

PRINT ISSN 1119-8362 Electronic ISSN 2659-1499 https://www.ajol.info/index.php/jasem https://www.bioline.org.br/ja

J. Appl. Sci. Environ. Manage. Vol. 28 (8) 2375-2381 August 2024

# Modelling and Optimization of Mass Density for Strength and Durability of Sandcrete Block from Okhuare in Edo State, Nigeria

## \*<sup>1</sup>OGBEIDE, OO; <sup>2</sup>EFEAKPORIRE, L; <sup>3</sup>IGBINOMWANHIA, NO

\*<sup>1,2</sup>Department of Production Engineering, University Of Benin, Benin City, Nigeria <sup>3</sup>Department of Materials and Metallurgical Engineering, University Of Benin, Benin City, Nigeria

> \*Corresponding Author Email: osarobo.ogbeide@uniben.edu \*ORCID: https://orcid.org/0009-0008-9655-7079 \*Tel: +2348067544437

Co-Authors Email: engrfigo2010@gmail.com; noel.igbinomwanhia@uniben.edu

**ABSTRACT:** The compressive strength of sandcrete block is a very important aspect of a block in a building. In many cases of building failures in Nigeria, the strength of the sandcrete block, has been figured as one of the causes of the failure. Hence the objective of this paper was to model and optimize the mass density for strength and durability of sandcrete block from okhuare in Edo State, Nigeria using standard methods. The mass of block was minimized, density was maximized, failure load was maximized, water absorption was minimized and compressive strength was maximized. Mass is 27.3287, density is 2149.19, failure load is 234.861, water absorption is 6.60831 and compressive strength is 4.08817. The optimum value of process parameters were determined. Water is 0.56, cement is 0.42, sand is 10.00. The experiment was performed and the results accurately measured and a mathematical model that can adequately explain the effects of the process parameters on the strength and durability of the sandcrete block was developed and the most significant factor influencing the strength of the block was identified.

### DOI: https://dx.doi.org/10.4314/jasem.v28i8.14

#### License: CC-BY-4.0

**Open Access Policy:** All articles published by **JASEM** are open-access articles and are free for anyone to download, copy, redistribute, repost, translate and read.

**Copyright Policy:** © 2024. Authors retain the copyright and grant **JASEM** the right of first publication. Any part of the article may be reused without permission, provided that the original article is cited.

**Cite this Article as:** OGBEIDE, O. O; EFEAKPORIRE, L; IGBINOMWANHIA, N. O. (2024). Modelling and Optimization of Mass Density for Strength and Durability of Sandcrete Block from Okhuare in Edo State, Nigeria. *J. Appl. Sci. Environ. Manage.* 28 (8) 2375-2381

Dates: Received: 04 June 2024; Revised: 27 June 2024; Accepted: 11 July 2024 Published: 05 August 2024

Keywords: Sandcrete Block, Strength, Durability, Mass, Density, Optimization, RSM

Sandcrete blocks are composite material made up of sand, cement and water moulded into different sizes (Barry 1969). Nigerian Industrial Standard (NIS): 87 2004) defined sandcrete as a composite material made up of sand, cement and water. Sandcrete blocks are by far the most common type of block used in modern day construction in Nigeria. Their major advantages as compared to the other types of block are their easy mode of production and the speed of laying. Their major setback is their poor thermal and hygrometric properties. This can greatly affect the strength and durability of the composite material. In order to improve on these remarkable properties, the walls formed with sandcrete blocks are usually rendered with cement and sand mortar. Sandcrete blocks are classified as solid and hollow blocks. Solid blocks have no cavities while Hollow blocks have cavities in them. Sandcrete blocks are traditionally made of a mixture of sand (fine aggregates), cement and water. Recent practice in sandcrete block production often includes the partial replacement of the sand with quarry dust or with coarse aggregates. This has been found to improve on the strength and the durability of the blocks. Anosike and Oyebade (2012) reported that the NIS specified two types of blocks, type A and type B. Type A block is load bearing while type B blocks are non-load bearing. Both of them can either be solid or hollow. Sandcrete blocks are relatively cheap as compared to other construction materials. They have a high resistance to damage. Sandcrete blocks do not decay, rust or provide a home for damaging insects as in other materials (Odeyemi, 2012). Oyetola and Abdullahi (2006) argued that sandcrete has been in use throughout West Africa for over five decades as a popular building material for preparation of building blocks and bricks (Aivewalehinmi and Tanimola 2013). Okoli, et al (2008) argued that apart from manufacturers and entrepreneurs who are producing block strictly for business purposes, quite a number of contractors and clients are also making blocks for use on their projects. Oyekan and Kamiyo (2011) added that this comes with great challenge in Nigeria due to the large size of the block manufacturing industry. Chandrasekhar (2003) argued that sancrete is the main building material used for the construction of walls of most post independent building in Nigeria. Samson (2002) state that quality and standardization of sandcrete blocks are of paramount importance in the study of building components. These will serve as standards for measurement which reflect the level of development attained by a nation. Hence the objective of this paper was to model and optimize mass density for strength and durability of sandcrete block from Okhuare in Edo State, Nigeria

### MATERIALS AND METHODS

*Materials:* The materials used for this work are (i) Cement (ii) Water (iii) Sand

*Cement:* Cement obtained from a major cement dealer in Edo state was used for all the tests.

*Water:* Potable water conforming to the specification of EN 1008: (2002) was used for both specimen preparations and curing.

*Sand:* Sand obtained from Okhuare in Edo State of Nigeria was used.

*Design of experiment:* The experimental design used was the central composite design, which was developed by the design expert software

*Central Composite Design:* The number of components is 3 and a second degree polynomial was used in designing the experiments.  $N=2^{n}+2n+k$ . The experiment was designed with design expert software

*Experimental investigation:* The experimental works involved both field works and laboratory works

*Field work:* The field work was on the production of the blocks. The blocks were produced using an egg laying machine. Mixing of the constituents was done

manually. First, the sand and the cement was mixed .Water was finally added and the mixing continued until the colour of the paste was uniform. The mixture was then loaded into the moulds of the machine where they were vibrated, compacted and demoulded immediately. All the blocks were cured, under shade, for twenty eight days by sprinkling them with potable water twice daily. The compressive strength, water absorption, mass and density of the block were measured.

### **RESULTS AND DISCUSSION**

In this study, twenty experimental runs were carried out, each experiment considered the water ratio, cement ratio, sand ratio, mass of block, density, compressive strength, water absorption and failure load. The experimental results is shown in table 1.

| Table 1: Experimental Results |        |        |         |            |  |
|-------------------------------|--------|--------|---------|------------|--|
| Water                         | Cement | Sand   | Mass    | Density    |  |
|                               |        |        | (Kg)    | $(kg/m^3)$ |  |
| 0.5200                        | 1.0000 | 5.4000 | 27.9600 | 2162.0000  |  |
| 0.8000                        | 1.0000 | 3.8000 | 27.2900 | 2131.0000  |  |
| 0.6300                        | 1.0000 | 5.0000 | 27.5300 | 2143.0000  |  |
| 0.7400                        | 1.0000 | 5.2000 | 26.8900 | 2125.0000  |  |
| 0.7200                        | 1.0000 | 4.7000 | 27.5300 | 2110.0000  |  |
| 0.8600                        | 1.0000 | 6.0000 | 26.9000 | 2122.0000  |  |
| 0.7500                        | 1.0000 | 7.1000 | 27.2000 | 2107.0000  |  |
| 0.8700                        | 1.0000 | 7.4000 | 27.0000 | 2118.0000  |  |
| 0.7500                        | 1.0000 | 5.4000 | 27.4000 | 2128.0000  |  |
| 0.7300                        | 1.0000 | 6.7000 | 27.9000 | 2167.0000  |  |
| 0.6800                        | 1.0000 | 7.7000 | 26.8000 | 2115.0000  |  |
| 0.5200                        | 1.0000 | 6.4000 | 28.0000 | 2186.0000  |  |
| 0.6100                        | 1.0000 | 4.8000 | 27.0000 | 2122.0000  |  |
| 1.0000                        | 1.0000 | 7.4000 | 26.0000 | 2111.0000  |  |
| 0.7600                        | 1.0000 | 6.0000 | 27.0000 | 2120.0000  |  |
| 0.6350                        | 1.0000 | 5.4000 | 28.0000 | 2187.0000  |  |
| 0.5100                        | 1.0000 | 6.9000 | 27.0000 | 2175.0000  |  |
| 0.5600                        | 1.0000 | 5.5000 | 28.0000 | 2152.0000  |  |
| 0.6600                        | 1.0000 | 6.3000 | 25.9000 | 2175.0000  |  |
| 0.5600                        | 1.0000 | 5.8000 | 23.9000 | 2133.0000  |  |

Modelling and Optimization of Okhuare block process parameters: In this study, a mathematical model was developed to optimize mass density with selected input variables, using response surface methodology (RSM)

The objectives of the model was to minimize mass of block and also to maximize density of the sandcrete blocks for strength and durability.

*Model development for Okhuare Sand:* For the development of the models certain statistical test has to be passed which includes the sequential sum of square,lack of fit test, model summary statistics,ANOVA and goodness of fit . the result for the goodness of fit for the mass of the block is shown in table 2. Sequential sum of square shown in Table 3 was also determined for the density of the block,this test help us to select the best model suitable for the

OGBEIDE, O. O; EFEAKPORIRE, L; IGBINOMWANHIA, N. O.

block making process parameters. The next step taken was to ascertain the best model fit for the process paramaters.In this case lack of fit test was carried out for determining required p-value, a non-significant

\_

lack of fit p> 0.05 was obtained. The results for the mass of block is presented in table 4. The lack of fit test was also conducted for the density response which is shown in table 5.

|                                        | Table 2:S  | Sequen  | tial sum of so | quare for    | mass of bl      | lock     |           |
|----------------------------------------|------------|---------|----------------|--------------|-----------------|----------|-----------|
|                                        | Sum of     |         | Mean           |              | F               | p-value  |           |
| Source                                 | Squares    | D       | of Square      |              | Value           | Prob > F |           |
| Mean vs Total                          | 14644.87   | 7 1     | 14644.         | 8700         |                 |          |           |
| Linear vs Mean                         | 5.0100     | 3       | 1.6700         |              | 2.1600          | 0.7954   |           |
| 2FI vs Linear                          | 0.5900     | 3       | 0.2000         |              | 0.2200          | 0.9234   |           |
| Ouadratic vs 2FI                       | 3.1600     | 3       | 1.0500         |              | 1.2200          | < 0.0001 | Suggested |
| Cubic vs Ouadrati                      | c 2.1100   | 4       | 0.5300         |              | 0.4900          | 0.4984   | Aliased   |
| Residual                               | 6.5100     | 6       | 1.0900         |              |                 |          |           |
| Total                                  | 14662.26   | 5 Ž     | 0 733.11       |              |                 |          |           |
| Totur                                  | 11002.20   | , _     | 0 755.11       |              |                 |          |           |
|                                        | Table 3.Se | equent  | ial sum of so  | are for d    | lensity of h    | block    |           |
|                                        | Sum of     | quem    | Moon           |              | E               | n voluo  |           |
| C                                      | Sulli of   |         |                |              | T<br>V-l        | p-value  |           |
| Source                                 | Squares    | 7       | di Square      |              | value           | PTOD > F |           |
| Mean vs Total                          | 9.154E+00  | )/      | 1 9.154        | E+007        | 0.7500          | 0.5406   |           |
| Linear vs Mean                         | 16/0.3800  | )       | 3 556./9       | 900          | 0.7500          | 0.5406   |           |
| 2FI vs Linear                          | 680.5000   |         | 3 226.8        | 300          | 0.2600          | 0.8518   |           |
| Quadratic vs 2FI                       | 601.2300   |         | 3 200.4        | 100          | 0.1900          | < 0.0001 | Suggested |
| Cubic vs Quadratic                     | 4901.6200  | )       | 4 1225.4       | 4100         | 1.2700          | 0.3757   | Aliased   |
| Residual                               | 5767.2200  | )       | 6 961.20       | 000          |                 |          |           |
| Total                                  | 9.154E+00  | )7      | 1 9.1541       | E+007        |                 |          |           |
|                                        |            |         |                |              |                 |          |           |
|                                        |            | Table   | 4: Lack of fit | t test for 1 | mass            |          |           |
|                                        | Sum of     |         | Mean           | F            | p-val           | ue       |           |
| Source                                 | Squares    | Df      | Square         | Value        | Prob            | > F      |           |
| Linear                                 | 10.1900    | 11      | 0.9300         | 2.1100       | 0.118           | 0        |           |
| 2FI                                    | 9.5900     | 8       | 1.2000         | 2.7300       | 0.128           | 0        |           |
| Ouadratic                              | 6.4300     | 5       | 1.2900         | 2.9300       | 0.131           | 6 Sug    | gested    |
| Cubic                                  | 4.3200     | 1       | 4.3200         | 9.8300       | 0.025           | 8 Alia   | sed       |
| Pure Error                             | 2,2000     | 5       | 0.4400         |              |                 |          |           |
| - Ture Error                           | 212000     | U       | 011100         |              |                 |          |           |
|                                        | т          | 'able 6 | • Lack of fit  | test for d   | ensity          |          |           |
|                                        | Sum of     | able c  | Mean           | E E          | n               | valua    |           |
| Course                                 | Sumor      | Df      | Square         | I Vol        | <u> </u>        |          |           |
| Jinnen                                 | Squares    | 11      | Square         | v ai         |                 | 00 > F   |           |
| Linear                                 | /24/./400  | 11      | 058.8900       | 0.70         | 700 0.1         | 1140     |           |
| 2FI                                    | 6567.2400  | 8       | 820.9000       | 0.87         | 700 0.4         | 2950     |           |
| Quadratic                              | 5966.0100  | 5       | 1193.2000      | ) 1.27       | /00 0.4         | 4002 S   | uggested  |
| Cubic                                  | 1064.3900  | I       | 1064.3900      | ) 1.13       | 300 0. <u>.</u> | 3361 A   | liased    |
| Pure Error                             | 4702.8300  | 5       | 940.5700       |              |                 |          |           |
|                                        |            |         |                |              |                 |          |           |
| Table 7: ANOVA table for mass of block |            |         |                |              |                 |          |           |
|                                        | Sum of     |         | Mean           | F            | p-value         |          |           |
| Source                                 | Squares    | Df      | Square         | Value        | Prob >          | F        |           |
| Model                                  | 8.7600     | 9       | 0.9700         | 1.1300       | 0.0005          | Signif   | ïcant     |
| A-water                                | 0.6500     | 1       | 0.6500         | 0.7500       | 0.4062          | Sig.ili  |           |
| B-cement                               | 1.0300     | 1       | 1.0300         | 1,1900       | 0.3007          |          |           |
| C-sand                                 | 3 3300     | 1       | 3 3300         | 3 8600       | 0.0778          |          |           |
|                                        | 0.2000     | 1       | 0.2000         | 0.3400       | 0.5722          |          |           |
|                                        | 0.2900     | 1       | 0.2900         | 0.3400       | 0.3732          |          |           |
| AC<br>DC                               | 0.2200     | 1       | 0.2200         | 0.2000       | 0.0237          |          |           |
| BC                                     | 0.0780     | 1       | 0.0780         | 0.0900       | 0.7698          |          |           |
| A^2                                    | 0.0380     | 1       | 0.0380         | 0.0440       | 0.8376          |          |           |
| B^2                                    | 1.1700     | 1       | 1.1700         | 1.3500       | 0.2714          |          |           |
| C^2                                    | 1.6400     | 1       | 1.6400         | 1.9000       | 0.1979          |          |           |
| Residual                               | 8.6300     | 10      | 0.8600         |              |                 |          |           |
| Lack of Fit                            | 6.4300     | 5       | 1.2900         | 2.9300       | 0.1316          | not sig  | gnificant |
| Pure Error                             | 2.2000     | 5       | 0.4400         |              |                 |          |           |
| Cor Total                              | 17.3900    | 19      |                |              |                 |          |           |

In assessing the strength and significance of the quadratic model one way analysis of variance (ANOVA) table was generated for the mass of the block which is presented in Table 7. The analysis of variance which is a test for significance is produced for the density response as shown in table 8. To validate the adequacy of the quadratic model the goodness of fit statistics for mass of the block presented in Table 9..

| Table 8: ANOVA table for density of block |            |    |           |            |          |                 |
|-------------------------------------------|------------|----|-----------|------------|----------|-----------------|
|                                           | Sum of     |    | Mean      | F          | p-value  |                 |
| Source                                    | Squares    | Df | Square    | Value      | Prob > F |                 |
| Model                                     | 2952.11    | 9  | 328.0100  | 0.3100     | 0.0001   | Significant     |
| A-water                                   | 266.7900   | 1  | 266.7900  | 0.2500     | 0.6278   | -               |
| B-cement                                  | 834.7800   | 1  | 834.7800  | 0.7800     | 0.3972   |                 |
| C-sand                                    | 568.8000   | 1  | 568.8000  | 0.5300     | 0.4820   |                 |
| AB                                        | 128.0000   | 1  | 128.0000  | 0.1200     | 0.7362   |                 |
| AC                                        | 544.5000   | 1  | 544.5000  | 0.5100     | 0.4913   |                 |
| BC                                        | 8.0000     | 1  | 8.0000    | 7.498E-003 | 0.9327   |                 |
| A^2                                       | 170.5300   | 1  | 170.5300  | 0.1600     | 0.6977   |                 |
| B^2                                       | 341.5900   | 1  | 341.5900  | 0.3200     | 0.5840   |                 |
| C^2                                       | 40.9900    | 1  | 40.9900   | 0.03800    | 0.8485   |                 |
| Residual                                  | 10668.8400 | 10 | 1066.8800 |            |          |                 |
| Lack of Fit                               | 5966.0100  | 5  | 1193.2000 | 1.2700     | 0.4002   | not significant |
| Pure Error                                | 4702.8300  | 5  | 940.5700  |            |          | -               |
| Cor Total                                 | 13620.9500 | 19 |           |            |          |                 |

| Table 9: GOF statistics for mass of block |  |
|-------------------------------------------|--|
|-------------------------------------------|--|

| Std. Dev. | 0.9300  | R-Squared      | 0.9038 |
|-----------|---------|----------------|--------|
| Mean      | 27.0600 | Adj R-Squared  | 0.8572 |
| C.V. %    | 3.4300  | Pred R-Squared | 0.8210 |
| PRESS     | 51.8100 | Adeq Precision | 7.6470 |

| Table 10: GOF statistics for density of block |            |                |         |  |  |
|-----------------------------------------------|------------|----------------|---------|--|--|
| Std. Dev.                                     | 32.6600    | R-Squared      | 0.9270  |  |  |
| Mean                                          | 2139.4500  | Adj R-Squared  | 0.8880  |  |  |
| C.V. %                                        | 1.5300     | Pred R-Squared | 0.8212  |  |  |
| PRESS                                         | 52048.9500 | Adeq Precision | 14.9090 |  |  |

To validate the adequacy of the quadratic model the goodness of fit statistics for density of the block is presented in Table 10. The optimal equation which shows the individual effects and combine interactions of the selected input variables against the mesured mass of block is presented based on the actual values in Equation 1.

#### Final Equation in Terms of Actual Factor:

$$\begin{split} Y_m &= 27.42863 - 1.181784A - 3.90939B + 0.27715C \\ &+ 1.19531AB + 0.10391AC \\ &+ 0.061719BC + 0.32166A^2 \\ &+ 1.78007B^2 - 0.2109C^2 \quad (1) \end{split}$$

The optimal equation which shows the individual effects and combine interactions of the selected input variables against the mesured density of block is presented based on the actual values in Equation 2

## Final Equation in Terms of Actual Factor:

$$\begin{split} Y_d &= 2168.5572 - 82.78675A + 5.71858B + 0.15961C \\ &+ 25.00000AB + 5.15625AC \\ &- 0.62500BC + 21.49959A^2 \\ &- 30.42857B^2 - 0.10541C^2 \ (2) \end{split}$$

To accept any model, its satisfactoriness must first be checked by an appropriate statistical analysis output, the normal probability plot of residual for the mass of the block is presented in Figure 1. The normal probability plot of residual for the density of the block is presented in Figure 2. To study the effects of water and cement on the mass of the block a surface plot is produced as shown in figure 3.



Fig 1: Normal probability plot of studentized residuals for mass of block



of block

OGBEIDE, O. O; EFEAKPORIRE, L; IGBINOMWANHIA, N. O.



Fig 3: surface plot of cement , Water and mass of block

To study the effects of water and sand on the mass of the block a surface plot is produced as shown in figure 4. To study the effects of water and sand on the mass of the block a surface plot is produced as shown in figure 4



Fig 4: surface plot of sand , Water and mass of block





Fig 6: surface plot of Cement, water and density of block

To study the effects of Cement and water on the density of the block a surface plot is produced as shown in figure 7



Fig 7: surface plot of sand, water and density of block



Fig 8: surface plot of sand, cement and density of block

OGBEIDE, O. O; EFEAKPORIRE, L; IGBINOMWANHIA, N. O.

| Table 11: The Numerical Optimal Bolutions |        |         |         |           |              |  |  |
|-------------------------------------------|--------|---------|---------|-----------|--------------|--|--|
| Water                                     | Cement | Sand    | Mass    | Density   | Desirability |  |  |
| 0.5600                                    | 0.4200 | 10.0000 | 27.3287 | 2149.1900 | 0.9490       |  |  |
| 0.5700                                    | 0.4200 | 10.0000 | 27.3352 | 2149.2400 | 0.8490       |  |  |
| 0.5700                                    | 0.4100 | 10.0000 | 27.3395 | 2149.2900 | 0.7490       |  |  |
| 0.5700                                    | 0.4200 | 10.0000 | 27.3388 | 2149.2400 | 0.6490       |  |  |
| 0.5900                                    | 0.4300 | 10.0000 | 27.3387 | 2149.1800 | 0.4490       |  |  |
| 0.5200                                    | 0.4000 | 10.0000 | 27.3179 | 2149.2900 | 0.4490       |  |  |
| 0.4900                                    | 0.4100 | 10.0000 | 27.2952 | 2149.2300 | 0.4490       |  |  |
| 0.6500                                    | 0.4500 | 10.0000 | 27.3665 | 2149.3600 | 0.4480       |  |  |
| 0.4400                                    | 0.4100 | 10.0000 | 27.2497 | 2149.1600 | 0.4470       |  |  |
| 0.4600                                    | 0.4600 | 10.0000 | 27.2122 | 2148.4100 | 0.4470       |  |  |
|                                           |        |         |         |           |              |  |  |

Table 11: The Numerical Optimal Solutions

To study the effects of sand and Water on the density of the block a surface plot is produced as shown in figure 4. Also a surface plot showing the effects of Sand and Cement on density of the block is produced as shown in figure 8. The numerical solution have been obtained which is presented in table 11

*Conclusion:* The study has analyzed the process parameters considered in the production of Sandcrete blocks. Samples was collected and block samples were produced using appropriate design of experiment considering the ratio of sand, cement and water as the input process parameters, while the output parameters were mass and density. The experiment was performed and the results accurately measured. A mathematical model that can adequately explain the effects of the process parameters on the strength and durability of the sandcrete block was developed.

Declaration of Conflict of Interest: The authors declare no conflict of interest

*Data Availability Statement:* Data are available upon request from the first author or corresponding author.

#### REFERENCES

- Aiyewalehinmi, EO; Tanimola, MO.(2013)Strength properties of commercially produced sandcrete block in Akure. Ondo state. *Int. J. Engineer. Sci. Inv*, 2 (5): 22-33.
- Anosike, M N; Oyebande, A A., (2012) Sandcrete and quality management in Nigeria building industry. J. Engineer, Proj. Product. Manage. 2 (1): 33 – 46
- Anyaogu, L; Chijioke, C; Okoye, P (2013) Prediction of compressive strength of Pulverise fuel Ash-Cement concrete. J. Mech. Civil. Engineer, 6(1):01-09.
- Chandrasekhar, S. (2003) Processing, Properties and applications of reactive silica from rice husk- an overview.' *Mat. Sci.* 38(15): 3159-3168.

- Ezeh, JC; Ibearugbulem, OM; Anya, UC. (2010) Optimization of aggregate composition of laterite/sand hollow block using Scheffe's simplex method. *Int. J. Engineer*, 4(4):471-478.
- Ezeh, JC; Ibearugbulem, O M. (2009) Application of Scheffe's Model in Optimization of Compressive cube Strength of River Stone Aggregate Concrete. *Int. J. Nat. Appl. Sci*, 5(4):303 – 308.
- Mama, BO; Osadebe, NN. (2011) Comparative analysis of two mathematical models for prediction of compressive strength of sandcrete blocks using alluvial deposit. *Nig. J. tech*, 30(3):82 89.
- Neville, AM.; Brooks, J J. (1987) Concrete Technology, Pearson Education Ltd Partpargani, Delhi 110 092, India.
- Obam, SO. (2009) A mathematical model for optimization of Strength of concrete. A case for shear modulus of Rice husk ash concrete. *J. Indust. Engineer. Inter.* 5(9): 76 84
- Odeyemi, SO. (2012) Effect of Types of sandcrete Blocks on the Internal Microclimate of a Building. *J.Res. Inf. Civil. Engineer.* (RICE), Department of Civil Engineering, University of Ilorin, Ilorin, Nigeria. 9:96- 107.
- Onwuka, D O; Okere, CE; Arimanwa, JI; Onwuka, SU. (2011) Prediction of concrete mix ratios using modified regression theory. *Comput. Methd. Civil Engineer*. 2(1):95 – 107.
- Osadebe, NN; Ibearugbulem, OM (2009) Application of Scheffe's simplex model in optimizing compressive strength of periwinkle shell-granite concrete. *Heartland Engineer*, 4(1):27 – 38.
- Oyekan, GI; Kamiyo, M (2011) Effects of Granites Fines on the structural and Hygrothemal properties of Sandcrete Blocks. *J. Engineer. Appl. Sci.* 3 (9): 735-741.

OGBEIDE, O. O; EFEAKPORIRE, L; IGBINOMWANHIA, N. O.

- Samson, D. (2002) Quality assessment of hollow sandcrete blocks.' NJERD. 1(3):37-46.
- Shetty, M S. (2005) Concrete Technology: Theory and Practice. S Chand and Company Ltd; Ram Nagar, New Delhi.
- Simon, MJ. (2003) Concrete Mixture Optimization Using Statistical Methods: Final Report. FHWA Office of Infrastructure Research and Development, 6300.