modified model, alongside their respective error 

metric values (RMSE, MAE, MAPE) and Q2_predict 

scores for both PLS-SEM analysis and the naïve linear 

regression model (LM). Interpretation of these metrics 

involved comparing each indicator’s RMSE, MAE, 

and Q2_predict values against the LM benchmark. 

Emphasis was placed on Q2_predict values in drawing 

conclusions due to its critical role as a key metric in 

PLSpredict, indicating out-of-sample predictive power 

derived from comparing predicted and actual values.  

 

In all cases, Q2_predict value is considered to bear 

substantial predictive relevance when it is positive. 

This viewpoint aligns with the assertion by Shmueli et 

al., (2019) that Q2 in PLSpredict assesses prediction 

errors using the mean value of the training sample to 

predict outcomes in the test or validation sample 
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obtained through blindfolding in PLS-SEM. Positive 

Q2_predict values indicate that prediction errors in 

PLS-SEM results are smaller compared to those using 

mean values of RMSE, MAE, and MAPE alone. 

Therefore, the presence of a positive Q2_predict value 

suggests superior predictive performance of the PLS-

SEM model and negative Q2_predict values calls for 

model refinement and further adjustments. 

 

Predictive Power of the Model for the Training Data: 

The execution of PLSpredict involved training the 

model on a 70% sample and evaluating its 

performance on a validation sample (Shmueli et al., 

2019) to achieve satisfactory performance metrics. 

The primary objective of the training data was to 

establish a well-generalizing algorithm model for 

handling new, unfamiliar data. Figure 1 illustrates the 

results of the model developed using the training 

sample data, focusing on quality criteria evaluated 

through the PLS algorithm.  

 

Notably, the "Creativity" phase of value engineering 

(VE) emerged as the most influential, with a path 

coefficient of 0.410. Among its associated activities, 

"Awareness of value increment techniques" (CP1) 

stood out significantly with a coefficient of 0.964. 

Following in importance were the VE phases of 

evaluation (0.405), information (0.225), development 

and presentation (0.104), and function (0.016). In 

terms of hard maintenance factors, the cost construct 

exhibited the highest coefficient (0.739), with activity 

C5 "adequate funds allocation considering actual 

maintenance needs" leading with a coefficient of 

0.782, followed by quality (0.721) and time (0.613). 

Soft performance measures highlighted the social and 

relational aspects surpassing environmental 

considerations.  

 

The overall coefficient of determination R2 was 

calculated as 0.836, surpassing the threshold criterion 

of R2≥ 0.20 as suggested by Hair et al., 2016). Further 

comparison with the model developed using the entire 

dataset depicted in developed model showed minor 

deviations, with an overall R2 of 0.833, indicating a 

negligible difference of 0.36%. These discrepancies 

confirm the accuracy and reliability of the training data 

model fitting. All model constructs detailed in Table 2 

met the established criteria, affirming their reliability 

and validity through rigorous model fit tests. The 

SRMR value of 0.176 and d_ULS value of 182.044 for 

the estimated model (Table 3) both passed the 

predefined benchmarks. The Heterotrait-Monotrait 

(HTMT) ratio analysis, as recommended by Hair et al., 

(2010), indicated that a significant proportion of 

correlated constructs exhibited ratios below the 

threshold of ≤ 0.85. Table 4 presents further analysis 

of manifest variables, detailing RMSE, MAE, MAPE, 

and Q2_predict values for both PLS-SEM and naïve 

linear regression model (LM) benchmarks across 52 

indicators. A noteworthy finding was that 65.38% of 

indicators demonstrated SMSE values lower than 

those of the naïve LM benchmark, underscoring the 

model's medium predictive power according to 

Shmueli et al., (2019). Notably, 59.62% of the 

indicators in the PLS-SEM model had lower Mean 

Absolute Percentage Error (MAPE) values compared 

to those in the naïve Linear Model (LM) benchmark. 

Specifically, 31 out of 52 indicators/constructs 

exhibited reduced MAPE values.  

 

Consequently, the Standardized Mean Squared Error 

(SMSE) emerged as the predominant metric for 

evaluating the training dataset results. Additionally, 

the findings revealed that all constructs/indicators in 

the PLS-SEM model had positive Q²_predict values, 

indicating substantial predictive relevance.  

 

In conclusion, the training data model's results, with 

65.38% of indicators showing SMSE values below the 

naïve LM benchmark, indicate medium predictive 

power and suitability for its intended purpose, 

emphasizing substantial predictive relevance. 

Additionally, the Importance-Performance Matrix 

analysis highlighted nearly equal weighting of latent 

variables' performances for VE implementation and 

overall gravel road maintenance, validating their 

interdependency at 21.488% and 21.382%, 

respectively. 

 

Predictive Power of the Model for the Validation 

Data: The results from the validation data involved 

executing PLSpredict on a validation/test sample 

(30%) to evaluate the performance of the model 

developed using training sample considerations, as 

depicted in Figure 2. This process provided an 

unbiased assessment of the model's fitness on the 

training dataset while fine-tuning its parameters for 

final evaluation. In the analysis of quality criteria, the 

"creativity value engineering phase" emerged as the 

top performer with a path coefficient of 0.469, 

followed by the VE phases of evaluation (0.439), 

information (0.178), development and presentation 

(0.085), and function (0.002).  

 

The ranking of VE phases maintained consistency 

across the main model, training, and validation/test 

data samples, highlighting the predictive performance 

of the model. Results presented in Table 2 for the 

validation/test data indicated that all construct 

reliability and validity tests met acceptable criteria, 

with the exception of the Cronbach’s alpha value for 

the function VE phase, which slightly fell short at 

0.504 (just below the threshold of ≥ 0.70). Despite this, 

it was deemed appropriate to retain this function phase 

at the 0.504 Cronbach’s alpha value, as adjusting it 

further could potentially affect other reliability and 

validity measures, all of which surpassed the required 

thresholds. The summary of model fit tests in Table 3 

indicated an SRMR value of 0.213 and d_ULS value 

of 256.733, both of which signify a well-fitting model.  
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Table 2: Construct reliability and validity test results summary 

Constructs name Training data results summary Validation/Test data results summary 

Item 
code 

Rho-A Cronbach’s 
alpha 

Composite 
reliability 

AVE Rho-A Cronbach’s 
alpha 

Composite 
reliability 

AVE 

Information  IP 0.925 0.908 0.922 0.501 0.942 0.923 0.934 0.543 

Function FP 1.008 0.667 0.779 0.549 1.153 0.504 0.752 0.621 
Creativity CP 0.983 0.982 0.985 0.877 0.985 0.984 0.986 0.890 

Evaluation EP 0.984 0.984 0.986 0.897 0.983 0.982 0.984 0.887 

Development/presentation DP 0.879 0.823 0.867 0.522 0.943 0.884 0.896 0.523 
Time T 0.784 0.784 0.875 0.700 0.881 0.872 0.921 0.795 

Cost C 0.720 0.700 0.813 0.523 0.720 0.714 0.821 0.534 

Quality Q 0.749 0.745 0.840 0.568 0.746 0.740 0.836 0.562 
Relational R 0.942 0.942 0.963 0.896 0.945 0.944 0.964 0.898 

Environment E 0.977 0.975 0.982 0.931 0.975 0.974 0.981 0.927 

VE-implementation VE-IM 0.980 0.966 0.970 0.516 0.982 0.960 0.965 0.514 
Maintenance performance OMP 1.000 - - - 1.000 - - - 

Acceptable value  ≥ 0.70 ≥ 0.70 ≥ 0.70 ≥ 0.50 ≥ 0.70 ≥ 0.70 ≥ 0.70 ≥ 0.50 

 

Table 3:  Model fit test result summary 

Fit test for training model Fit test for validation/Test model 

Fitness test Saturated Model Estimated Model Saturated Model Estimated Model 

SRMR 0.158 0.176 0.193 0.213 

d_ULS 147.307 182.044 212.302 256.733 

 

 
Fig 1: Structural equation model with path coefficients and R2 for training data 

 

The overall coefficient of determination R2 was 

calculated as 0.858, exceeding the threshold of 0.20, 

indicating that the model meets expectations across 

different dataset conditions. Discriminatory validity 

was assessed using the Heterotrait-Monotrait (HTMT) 

ratio, with substantial proportions of correlated 

constructs demonstrating ratios below the threshold of 

≤ 0.85. Table 5 presents a summary of RMSE, MAE, 

MAPE, and Q2_predict values for model validation, 

comparing the model's predictive performance against 

a naïve linear regression model (LM). Similar 

procedural analysis as done on the training data sample 

was adopted for the validation/test data, with 

Q2_predict values serving as the key error metric as it 

depicts substantial predictive relevance when it is 

positive. According to Shmueli et al., (2019), if a 

majority or the same number of indicators in the PLS-

SEM analysis yield smaller prediction errors 

compared to the LM benchmark, the model 

demonstrates medium predictive power. In this study, 

61.22% of PLS-SEM indicators exhibited MAPE 

values lower than the naïve LM benchmark, indicating 
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medium predictive power, consistent with the findings 

from the training data sample. Results indicated that 

53.06% of the model constructs/indicators in the 

validation data had lower SMSE values in the PLS-

SEM model compared to the naïve LM benchmark. 

This finding, along with the fact that 61.22% of the 

constructs/indicators exhibited lower MAPE values, 

underscores the importance of MAPE in determining 

the model's predictive relevance. These results are 

pivotal in assessing whether the model possesses high, 

medium, low, or no predictive relevance. According to 

Shmueli et al., (2019), the model utilizing 

validation/test data set exhibits demonstrates medium 

predictive power. 

This comprehensive analysis concludes that the 

model's predictive performance remains robust across 

both training and validation/test data samples, 

obviating the need for further adjustments to 

constructs, indicators, or relationships. This study 

navigated the complexities of model validation 

effectively, culminating in a conclusive assessment of 

its predictive capabilities as outlined. The developed 

PLS-SEM model has therefore been validated using 

both training and validation datasets, demonstrating 

significant understandings into its predictive 

capabilities. The results indicate substantial predictive 

performance and relevance, establishing the model as 

a reliable tool for analyzing and predicting outcomes 

in gravel roads maintenance projects.  

 

Table 4: Manifest variables results on RMSE, MAE, MAPE and Q2_predict for training data 

Model Construct/Indicators’ 

Code 

PLS-SEM results summary Linear Regression Model (LM) results 

RMSE MAE MAPE Q2_predict RMSE MAE MAPE Q2_predict 

C1 0.942 0.778 47.411 0.062 1.006 0.784 46.008 -0.058 
C2 0.682 0.571 38.343 0.156 0.713 0.559 36.915 0.078 

C3 0.884 0.702 39.641 0.009 0.920 0.712 38.880 -0.072 
C5 0.707 0.587 38.881 0.224 0.727 0.555 35.598 0.180 

E2 0.392 0.278 18.497 0.840 0.470 0.087 4.994 0.970 

E4 0.439 0.343 20.751 0.752 0.146 0.092 4.908 0.973 
E3 0.498 0.366 21.377 0.688 0.166 0.117 7.066 0.965 

E1 0.498 0.358 20.900 0.690 0.102 0.044 2.429 0.987 

R1 0.519 0.432 27.649 0.815 0.218 0.159 8.947 0.967 
T3 0.797 0.669 44.443 0.006 0.838 0.666 44.242 -0.098 

Q1 0.824 0.669 39.391 0.076 0.789 0.645 35.387 0.152 

Q4 0.713 0.594 36.461 0.125 0.839 0.649 38.151 -0.211 
T2 0.762 0.634 41.930 0.044 0.850 0.642 42.686 -0.189 

Q2 0.757 0.625 41.514 0.134 0.831 0.620 39.932 -0.044 

R2 0.433 0.346 20.830 0.750 0.196 0.120 6.286 0.949 
R3 0.446 0.304 20.214 0.776 0.102 0.045 2.716 0.988 

Q3 0.745 0.612 37.856 0.055 0.659 0.522 31.520 0.262 

T1 0.748 0.599 37.867 0.079 0.804 0.648 38.671 -0.065 
DP7 0.735 0.633 43.293 0.106 0.821 0.684 41.231 -0.098 

IP17 0.620 0.517 36.064 1.195 0.623 0.513 32.098 0.134 

CP9 0.657 0.505 28.765 0.827 0.936 0.312 24.234 -0.035 
IP25 0.710 0.566 36.448 0.130 0.819 0.395 30.902 -0.039 

CP4 0.541 0.397 21.332 0.762 0.134 0.645 27.567 -0.347 

EP5 0.397 0.315 19.830 0.867 0.673 0.345 25.850 0.650 
CP1 0.291 0.234 17.241 0.893 0.378 0.537 24.468 -0.899 

CP8 0.434 0.353 19.394 0.856 0.578 0.378 31.234 0.073 

IP1 0.829 0.643 42.107 0.251 0.945 0.732 45.000 0.082 
EP8 0.364 0.287 17.226 0.835 0.452 0.324 30.200 0.990 

EP7 0.421 0.347 20.258 0.773 0.745 0.567 29.450 -0.058 

IP15 0.619 0.510 34.471 0.320 0.620 0.547 32.658 0.371 
CP5 0.473 0.368 18.872 0.765 0.359 0.458 19.004 0.679 

EP6 0.410 0.314 19.018 0.783 0.623 0.528 26.282 0.457 

IP11 0.708 0.585 38.263 0.162 0.238 0.578 31.689 0.987 
IP14 0.653 0.496 33.239 0.440 0.759 0.450 28.900 -0.067 

DP2 0.718 0.607 40.491 0.172 0.650 0.704 45.238 0.185 

CP2 0.501 0.408 23.166 0.843 0.509 0.411 25.848 0.812 
DP1 0.627 0.491 34.011 0.424 0.452 0.503 33.893 0.345 

IP18 0.646 0.533 34.856 0.343 0.648 0.539 29.456 0.335 

CP6 0.436 0.309 21.670 0.794 0.463 0.568 24.78 0.048 
IP16 0.642 0.534 36.371 0.259 0.499 0.567 42.678 0.288 

CP7 0.482 0.347 20.232 0.714 0.364 0.319 23.853 0.780 

CP3 0.522 0.431 24.339 0.811 0.637 0.584 31.009 -0.033 
DP6 0.758 0.610 40.797 0.077 0.846 0.700 35.345 0.047 

EP3 0.412 0.306 18.794 0.681 0.477 0.344 20.234 0.748 

DP3 0.879 0.730 47.195 0.086 0.987 0.628 45.763 0.091 
IP19 0.667 0.553 36.098 0.257 0.843 0.649 39.345 -0.026 

EP1 0.432 0.345 23.158 0.887 0.328 0.435 24.568 0.456 

EP4 0.558 0.401 24.288 0.752 0.520 0.403 26.345 0.840 
FP1 0.826 0.663 42.375 0.112 0.730 0.744 43.650 0.634 

IP20 0.736 0.599 39.514 0.096 0.836 0.523 40.332 0.083 

DP8 0.682 0.588 40.280 0.095 0.720 0.571 37.409 -0.009 
EP2 0.359 0.272 18.808 0.867 0.430 0.432 0.324 0.849 
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Table 5: Manifest variables results on RMSE, MAE, MAPE and Q2_predict for validation data 
Model 

Construct/Indicators’ 

Code 

PLS-SEM results summary Linear Regression Model (LM) results 

RMSE MAE MAPE Q2_predict RMSE MAE MAPE Q2_predict 

C3 0.969 0.741 44.260 -0.050 1.392 1.077 58.801 -1.167 

C2 0.785 0.653 45.127 0.054 2.079 1.478 95.633 -5.641 

C1 1.068 0.897 55.469 -0.093 2.197 1.627 102.912 -3.623 
C5 0.835 0.690 46.863 0.100 1.317 0.982 65.681 -1.237 

E4 0.374 0.284 17.069 0.823 0.293 0.192 10.389 0.892 

E2 0.373 0.262 18.058 0.849 0.251 0.127 6.754 0.932 
E3 0.429 0.314 19.095 0.734 0.302 0.218 13.176 0.868 

E1 0.437 0.315 19.427 0.729 0.321 0.256 0.319 0.985 

Q3 0.764 0.606 40.028 -0.039 1.022 0.794 47.412 -0.856 
Q2 0.942 0.795 53.054 0.053 1.761 1.265 85.804 -2.311 

T3 0.911 0.745 49.529 -0.050 1.608 1.149 74.506 -2.273 
Q4 0.761 0.616 40.194 -0.065 1.327 0.938 56.453 -2.239 

R3 0.420 0.274 18.540 0.806 0.388 0.208 20.45 0.901 

Q1 0.868 0.681 39.734 -0.043 1.739 1.245 65.993 -3.190 
T2 0.920 0.760 51.448 -0.110 1.768 1.352 94.310 -3.105 

R2 0.368 0.288 17.335 0.817 0.358 0.252 14.201 0.827 

T1 0.818 0.673 44.325 0.035 1.577 1.170 74.192 -2.631 
R1 0.522 0.439 28.091 0.812 0.499 0.317 18.340 0.829 

CP9 0.704 0.535 30.123 0.809 0.345 0.238 34.902 0.023 

CP5 0.448 0.358 18.240 0.800 0.345 0.436 20.869 0.765 
EP1 0.458 0.365 25.840 0.876 0.567 0.567 28.478 0.894 

EP11 0.844 0.661 42.842 0.036 1.045 0.749 84.934 -3.493 

CP1 0.329 0.247 18.332 0.877 0.439 0.438 23.908 0.045 
IP1 0.889 0.711 47.855 0.116 0.946 0.832 46.985 0.123 

CP6 0.395 0.277 19.984 0.828 0.489 0.366 20.256 0.893 

CP2 0.419 0.341 18.505 0.892 0.526 0.458 32.001 -0.673 
DP3 0.923 0.800 52.716 0.063 1.920 1.735 76.367 -2.120 

CP3 0.447 0.360 19.704 0.863 0.673 0.456 26.832 0.728 

DP8 0.802 0.695 48.118 -0.020 0.678 0.710 53.01 -0.045 
CP4 0.428 0.321 17.220 0.840 0.348 0.278 19.648 0.991 

EP6 0.455 0.359 20.507 0.767 0.532 0.400 27.370 0.825 

CP8 0.406 0.332 18.045 0.881 0.566 0.267 24.902 0.827 
DP6 0.797 0.620 40.919 0.036 0.792 0.784 36.903 0.036 

IP19 0.829 0.705 47.422 0.106 0.934 0.678 45.347 0.102 

EP8 0.346 0.281 15.918 0.865 0.204 0.348 22.936 0.789 
EP3 0.456 0.322 19.254 0.639 0.546 0.435 20.000 0.745 

IP20 0.739 0.580 38.811 0.059 0.893 0.740 40.000 0.078 

IP25 0.824 0.648 42.761 0.011 0.639 0.564 44.003 0.026 
IP18 0.809 0.690 47.004 0.072 0.560 0.569 46.456 0.058 

EP4 0.491 0.361 23.433 0.793 0.385 0.264 26.945 0.849 

DP2 0.788 0.684 47.063 0.001 0.645 0.589 44.091 0.041 
EP2 0.366 0.273 19.508 0.867 0.287 0.111 23.902 0.923 

IP16 0.796 0.659 44.787 0.099 0.924 0.523 43.123 0.927 

EP5 0.399 0.310 19.833 0.867 0.289 0.314 18.345 0.738 
DP1 0.728 0.577 40.269 0.241 0.567 0.458 36.902 0.034 

IP14 0.916 0.737 48.911 0.134 0.789 0.745 50.043 -0.012 

CP7 0.432 0.306 18.410 0.736 0.362 0.349 24.764 0.684 
EP7 0.376 0.321 18.803 0.816 0.289 0.300 16.268 0.879 

IP15 0.770 0.667 45.461 0.129 0.789 0.736 40.333 0.166 

 

Conclusion: This study developed a value engineering 

(VE) approach model for gravel road maintenance 

projects using structural equation modeling (SEM) to 

predict improvements in cost, time, quality, social and 

relational aspects, and environmental issues. The 

model's validity and usefulness were assessed through 

the PLSpredict tool, with results showing medium 

predictive power. Specifically, 65.38% and 61.22% of 

indicators in the training and validation datasets, 

respectively, demonstrated smaller prediction errors 

compared to a naïve linear regression model. This 

suggests the model generalizes well, as most RMSE 

and MAPE values were lower in PLS-SEM than in the 

naïve model. The study therefore provides practical 

and academic insights into VE methods for managing 

gravel roads maintenance projects, highlighting causal 

relationships between VE activities and methods. It 

offers valuable guidance for road management 

authorities and contractors, emphasizing the need for 

effective VE approach implementation strategies 

based on the model's activity flow rankings and 

predictive power it exhibits. The findings have 

practical implications for improving roads 

maintenance practices in Tanzania and similar regions. 
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Fig 2: Structural equation model with path coefficients and R2 for test/validation data 
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