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ABSTRACT: Human Immunodeficiency Virus /Acquired Immune Deficiency Syndrome is a globally prevalent 

and deadly sexually transmitted disease that has had a profound impact on human history, causing widespread 

fatalities and devastating economic consequences.  In this model, we presents a four compartmental class of 

susceptible S(t), symptomatic infective I(t), asymptomatic infective I(t), and full blown AIDS class model for the 

transmission dynamics of HIV/AIDS in which we considered the significant role that  screening played among  those 
who are symptomatic and asymptomatic infective for the disease control and its management. We determined the 

positivity and boundedness of the model and the existence of its unique solution which showed clearly that the model 

is epidemiological meaningful and well posed. The disease-free and endemic equilibrium states were identified, and 

their stability is analyzed which reveals that if 10 R  the disease free equilibrium is locally asymptotically stable 

and unstable if otherwise. Sensitivity analysis was also carried out using normalized forward sensitivity index and 

result showed that the recruitment rate ),( and transmission rate ),( is the most sensitive parameter. However, it 

is observed from the numerical simulation that the importance of screening is evident in its ability to detect and 

reduce the number of asymptomatic infective individuals, which in turn leads to an increase among the symptomatic 

population highlighting the importance of early detection of their status and preventing the spread of  HIV/AIDS. 
The susceptible should also exercise caution to avoid interactions with those who are infectious, further reducing the 

risk of transmission. 
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HIV/AIDS is a sexually transmitted disease 

worldwide. It was first identified in 1981 among the 

heterosexual men and intravenous drug users in New 

York and California (Sharp and Beatrice, 2011). 

Evidence of AIDS epidemics later grew among 

heterosexual men, women, and children in the Saharan 

Africa. In 2022, statistics reveals that approximately 

39 Million people died from AIDS worldwide, about 

740 children became infected with HIV and 

approximately 274 children died from AIDS related 

causes every day (Global and Regional Trend (2023)). 

Research has indicated that the risk of contracting the 
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infection rises in correlation with the amount of sexual 

partners and engaging in anal intercourse (Gaodart et 

al., 1994). AIDS is classified based on clinical 

symptoms, viral load, and CD4+T cell count, with 2-6 

stages of infection identified before the development 

of AIDS (Stodart and Reyes, 2006). The health of an 

HIV positive person will depend on the health of his or 

her immune system as well as on the exposure to 

diseases in the environment. An individual may 

advance through several infective stages before 

developing full blown AIDS WHO (2007).Once the 

virus enters the body, the main target is to destroy the 

white blood cell called CD4+T cells. The virus steadily 

destroys CD4+T cells over a period of years, 

diminishing the cells’ protective ability and weakening 

the immune system. As the immune system becomes 

compromised, the HIV opportunistic diseases such as 

meningitis, Cancers, kidney and Tuberculosis do 

easily attack the body (Lamptey et al., 2003).HIV 

attacks and destroys a significant portion of CD4+T 

cells which are a type of immune cells. This leads to a 

decline in the number of CD4+T cells and weakens the 

immune system’s ability to fight off infections and 

diseases (HIV/AIDS facts, 2004;Odebiyi and Ayeni, 

2012).Screening refers to the process of evaluating or 

testing individuals or things to identify specific 

characteristics, qualities, or potential issues. It aims to 

detect, filter out, or categorize things based on 

predetermined criteria. There is a great development 

because Routine screening of unaware infectious 

individuals has become a crucial component of 

healthcare programs in low and middle-income 

countries. This proactive approach helps identify 

undiagnosed cases, prevent further transmission, 

provide timely treatment and care, and reduce the 

burden of diseases on individuals and communities. 

Early detection and intervention can significantly 

improve health outcomes and save lives. Antiretroviral 

medication has enabled many people who were 

severely ill with HIV and AIDS to recover and regain 

their health, achieving a significant reduction in viral 

load, often to undetectable levels, and restoring their 

ability to lead normal lives (UNAIDS 2002).Some 

researchers have worked on HIV/AIDS with 

Screening. (Issa and Massawe 2011) examined the 

effect of screening and variable inflow of infected 

immigrants on the spread of HIV/AIDS showed that 

sensitivity of the key parameter revealed an increase in 

the screening rate coupled with decrease in the 

progression of infective to AIDS class thereby leading 

to a decline in the spread of HIV/AIDS. (Odebiyi, 

2024) also investigated the stability analysis of 

HIV/AIDS model with saturated incidence. The 

outcome of their results showed that screening and 

treatment of the infective have a significant effect in 

reducing the transmission of the disease control. (Al-

Sheikh et al., 2011) worked on stability analysis of 

HIV/AIDS epidemic with screening. According to the 

research findings, it was suggested that the most 

efficient approach to reducing the infection rates is to 

consistently screen high-risk individuals and educate 

the general population about the infection. (Marsudi, 

2014)Worked on sensitivity analysis considering the 

effect of screening and HIV therapy on the dynamics 

of the spread of HIV and gave the assertion that 

screening of unaware infective and placing the 

screened infective on therapy has a reducing effect on 

transmission of the disease. Also, (Srinivasa, 2023) 

presented a theoretical framework for transmission of 

HIV/AIDS epidemic in India. It was observed that 

screening of the infective has a significant effect on the 

spread of the disease. The significance of counselling 

and treatment in preventing the spread of HIV/AIDS 

was emphasized by (Ibrahim et al., 2021). It was 

revealed that providing guidance to individuals with 

the virus and administering anti-retroviral medications 

can effectively manage or eradicate HIV. They also 

emphasized that those strategies could avert 9-

12million new cases over a period of 40years. (Ratera 

et al., 2012) examined the effect of screening and 

treatment on the transmission of HIV/AIDS infection 

in a population. Their model exhibit forward 

bifurcation at threshold parameter equal to unity and 

analysis shows that screening of unaware HIV 

infective and treatment of screened infective have the 

effect of reducing the transmission of the disease. 

Therefore, the objective of this paper is to investigate 

the impact of screening on the dynamics of HIV/AIDS 

model and the study is organized as follows. The 

formulation, the positivity and boundedness of the 

model and proof of the existence and uniqueness of 

solutions is obtained in section 2.  In section 3, 

Analysis of the model was shown including the 

sensitivity indices of parameters of the basic 

reproduction number. Section 4 presents a numerical 

simulation of the model systems followed by a 

conclusion. 

 
Fig 1: The model Schematic diagram of an SI model 
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Formulation of the Model and its Description: In this 

research, the susceptible and infectious epidemic 

model )(SI  is considered. A population size of )(tN  

was partitioned into 4 subclasses of individuals who 

were susceptible, asymptomatic infective, 

symptomatic infective,  and  full blown AIDS 

population with sizes denoted by  ),(),(),( 21 tItItS  and

)(tA , respectively, as shown in  figure 1. 

 

Model description: In this section, we considered the 

HIV/AIDS transmission model with susceptible-

infected model of the human population where the 

total human population at time (t) is divided in to 4 

disjoint compartments. The susceptible population 

)(tS  are the number of individuals in a population 

who are at risk of becoming infected by a disease, and 

have no immunity (natural or acquired). 

The asymptomatic population ( 1I ) are individual who 

are infected by a disease, but show no visible 

symptoms or signs of illness, yet may still transmit the 

disease to others. The Symptomatic population )( 2I

are individuals who are infected by a disease and 

exhibit visible symptoms or signs of illness. AIDS 

population is the most advanced stage of HIV. The 

population includes individuals who have been 

characterized by a severely compromised immune 

system and numerous opportunistic infections. In a 

normal healthy individual’s peripheral blood, the level 

of CD4+T cells is between 800 and 1200/
3mm and 

once this number reaches 200 or below in an HIV 

infected patient, the person is classified as having 

AIDS (Stodart, 2006). 

 

The infected person becomes vulnerable to AIDS-

related opportunistic infections and rare cancers, 

which take advantage of the weakened immune 

defences to cause disease. As a result, total human 

population is given by 

).()()()()( 21 tAtItItStN  The recruitment rate 

of susceptible ( ), occurs through either the flow of 

people by birth or immigration. Asymptomatic 

infective and Symptomatic infective infect Susceptible 

class at different rates , and  respectively. It is 

assumed that , they transmit at higher rate of 

infectivity, where .10  Asymptomatic infective 

population can be screened at a rate   and progress to 

symptomatic class. Also, asymptomatic infective 

population and Symptomatic infective population 

move to full blown AIDS at different rates   and 
respectively. Taking the above into considerations, the 

model dynamics is described by a set of nonlinear 

ordinary differential equations (ODEs), which capture 

the complex dynamics of the system. 

 

Model Equation: 
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The model parameters used in the model is defined as 

follows: 

 
Table 1: Model variables and parameters 

Parameters/    

variables 

Description 


 

Recruitment rate of Susceptible
 

  Transmission rate
 

d  AIDS related death rate
 

  Pace at which asymptomatic population 

become aware of being infected after a 

screening process. 
  Natural mortality rate unrelated to AIDS 

d  AIDS related death rate. 

  Progression rate from Asymptomatic class 
to AID class. 

  Progression rate from Symptomatic class 

to AID class. 
  Infectivity rate of transmission 

 

)(tS  Susceptible population at a given time t.
 

)(1 tI  Asymptomatic population at a given time 

t.
 

)(2 tI  Symptomatic population at a given time t.
 

)(tA
 

AIDS population.
 

 

Positivity and boundedness of the model: In this 

section we shall  show from model (1) that the state 

variables are non-negative and the solutions remain 

positive for all .0t Hence, the parameters in the 

model are assumed to be positive. 

 

Theorem 1: Let the initial conditions or values of the 

state variables be such that 

   0)0(,0)0(,0)0(,0)0( 21 AIIS , then 

the set  )(),(),(),( 21 tAtItItS  is non-negative in   for 

all .0t  

Proof: Considering the first equation in (1), are 

considered for the positivity of the state variables as 

 
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follows using the approach of (Adeyemi and Oluyo, 

2023; Oladejo and Oluyo, 2022; Ong’ala et al., 2012; 

Temesgen et al., 2023) 

 

 

  



SII
dt

dS

SII
dt

dS





21

21

 

Using variable separable 

   dtII
S

dS
 21  

  CtIIs   21ln
 

  121 .)(
CtII

eetS
 


 

 
.)( 21

0
tII

eStS
 


 

010)0( SASS   

Since ,0)( tS for all 0t  provided that .00 S  

Hence, 0)( tS
 

It is possible to show using the same procedure for 

other state variables that: 
 

0)0()(,0)0()(,0)0()( )()(
11

)(
11   tdtdt eAtAeItIeItI 

 

This shows that all the solutions of equation (1) are 

positive for all 0t   . Therefore, the HIV/AIDS 

transmission model stated in (1) is both 

epidemiologically significant and numerically well 

posed in an attainable given region 0  

 

Theorem 2 

Every solution in the region 

















 



)(:)(),(),(),( 4

21 tNtAtItItS  is 

positively invariant with respect to the HIV/AIDS 

model (1) in the populations. The solutions for the 

system are contained and remain in the region   for 

all time .0t  

Proof: Considering the equation of the model, and 

adding up all the derivatives with respect to time ,t  we 

obtained 

  dAdIAIIS
dt

tdN
 221

)(
  

Let d=0 

N
dt

tdN
 

)(
 

teNN 







 









 0  

Where 0N is the initial size of the population 

Therefore, 







)(lim tN

t
 

This result implies that HIV/AIDS model (1) has non-

zero negative and bounded solution in the region 

and all the solutions starting in  approach, enter or 

stay in . Hence, it is sufficient to conclude that the 

model is epidemiologically well posed. 

 

Existence and Uniqueness of solution of the Model: In 

this section, we establish conditions for the existence 

and uniqueness of a solution of our model. We shall 

rigorously employ Picard theorem to achieve this.  

Theorem 3: Picard Theorem 

Suppose 

00 )(),,( ytyytfy 
 

(3) 

Is given system of ordinary differential equations and 

suppose ),( xtf is continuous and satisfies a 

Lipschitz condition in the closed and bounded domain 

., 00   ttxx Let Mxtf ),(  

Then the IVP (3) has a unique solution in the interval 

,0 htt  where h=Min  ./, Mt   

Using the approach of (Odebiyi et al., 2024), 

Considering our system of equations  
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SSII
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xtf
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(4) 

0002000 )0(,)0(,)0(,)0(,)0( AATTIIIISS  (5) 

So that our system of equations has the form 

),(),( xfxtfx 
,  00 )( xtx  (6) 

Define  

 ,1,,:),,,( 2121  AIISAIISxD (7) 

And let 

,,0   txx with  AIISxt ,,,,0 2100   

Now, we shall show using Picard theorem that (6) has 

a unique solution, by proving the following: 

1. f is continuous 

2. f satisfies a Lipschitz condition, and 

3. Mf   

Now, the function ),( xtf is continuous as each 

component ,4,3,2,1, ifi of ),( xtf is a continuous 

function of the variable 

.),,,( 21
TAIISx 
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Let us establish the Lipschitz condition. We do this by 

showing that each component of 4..1, ifi satisfies a 

Lipschitz condition. 

Let  
,),,,( 21

TAIISx 
 

then 
 Txfxfxfxfxf )(),(),(),()( 4321

, 

Now, noting that  1),,,( 21 TAIIS , we have that 
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are constant depending on the parameter values of the 

model. 
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11212 )()( ISISIxf  

)( 11  
2M

 

213 )()( IdIxf   )( d 

3M
 

AdIIxf )()( 214   )( d 

4M
 

Therefore, )(xf =max  4321 ,,, MMMM M  

Therefore, we have shown that a unique solution exists 

for the initial value problem (IVP) in equation (6) 

within the specified domain  0xx and ht  . 

Thus completing the proof. 

 

Mathematical Analysis of the Model 

Disease free equilibrium point: This refers to a state 

where a disease is no longer present or prevalent in a 

population. That means that it is a state where the 

disease has been completely eliminated or eradicated. 

At the equilibrium, 

021 
dt

dA

dt

dI

dt

dI

dt

dS  

yxLyfxf  333 )()(
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AdII
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IdI
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dI

ISII
dt

dI

SSII
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







21

21
2

121
1

21

    (12)

 

 

Disease free equilibrium: This is the equilibrium point 

at which population remains in the absence of disease. 

0,0 21  ATIIS  Substituting these to 

equation (12) and solving gives the infection – free 

equilibrium as 

  







 0,0,0,,,, 00

2
0
1

00




AIISE

 
 

Endemic equilibrium point: The endemic equilibrium 

state is the state where the disease cannot be totally 

eradicated but remains in the population. For the 

endemicequilibrium, 

0,0,0,0,0 21  ATIIS  

Solving equations (12) in terms of *
1I simultaneously 

when 0,0,0,0,0 21  ATIIS , we have 

the endemic equilibrium points respectively as; 

 

     







 


32

12

2

1

10

0

0

**
2

*
1

** ,,
1

,,,,
GG

IG

G

I

GR

R

R
AIISE







                                                                               (13) 

respectively, where, 

 

     dGdGG   321 ,,  

 

Derivation of Basic Reproduction Number, 0R : The 

computation of the basic reproduction number is 

essential. The basic reproduction number 0R  is 

defined as the average number of new cases of an 

infectious disease that a single infected person can 

generate in a population that is fully susceptible to the 

disease. In other words, it measures how easily a 

disease can spread through a population. To determine 

the next generation matrix for the model, the number 

of ways that new infections can arise or be created and 

also the number of ways that infections can be 

transferred between compartments are put into 

consideration. 

 

Then iF  and iV  are computed as follows using the 

approach of (Van den Driessche and Watmough, 
2002) 

 
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
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
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
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
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

AdII

IdI

I
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




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11

)(

   (14)

 

      

The Jacobian matrices of iF  and iV  at the disease free 

equilibrium point 0x , are  

Let K be the next generation matrix, comprising of 

two parts F and 1V  where 




















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

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
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


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
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)(
)

0
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   (15) 
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  (16) 

Where,   1G ,  dG  2 e,

 dG  3  
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
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1
GGGG
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




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(18)  

The basic reproduction number, which is the dominant 

Eigen-value of the product FV-1, is therefore obtained 

as:

  

 

21

2
0

GG

G
R



 
         (19)

 
 

Stability analysis of the Disease Free Equilibrium 

Local Stability: Theorem 4:The disease-free state is 

locally asymptotically stable if the basic reproduction 

number 10 R  and unstable if otherwise. 

Proof: 
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We evaluate the Jacobian Matrix of the model (12) at 

the disease free equilibrium 







0,0,0,




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




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3
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G

G
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

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
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








(20) 

We obtained the Characteristic polynomial as 

    02
3  cbaG   

Where, 

 

)1(

1

021

21

RGGc

GGb

a













 

Clearly, 

  2,31 G and 43,  is obtained from the 

quadratic equation. If 

,00,  ba If  



 21 GGb 10, 0  Rc  

 

Then by Routh Hurwitz criteria, the remaining four 

eigen-values are negative. Hence, the disease free 

equilibrium is locally asymptotically stable. 

 

Global stability for disease free equilibrium: Theorem 

3:The disease free equilibrium of system (12) is 

globally achievable and stable when the basic 

reproduction number is less than 1, but it becomes 

unstable and prone to disease outbreaks when the basic 

reproduction is greater than 1. 

 

Proof:   

Using Comparison theorem as implemented in 

(Mushayabasa and Bhunu, 2011) that the rate of 

change of the infected compartment of system (1) can 

be written as 
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Where,





























3

2

1

0

0

G

G

G

VF












(22)     

and,      dGdGG   321 ,,  

The characteristic equation is  

 

  cbaG   2
3  (23) 

Where 

   02121 1,,1 RGGcGGba  




 
Clearly, 

,31 G and 32,  is obtained from the quadratic 

equation. 0a , 0b if  



 21 GGb

10 0  Rc  

Therefore, by Routh-Hurwitz criteria, the remaining 

eigen-values are negative. Hence, the disease free 

equilibrium is globally asymptotically stable. 

 

Global stability of endemic equilibrium 

Theorem 4: If ,10 R  then the endemic equilibrium 

point of the model equation (12) is globally 

asymptotically stable in  , provided 

,,, *
22

*
11

* IIIISS   and
*AA . 

Proof: To establish the global stability of the endemic 

equilibrium
*E , following the approach of (Olaniyi, 

2023), we analyzed by constructing the following 

quadratic Lyapunov function L such that 

        2**
22

*
11

*

2

1
AAIIIISSL   

By direct calculation of the time derivatives )(tL

along the solutions of the system (12) is obtained as 

         )24(21**
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*
11
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
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dt

dA

dt

I

dt

dI

dt

dS
AAIIIISS

dt
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Substituting the appropriate solutions of the system (1) 

into the derivative of )(tL gives 

        
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dN
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dt

dL **
22

*
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         NAAIIIISS
dt

dL
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(25) 

We obtain the result by rearranging and simplifying 

(24) , 
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
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Hence,   0,,, 21 







AIIS

dt

dL
and ,0

dt

dL
if and only 

if **
12

*
11

* ,,, AAIIIISS   Therefore, If 

,YX  then, 
dt

dL
will be negative definite, implying 

that ,0
dt

dL
 if and only if ,,, *

22
*

11
* IIIISS 

and
*AA  .Therefore, the largest positive invariant 

set in  








 0:,,,, **
2

*
1

*

dt

dL
AIIS  is a singleton 

 ,1E  where 
1E  is globally asymptotically stable in 

the set   in accordance to LaSalle’s invariant 

principle LaSalle, JP (1976), it then implies that 
1E  is 

globally asymptotically stable in   if .1
0
R  

 

Sensitivity Analysis of the basic Reproduction number:  

Sensitivity indices tell us how crucial each parameter 

is to disease transmission and prevalence and discover 

parameters that have a high impact on 0R  and should 

be targeted by intervention strategies. More so, 

sensitivity analysis is commonly used to determine the 

robustness of model predictions to the parameter 

values (since there are usually errors in data collection 

and presumed Description of Sensitivity Analysis 

parameter values and more so, to discover parameters 

that have a high impact in 0R . 

Sensitivity analysis also allow us to measure the 

relative change in a state variable when a parameter 

changes.  The normalized forward sensitivity index of 

a variable to a parameter is a ratio of the relative 

change in the variable to the relative change in the 

parameter. When a variable is differentiable function 

of the parameter, the sensitivity index may be 

alternatively defined using partial derivatives. 

 

Using approach of (Chitnis, 2008), the normalized 

forward sensitivity index of a variable “g” that depends 

differentiable on a parameter “h” is defined as 

g

h

h

g
X g

h *:



  (27) 

As we have an explicit formula for 0R  in equation 

(19), we derive an analytical expression for the 

sensitivity of 0R , as  
g

h

h

g
X g

h *:



  with respect to 

each of the parameters involved in 0R as computed in 

table 2. 

 

Interpretation of Sensitivity Indices: Table 2 

represents the sensitivity index for the base line 

parameter values and it shows that recruitment rate (

 ) and transmission rate (  ) are the most sensitive 

parameters. When the parameters ,,  and 

increase while the other parameters remain constant, 

the value of 0R  will also increase. More so, when the 

parameters  ,,, and d increase while keeping 

other parameters constant, the value of 0R  will 

decrease. It should be targeted by intervention 

strategies in order to have a stable and disease free 

environment. For instance, 0R
X   +1.0000 and 

0R
X +1.0000 means that increasing or decreasing 

  and  by 10% increases or (decreases) 0R by 10% 

while 0R
X -0.2797202797means that increasing or 

(decreasing )  by 10% decreases (or increases) 0R

by 2.797202797% as seen in table 2 below. Others can 

be calculated following same procedure. 

 
Table 2: parameters, values, sensitivity index and source used in 

the model 

Parameter Value Sensitivity index Source 

  300 1.0000 Estimated 

  0.0009 1.0000 Al-sheikh, (2011) 

  0.015 -0.01833895058 Al-sheikh, (2011) 

  0.2 -0.00031059652 Ratera, (2024) 

  0.3 0.00264007040 Assumed 

  0.2 -0.2797202797 Ratera, (2012) 

d  
1.0 -0.6682196492 Odebiyi. et al., 

2024 
  0.02 -0.700077190 Ibrahimet al., 2021 

 

Numerical Simulations and Discussion: Simulation of 

Simulation of the model was performed for better 

understanding of dynamical spread of transmission of 

HIV/AIDS infection using Maple 18.0 software. This 

section presents the numerical results for the model 

considered using Maple 18.0 software and the direct 

substitution method. The simulation demonstrates 

model equation, the global stability of the HIV/AIDS 

transmission and control. Also, the simulation reveals 

the impact of these parameters on the numerical spread 

of the disease. The results of the numerical simulations 

are given in figures 1-5 to illustrate the system’s 

behaviour for different values of the model’s 

parameter. The impact of screening rate on the spread 

of the disease is analyzed using realistic parameters, 

showing how changes in screening rates affect the 

numerical dynamics of the disease, highlighting the 
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importance of screening in controlling the spread of 

the disease. 

 

 

Fig 2: Graphical Representation of the Sensitivity indices of 0R  

 

 
Fig 1:portrait of susceptible against   

 
Fig2: portrait of symptomatic against   

 

According to figure 1, the asymptomatic population 

are unaware of their status and may be more likely to 

engage in risky behaviours. Therefore, as they are been 

screened, they become aware of their status and 

thereby, leading to a reduction in their population. 

However, some of these individuals progress to the 

symptomatic class, causing an increase in the number 

of symptomatic population as illustrated in figure 2. 
 

 

Fig 3: portrait of susceptible against   
 
 

 

 

Fig 4: portrait of susceptible against   

 

Figure 3 illustrates the relationship between the 

susceptible populations against time with various 

values of screening rate. It was observed that as the 

screening rate increases, the susceptible population 

also grows.  

 

This is because individuals who are screened and 

aware of their status are more likely to take 

precautionary measures, avoid risky behaviours such 

as sexual activities and refrain from been contact with 

infective individuals, thereby maintaining a healthy 

environment and reducing the spread of the disease 
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while Figure 4 reveals the portrait of Susceptible 

population against time with various transmission 

rates for susceptible individual with asymptomatic 

infective.  The plot shows that as the transmission rate 

increases, the susceptible population declines, 

highlighting the importance of adhering to health 

regulations to prevent the spread of the disease.  

 
Fig 5: portrait of global stability of the disease free equilibrium 

with various initial conditions. 
 

Figure 5 reveals portrait of global stability of the 

equilibrium with various initial conditions as 

illustrated. This agrees with the result of the global 

stability of disease free in theorem 3. It simply suggest 

that if the basic reproduction number 10 R , 

HIV/AIDS can be eradicated from the population, 

regardless of how many people are initially infected. 

In other words, if the condition 10 R  is met, the 

disease will eventually die out, regardless of the initial 

number of infective individuals whenever 10 R . The 

solutions stabilize or converge to the HIV/AIDS-free 

equilibrium point, indicating that the asymptomatic 

infective population will eventually decrease to zero. 

 

Conclusion: This paper presents a nonlinear 

mathematical model for the spread of HIV/AIDS. It 

was shown that the disease free is locally 

asymptotically stable when 10 R  and the global 

stability of the endemic equilibrium was also 

established using a quadratic Lyapunov function. A 

sensitivity analysis of the basic reproduction number 

revealed that the recruitment rate and transmission rate 

are the most sensitive parameters, highlighting the 

need for intervention strategies to focus on reducing 

these parameters. The analysis also showed that 

increasing the rate of detection through screening can 

control the spread of the disease, emphasizing the 

importance of screening in preventing the endemicity 

of HIV/AIDS population and should also be key 

targets for intervention. The findings also underscore 

the need for caution among HIV infected and 

susceptible individuals in the environment to prevent 

the spread of the disease. The importance of screening 

is therefore evident in its ability to detect and reduce 

the number of infective individuals. 
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