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ABSTRACT: The objective of this paper is to investigate the direction of groundwater flow, 
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appropriate differential equations for steady and unsteady states. The results showed that 

groundwater flow from a region of higher elevation to a lower elevation, pumping time and 

distance from the well affect drawdown and when water is pumped faster than it is recharged, 

the water in the well dries up. The numerical methods used are efficient for all differential 

equations of real-life problems.  
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Mathematical models are ways to describe the 

physical system using mathematical equations.  They 

are based on solving an equation or a system of 

equations that describe the physical or real-life 

phenomenon.  Such equations are called governing 

equations of the specified or real-life phenomenon 

(Muyinda et. al., 2014). To develop models, it is 

helpful to first understand the general equation and its 

relationship to the underlying physical principles.  The 

general equation varies in form depending on whether 

the flow is saturated or unsaturated, two-dimensional 

or three-dimensional, isotropic or anisotropic, and 

transient or steady state (Waghmare, 2016). For 

groundwater flow, the general groundwater flow 

equation, a partial differential equation is derived from 

combining Darcy’s law with the principle of 

conservation of mass. (Atangana and Botha, 2013), 

(Waghmare, 2016), (Wang and Zheng, 2015). 

Groundwater flow models simulate either steady or 

unsteady states (transient flow).  In steady-state 

systems, inputs (recharge) and outputs (discharge) are 

in equilibrium and solving steady state groundwater 

flow equation with or without sinks/sources is to 

calculate the hydraulic head (H)  as a function of x and 

y. In unsteady state or transient simulations, the inputs 

(recharge) and outputs (discharge) are not in 

equilibrium so there is a net change in the systems with 

time that is the flow velocity and pressure are changing 
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with time. To solve groundwater flow equations, 

hydrological inputs, hydraulic parameters, and initial 

and boundary conditions are required for calculations 

in groundwater modeling (Kakuba et al., 2014). Some 

established techniques for solving the model’s 

governing equations include the Finite Difference 

Method, Finite Element Method, Finite volume 

Method (Muyinda et. al., 2014), Boundary element 

Method, and several others. The finite difference 

method converts the partial derivatives of the 

differential equation over a small interval by an 

algebraic expression that represents the properties and 

conditions of the aquifer. The problem domain is 

partitioned into a series of interconnected discrete 

points known as nodes. This approach replaces the 

continuous medium with a discrete set of points and 

assigns distinct hydrogeological parameters to each 

node (Thangarajan, 2007; Dhumal and Kiwne, 2014). 

Finite difference method (FDM) can be used to 

discretize both time and space. Partial derivatives are 

replaced using a difference operator that defines the 

spatio-temporal relationship between several 

parameters. The developed model is solved at each 

node by solving a set of algebraic equations at that 

node. There are various methods to 

solve these simplified equations. Some of the primary 

iterative numerical methods iclude the Jacobian 

method, Gauss-Seidel iterative method, iterative 

relaxation method and many more (Okiro et. al., 2013; 

Kahlaf and Mhassin, 2021). The advantage of finite 

difference methods is that they are easy to understand 

and program, so complex systems with complex load 

paths and highly nonlinear behavior can be easily 

traced. It is, therefore, an economical way to solve 

large-scale nonlinear groundwater flow problems. 

Consequently, the objective of this paper is to 

investigate the direction of groundwater flow, factors 

affecting drawdown and the effects of over-pumping 

in a confined aquifer using appropriate differential 

equations for steady and unsteady states. 

 

MATERIALS AND METHODS 
The basic groundwater flow equation is: 

𝜕

𝜕𝑥
(𝐾𝑥

𝜕ℎ

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝐾𝑦

𝜕ℎ

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝐾𝑧

𝜕ℎ

𝜕𝑧
) − 𝑄

= 𝑆𝑠

𝜕ℎ

𝜕𝑡
   (1) 

 

ℎ is the hydraulic head or piezometric head, 𝐾𝑥 , 𝐾𝑦 , 𝐾𝑧 

are the hydraulic conductivity along x, y, z axes, Q is 

the volumetric source or sink and 𝑆𝑠 is the specific 

storage coefficient. 

 

Derivation of Steady-state groundwater flow 

equation 

The initial step in constructing developing a 

mathematical model involves formulating the general 

equations. In groundwater modeling, general 

equations are derived from two fundamental physical 

principles, Darcy's law and mass balance (continuity) 

equation (Kreysig, 2011).   

 

Equation 2 is Darcy’s law in three-dimensions along 

the x, y and z coordinates: 

𝑞𝑥 = −𝐾𝑥

∂h

𝜕𝑥
,          𝑞𝑦 = −𝐾𝑦

∂h

𝜕𝑦
 ,         𝑞𝑧

= −𝐾𝑧

∂h

𝜕𝑧
  (2) 

 

Where 𝐾𝑥 , 𝐾𝑦 𝑎𝑛𝑑 𝐾𝑥 are the hydraulic conductivity 

in each of the coordinate direction respectively and 

𝑞𝑥 , 𝑞𝑦 𝑎𝑛𝑑 𝑞𝑧 

Continuity equation in three dimensions is stated in 

equation 3 
𝜕

𝜕𝑥
(𝑞𝑥) +

𝜕

𝜕𝑦
(𝑞𝑦) +

𝜕

𝜕𝑧
(𝑞𝑧) = 𝑆𝑠

𝜕ℎ

𝜕𝑡
    (3) 

 

In the steady-state,    
𝜕ℎ

𝜕𝑡
= 0 

substituting  
𝜕ℎ

𝜕𝑡
= 0  and equation (2) in equation (3) 

gives equation (4) 

 
𝜕

𝜕𝑥
(𝐾𝑥

𝜕h

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝐾𝑦

𝜕h

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝐾𝑧

𝜕h

𝜕𝑧
) = 0      (4) 

 

For an isotropic, homogeneous, confined aquifer, 

 𝐾𝑥 = 𝐾𝑦 = 𝐾𝑧 = 𝐾 

Equation (4) becomes 

  
𝜕2ℎ

𝜕𝑥2
+

𝜕2ℎ

𝜕𝑦2
+

𝜕2ℎ

𝜕𝑧2
= 0    (5) 

 

Therefore, equation (5) represents the governing 

equation for groundwater flow through an isotropic, 

homogeneous medium under steady-state condition in 

three-dimensions.  

 

Allowing the possibility of a sink (for example, a 

pumping well) or a source of water (for example, an 

injection well or recharge) which is expressed as 

volume of per area of aquifer per time, R, so equation 

(5) becomes 

𝜕2ℎ

𝜕𝑥2
+

𝜕2ℎ

𝜕𝑦2
+

𝜕2ℎ

𝜕𝑧2
=

𝑅

𝑇
   (6) 

 

Equation (6) is called Poisson equation, which is the 

equation for steady-state flow equation with 

sinks/sources while equation (4) is a very famous 

equation called the Laplace equation. 
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Derivation of the unsteady-state groundwater flow 

equations 

Equation (3) without sources/sinks that is when  
𝜕ℎ

𝜕𝑡
≠

0 
𝜕

𝜕𝑥
(𝑞𝑥) +

𝜕

𝜕𝑦
(𝑞𝑦) +

𝜕

𝜕𝑧
(𝑞𝑧) = 𝑆𝑠

𝜕ℎ

𝜕𝑡
   (7) 

 

Substituting equation (2) in equation (7) gives 
𝜕

𝜕𝑥
(𝐾𝑥

𝜕h

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝐾𝑦

𝜕h

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝐾𝑧

𝜕h

𝜕𝑧
)

= 𝑆𝑠

𝜕ℎ

𝜕𝑡
     (8) 

 

Re-writing equation (8) 

 𝐾𝑥

𝜕2ℎ

𝜕𝑥2
+ 𝐾𝑦

𝜕2ℎ

𝜕𝑦2
+ 𝐾𝑧

𝜕2ℎ

𝜕𝑧2
= 𝑆𝑠

𝜕ℎ

𝜕𝑡
     (9) 

 

For confined, transient, isotropic and homogeneous 

groundwater flow, hydraulic conductivity is constant, 

that is   𝐾𝑥 = 𝐾𝑦 = 𝐾𝑧 = 𝐾 and dividing both sides by 

K gives 

equation (9) becomes 

𝜕2ℎ

𝜕𝑥2
+

𝜕2ℎ

𝜕𝑦2
+

𝜕2ℎ

𝜕𝑧2
=

𝑆𝑠

𝐾

𝜕ℎ

𝜕𝑡
  (10) 

 

The solution h (x, y, z, t) gives the value of h for any 

point in the flow field at time t.  Specifying the 

boundary conditions and initial conditions. Saturated 

thickness, b, is not dependent on head, h, and assuming 

the aquifer thickness is constant, both sides of equation 

(10) can be multiplied by the aquifer thickness, b to 

give equation (11) 

𝐾𝑏 [
𝜕2ℎ

𝜕𝑥2
+

𝜕2ℎ

𝜕𝑦2
+

𝜕2ℎ

𝜕𝑧2
] = 𝑆𝑠𝑏

𝜕ℎ

𝜕𝑡
      (11) 

 

From the definition of Transmissivity, 𝑇 = 𝐾𝑏, and 

Storativity, 𝑆𝑠𝑏 = 𝑆, equation (10) and dividing by T 

𝜕2ℎ

𝜕𝑥2
+

𝜕2ℎ

𝜕𝑦2
+

𝜕2ℎ

𝜕𝑧2
=

𝑆

𝑇

𝜕ℎ

𝜕𝑡
   (12) 

 

This is the unsteady-state equation in three-

dimensions without sinks/sources. 

In the availability of a sink (for example, a pumping 

well) or source of water (for example, an injection well 

or recharge) this is written as volume per area of 

aquifer per time, R, and  dividing by T 

𝜕2ℎ

𝜕𝑥2
+

𝜕2ℎ

𝜕𝑦2
+

𝜕2ℎ

𝜕𝑧2
=

𝑆

𝑇

𝜕ℎ

𝜕𝑡
−

𝑅

𝑇
   (13) 

 

Where the flow is horizontal, unsteady-state flow in 

two-dimensions with and without sinks/sources in 

equation (14) and (15) respectively. 

𝜕2ℎ

𝜕𝑥2
+

𝜕2ℎ

𝜕𝑦2
=

𝑆

𝑇

𝜕ℎ

𝜕𝑡
−

𝑅

𝑇
    (14) 

 

𝜕2ℎ

𝜕𝑥2
+

𝜕2ℎ

𝜕𝑦2
=

𝑆

𝑇

𝜕ℎ

𝜕𝑡
   (15) 

 

Steady-State Groundwater Flow Methods 

Method 1:  Alternating Direction Implicit Method 

(ADI) 

The ADI Method was first introduced and used by 

Peaceman and Rachford for solving a two-

dimensional the time-dependent heat equation. From 

the result, it was discovered that the method is 

unconditional stable which  render it effective as a 

steady-state solver due to the possibility of employing 

large time steps for pseudo-time marching to a steady 

state (Abimbola and Bright, 2015), (Imam, 2015), 

(Esraa and Adel, 2020) (Shittu et. al., 2024).   

 

Consider the two-dimensional steady state 

groundwater flow equation without sinks/sources 

below: 

  
𝛿2𝐻

𝑑𝑥2 +
𝛿2𝐻

𝑑𝑦2 = 0 

Finite difference approximation, assuming ∆𝑥 = ∆𝑦 is 

 

𝐻𝑝+1,𝑞 − 4𝐻𝑝,𝑞+𝐻𝑝−1,𝑞 + 𝐻𝑝,𝑞+1 +  𝐻𝑝,𝑞−1

= 0    (16) 

 

For fix row formula, we have 

𝐻𝑝+1,𝑞 − 4𝐻𝑝,𝑞+𝐻𝑝−1,𝑞 + 𝐻𝑝,𝑞+1 +  𝐻𝑝,𝑞−1

= 0   (17) 
 

Substituting nth approximation on the right as: 

𝐻𝑝−1,𝑞
(𝑛+1)

− 4𝐻𝑝,𝑞
(𝑛+1)

+ 𝐻𝑝+1,𝑞
(𝑛+1)

= −𝐻𝑝,𝑞+1
(𝑛)

− 𝐻𝑝,𝑞−1
(𝑛)

    (18) 

 

In the next iteration, we alternate the direction by 

using the formula for fix column 

𝐻𝑝,𝑞+1 − 4𝐻𝑝,𝑞+𝐻𝑝,𝑞−1 = −𝐻𝑝+1,𝑞 −  𝐻𝑝+1,𝑞    (19) 

 

Substituting n+1th approximation: 

𝐻𝑝,𝑞−1
(𝑛+2)

− 4𝐻𝑝,𝑞
(𝑛+2)

+ 𝐻𝑝,𝑞+1
(𝑛+2)

= −𝐻𝑝−1,𝑞
(𝑛+1)

− 𝐻𝑝+1,𝑞
(𝑛+1)

  (20) 

 

With sinks/sources, we have 

𝐻𝑝−1,𝑞
(𝑛+1)

− 4𝐻𝑝,𝑞
(𝑛+1)

+ 𝐻𝑝+1,𝑞
(𝑛+1)

= −𝐻𝑝,𝑞+1
(𝑛)

− 𝐻𝑝,𝑞−1
(𝑛)

−
𝑅(∆𝑥)2

𝑇
  (21) 
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𝐻𝑝,𝑞−1
(𝑛+2)

− 4𝐻𝑝,𝑞
(𝑛+2)

+ 𝐻𝑝,𝑞+1
(𝑛+2)

= −𝐻𝑝−1,𝑞
(𝑛+1)

− 𝐻𝑝+1,𝑞
(𝑛+1)

−
𝑅(∆𝑥)2

𝑇
   (22) 

 

Method 2: Improved Alternating Direction Implicit 

Method (IADI) 

To improve the convergence of ADI, we introduce a 

parameter k (Imam, 2015; Shittu et al., 2024, Esraa 

and Adel, 2020) equations (18) and (20), we have the 

improved formula for row and column 

𝐻𝑝−1,𝑞
(𝑛+1)

− (2 + 𝑘)𝐻𝑝,𝑞
(𝑛+1)

+ 𝐻𝑝+1,𝑞
(𝑛+1)

= −𝐻𝑝,𝑞+1
(𝑛)

− 𝐻𝑝,𝑞−1
(𝑛)

+ (2 − 𝑘)𝐻𝑝,𝑞
(𝑛)

 (23) 

 

𝐻𝑝,𝑞−1
(𝑛+2)

− (2 + 𝑘)𝐻𝑝,𝑞
(𝑛+2)

+ 𝐻𝑝,𝑞+1
(𝑛+2)

= −𝐻𝑝−1,𝑞
(𝑛+1)

− 𝐻𝑝+1,𝑞
(𝑛+1)

+ (2 − 𝑘)𝐻𝑝,𝑞
(𝑛+1) (24) 

With sinks/sources, from equations (23) and (24), we 

add the source/sinks 

𝐻𝑝−1,𝑞
(𝑛+1)

− (2 + 𝑘)𝐻𝑝,𝑞
(𝑛+1)

+ 𝐻𝑝+1,𝑞
(𝑛+1)

= −𝐻𝑝,𝑞+1
(𝑛)

− 𝐻𝑝,𝑞−1
(𝑛)

+ (2 − 𝑘)𝐻𝑝,𝑞
(𝑛)

−
𝑅(∆𝑥)2

𝑇
  (25) 

𝐻𝑝,𝑞−1
(𝑛+2)

− (2 + 𝑘)𝐻𝑝,𝑞
(𝑛+2)

+ 𝐻𝑝,𝑞+1
(𝑛+2)

= −𝐻𝑝−1,𝑞
(𝑛+1)

− 𝐻𝑝+1,𝑞
(𝑛+1)

+ (2 − 𝑘)𝐻𝑝,𝑞
(𝑛+1) −

𝑅(∆𝑥)2

𝑇
(26) 

 

Unsteady-State Groundwater Flow Methods 

 

Method 1:Explicit Finite Difference Method (EFDM) 

Explicit Finite Difference calculates solution at the 

next time step from the information of the previous 

time step. (Hoffmann and Chiang, 2000). This method 

is also called Forward Time Central Space Method 

(FTCS). 

Consider the two-dimensional unsteady-state 

groundwater flow equation 27: 

𝜕2𝐻

𝜕𝑥2
+

𝜕2𝐻

𝜕𝑦2
=

𝑆

𝑇

𝜕𝐻

𝜕𝑡
     (27) 

 

Using the finite difference approximation, equation 

(27) becomes 

𝐻 𝑝+1,𝑞
𝑛 − 2𝐻𝑝,𝑞

𝑛 +𝐻 p−1,𝑞
𝑛

(∆𝑥)2
+

𝐻𝑝,𝑞+1
𝑛 − 2𝐻𝑝,𝑞

𝑛 + 𝐻𝑝,𝑞−1
𝑛

(∆𝑦)2

=
𝑆

𝑇

𝐻𝑝,𝑞
𝑛+1 −   𝐻𝑝,𝑞

𝑛

∆𝑡
  (28) 

 

assume ∆𝑥 = ∆𝑦 = 𝑎 

𝐻𝑝,𝑞
𝑛+1  = 𝐻𝑝,𝑞

𝑛 +
𝑇∆𝑡

𝑆𝑎2
(𝐻 𝑝+1,𝑞

𝑛 − 4𝐻𝑝,𝑞
𝑛 +𝐻 p−1,𝑞

𝑛

+ 𝐻𝑝,𝑞+1
𝑛 + 𝐻𝑝,𝑞−1

𝑛 ) (29) 

Let     γ =
𝑇∆𝑡

𝑆𝑎2 and collecting like terms, we have 

𝐻𝑝,𝑞
𝑛+1  = 𝐻𝑝,𝑞

𝑛 (1 − 4γ )

+ γ (𝐻 𝑝+1,𝑞
𝑛 +𝐻 p−1,𝑞

𝑛 + 𝐻𝑝,𝑞+1
𝑛

+ 𝐻𝑝,𝑞−1
𝑛 )  (30) 

 

For the solution to be stable, the value of γ must be 

less than or equal to 0.25 while for one-dimensional 

case, γ must be less than or equal to 0.5 (Wang and 

Anderson, 1996). 

 

Method 2:  Crank Nicolson Method (CNM): Crank 

Nicolson Method was developed by John Crank and 

Phyllis Nicolson during the mid-20th century. This 

method is employed for solving partial differential 

equation. It exhibits second-order accuracy in space, 

operates implicitly in time ensures unconditional 

stability and offers enhanced accuracy level. (Fadugba 

et al., 2013), (Ajeel and Gaftan, 2023), (Fernandes and 

Bhadkamkar, 2016), (Islam et al., 2018), (Hoffmann 

and Chiang, 2000) 

Consider the two-dimensional transient groundwater 

flow equation (27) 

𝜕2𝐻

𝜕𝑥2
+

𝜕2𝐻

𝜕𝑦2
=

𝑆

𝑇

𝜕𝐻

𝜕𝑡
   

Replace 
𝜕𝐻

𝜕𝑡
  by forward difference approximation and 

central difference for the space derivative along at t 

and t+1 level, equation (27) becomes  

𝐻 𝑝+1,𝑞
𝑡 − 2𝐻𝑝,𝑞

𝑡 +𝐻 𝑝−1,𝑞  
𝑡

(∆𝑥)2

+   
𝐻 𝑝,𝑞+1

𝑡 − 2𝐻𝑝,𝑞
𝑡 +𝐻 𝑝,𝑞−1  

𝑡

(∆𝑦)2

=
𝑆

𝑇

𝐻𝑝,𝑞
𝑡+1 −   𝐻𝑝,𝑞 

𝑡

∆𝑡
  (31) 

 

𝐻 𝑝+1,𝑞
𝑡+1 − 2𝐻𝑝,𝑞

𝑡+1 +𝐻 𝑝−1,𝑞
𝑡+1

(∆𝑥)2

+
𝐻 𝑝,𝑞+1

𝑡+1 − 2𝐻𝑝,𝑞
𝑡+1+𝐻 𝑝,𝑞−1

𝑡+1

(∆𝑦)2

=
𝑆

𝑇

𝐻𝑝,𝑞
𝑡+1 −   𝐻𝑝,𝑞 

𝑡

∆𝑡
  (32) 

 

Finding the average of equations (31) and (32) and 

assume ∆𝑥 = ∆𝑦 , we have 

𝑆

𝑇

𝐻𝑝,𝑞
𝑡+1 −  𝐻𝑝,𝑞 

𝑡

∆𝑡

=
1

2
(

𝐻 𝑝+1,𝑞
𝑡+1 +𝐻 𝑝−1,𝑞

𝑡+1 + 𝐻 𝑝,𝑞+1
𝑡+1 +𝐻 𝑝,𝑞−1

𝑡+1 − 4𝐻𝑝,𝑞
𝑡+1

 

(∆𝑥)2
+ 
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+  
𝐻 𝑝+1,𝑞

𝑡 − 4𝐻𝑝,𝑞
𝑡 +𝐻 𝑝−1,𝑞  

𝑡 + 𝐻 𝑝,𝑞+1
𝑡 +𝐻 𝑝,𝑞−1  

𝑡

(∆𝑥)2
)  (33) 

Let 𝛽 =
𝑇∆𝑡

𝑆(∆𝑥)2 and re-arranging, it becomes 

𝐻𝑝,𝑞
𝑡+1 = 𝐻𝑝,𝑞 

𝑡 + 
1

2
𝛽 (𝐻 𝑝+1,𝑞

𝑡+1 +𝐻 𝑝−1,𝑞
𝑡+1

+ 𝐻 𝑝,𝑞+1
𝑡+1 +𝐻 𝑝,𝑞−1

𝑡+1 − 4𝐻𝑝,𝑞
𝑡+1

 

+ 𝐻 𝑝+1,𝑞
𝑡 − 

4𝐻𝑝,𝑞
𝑡 +𝐻 𝑝−1,𝑞  

𝑡 + 𝐻 𝑝,𝑞+1
𝑡 +𝐻 𝑝,𝑞−1  

𝑡 )  (34) 

 

With sinks/sources 

𝑆

𝑇

𝜕𝐻

𝜕𝑡
=

𝜕2𝐻

𝜕𝑥2
+

𝜕2𝐻

𝜕𝑦2
+

𝑅

𝑇
 

Using equation (33), we have 

𝑆

𝑇

𝐻𝑝,𝑞
𝑡+1 −  𝐻𝑝,𝑞 

𝑡

∆𝑡

=
1

2
(

𝐻 𝑝+1,𝑞
𝑡+1 +𝐻 𝑝−1,𝑞

𝑡+1 + 𝐻 𝑝,𝑞+1
𝑡+1 +𝐻 𝑝,𝑞−1

𝑡+1 − 4𝐻𝑝,𝑞
𝑡+1

 

(∆𝑥)2
+ 

𝐻 𝑝+1,𝑞
𝑡 − 4𝐻𝑝,𝑞

𝑡 +𝐻 𝑝−1,𝑞  
𝑡 + 𝐻 𝑝,𝑞+1

𝑡 +𝐻 𝑝,𝑞−1  
𝑡

(∆𝑥)2
)

+
𝑅

𝑇
 (35) 

Let 𝛽 =
𝑇∆𝑡

𝑆(∆𝑥)2 

𝐻𝑝,𝑞
𝑡+1 = 𝐻𝑝,𝑞 

𝑡 + 
1

2
𝛽 (𝐻 𝑝+1,𝑞

𝑡+1 +𝐻 𝑝−1,𝑞
𝑡+1

+ 𝐻 𝑝,𝑞+1
𝑡+1 +𝐻 𝑝,𝑞−1

𝑡+1 − 4𝐻𝑝,𝑞
𝑡+1

 

+ 𝐻 𝑝+1,𝑞
𝑡 − 

 

Numerical Applications 

Example 1: 

1. In a confined isotropic, homogeneous 

aquifer, a single well is pumped to steady-state 

conditions. A square grid measuring 500m x 500m is 

imposed and the heads along the boundary of the grid 

are illustated below. Compute the hydraulic heads at 

the interior nodes (Karvonen, 2002). 

 

Method 1:  Alternating Direction Implicit 

Method (ADI) 

 
Fig 1. Schematic diagram for ADI of question 1 

 

Using equation (18) and figure (1), we have the 

following equations for the row iterations 

For Row q = 1 

      7.22 − 4𝐻7
(𝑛+1)

+ 𝐻8
(𝑛+1)

= −7.22 − 𝐻4
(𝑛)

    

 for p = 1 

𝐻7
(𝑛+1) − 4𝐻8

(𝑛+1)
+ 𝐻9

(𝑛+1)
= −7.65 − 𝐻5

(𝑛)
 

 for p = 2 

    𝐻8
(𝑛+1) − 4𝐻9

(𝑛+1)
+ 8.33 = −7.99 − 𝐻6

(𝑛)
 

 for p = 3 

For Row q = 2 

     7.65 − 4𝐻4
(𝑛+1)

+ 𝐻5
(𝑛+1)

 = −𝐻7
(𝑛)

− 𝐻1
(𝑛)

   

 for p = 1 

𝐻4
(𝑛+1) − 4𝐻5

(𝑛+1)
+ 𝐻6

(𝑛+1)
= −𝐻8

(𝑛)
− 𝐻2

(𝑛)
   

 for p = 2 

  𝐻5
(𝑛+1) − 4𝐻6

(𝑛+1)
+ 8.43  = −𝐻9

(𝑛)
− 𝐻3

(𝑛)
 

 for p = 3 

For Row q = 3 

 7.99 − 4𝐻1
(𝑛+1)

+ 𝐻2
(𝑛+1)

     = −𝐻4
(𝑛)

− 8.33   

 for p =1 

𝐻1
(𝑛+1) − 4𝐻2

(𝑛+1)
+ 𝐻3

(𝑛+1)
= −𝐻5

(𝑛)
− 8.43 

 for p = 2 

𝐻2
(𝑛+1) − 4𝐻3

(𝑛+1)
+ 8.56    = −𝐻6

(𝑛)
− 8.55 

 for p = 3 

 

Using equation (20) and figure (1), we have the 

following equations for the column iterations 

For Column p = 1  

      7.22 − 4𝐻7
(𝑛+1)

+ 𝐻4
(𝑛+1)

= −𝐻8
(𝑛)

− 7.22 

 for q =1 

𝐻7
(𝑛+1) − 4𝐻4

(𝑛+1)
+ 𝐻1

(𝑛+1)
= −𝐻5

(𝑛)
− 7.65 

 for q = 2 

     𝐻4
(𝑛+1) − 4𝐻1

(𝑛+1)
+ 8.33 = −𝐻2

(𝑛)
− 7.99 

 for q = 3 

For Column p = 2  

7.65 − 4𝐻8
(𝑛+1)

+ 𝐻5
(𝑛+1)

      = −𝐻7
(𝑛)

− 𝐻9
(𝑛)

 

 for q = 1 
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𝐻8
(𝑛+1) − 4𝐻5

(𝑛+1)
+ 𝐻2

(𝑛+1)
= −𝐻4

(𝑛)
− 𝐻6

(𝑛)
  

 for q = 2 

𝐻5
(𝑛+1) − 4𝐻2

(𝑛+1)
+ 8.43     = −𝐻1

(𝑛)
− 𝐻3

(𝑛)
  

 for q = 3 

For Column p = 3 

     7.99 − 4𝐻9
(𝑛+1)

+ 𝐻6
(𝑛+1)

 = −𝐻8
(𝑛)

− 8.33  

 for q = 1 

𝐻9
(𝑛+1) − 4𝐻6

(𝑛+1)
+ 𝐻3

(𝑛+1)
= −𝐻5

(𝑛)
− 8.43  

 for q = 2 

 𝐻6
(𝑛+1) − 4𝐻3

(𝑛+1)
+ 8.55   = −𝐻2

(𝑛)
− 8.56  

 for q = 3 

 

The results converged after 20 iterations: 

 

 
Fig 2: Surface Plot of Example 1 using ADI Method 

 

Method 2: Improved Alternating Direction 

Implicit Method (IADI) 

Using equations (23) and (24), we will use the 

following equations for the iterations  

Assume k = 1.5, starting at p = 0 

For Row n = 1 

     7.22 − 3.5𝐻7
(𝑛+1)

+ 𝐻8
(𝑛+1)

= −7.22 − 𝐻4
(𝑛)

+

0.5𝐻7
(𝑛)

   for p =1 

     𝐻7
(𝑛+1) − 3.5𝐻8

(𝑛+1)
+ 𝐻9

(𝑛+1)
= −7.65 − 𝐻5

(𝑛)
+

0.5𝐻8
(𝑛)

  for p =2 

     𝐻8
(𝑛+1) − 3.5𝐻9

(𝑛+1)
+ 8.33 = −7.99 − 𝐻6

(𝑛)
+

0.5𝐻9
(𝑛)

  for p =3 

For Row n = 2 

      7.65 − 3.5𝐻4
(𝑛+1)

+ 𝐻5
(𝑛+1)

= −𝐻7
(𝑛)

− 𝐻1
(𝑛)

+

0.5𝐻4
(𝑛)

   for p =1 

     𝐻4
(𝑛+1) − 3.5𝐻5

(𝑛+1)
+ 𝐻6

(𝑛+1)
= −𝐻8

(𝑛)
− 𝐻2

(𝑛)
+

0.5𝐻5
(𝑛)

  for p =3 

   𝐻5
(𝑛+1) − 3.5𝐻6

(𝑛+1)
+ 8.43  = −𝐻9

(𝑛)
− 𝐻3

(𝑛)
+

0.5𝐻6
(𝑛)

  for p =3 

For Row n = 3 

7.99 − 3.5𝐻1
(n+1)

+ 𝐻2
(n+1)

     = −𝐻4
(𝑛)

− 8.33 +

0.5𝐻1
(𝑛)

   for p =1 

𝐻1
(n+1) − 3.5𝐻2

(n+1)
+ 𝐻3

(n+1)
 = −𝐻5

(𝑛)
− 8.43 +

0.5𝐻2
(𝑛)

  for p =2 

𝐻2
(n+1) − 3.5𝐻3

(𝑛+1)
+ 8.56 = −𝐻6

(𝑛)
− 8.55 +

0.5𝐻3
(𝑛)

                 for p =3 

For Column m = 1 

   7.22 − 3.5𝐻7
(𝑛+1)

+ 𝐻4
(𝑛+1)

   = −𝐻8
(𝑛)

− 7.22 +

0.5𝐻7
(𝑛)

   for q =1 

    𝐻7
(𝑛+1) − 3.5𝐻4

(𝑛+1)
+ 𝐻1

(𝑛+1)
= −𝐻5

(𝑛)
− 7.65 +

0.5𝐻4
(𝑛)

   for q =2 

     𝐻4
(𝑛+1) − 3.5𝐻1

(𝑛+1)
+ 8.33 = −𝐻2

(𝑛)
− 7.99 +

0.5𝐻1
(𝑛)

    for q =3 

For Column m = 2  

     7.65 − 3.5𝐻8
(𝑛+1)

+ 𝐻5
(𝑛+1)

 = −𝐻7
(𝑛)

− 𝐻9
(𝑛)

+

0.5𝐻8
(𝑛)

   for q =1 

    𝐻8
(𝑛+1) − 3.5𝐻5

(𝑛+1)
+ 𝐻2

(𝑛+1)
= −𝐻4

(𝑛)
− 𝐻6

(𝑛)
+

0.5𝐻5
(𝑛)

    for q =2 

     𝐻5
(𝑛+1) − 3.5𝐻2

(𝑛+1)
+ 8.43 = −𝐻1

(𝑛)
− 𝐻3

(𝑛)
 +

0.5𝐻2
(𝑛)

   for q =3 

For Column m = 3 

     7.99 − 3.5𝐻9
(𝑛+1)

+ 𝐻6
(𝑛+1)

 = −𝐻8
(𝑛)

− 8.33 +

0.5𝐻9
(𝑛)

   for q =1 

−3.5𝐻6
(𝑛+1)

+ 𝐻3
(𝑛+1)

= −𝐻5
(𝑛)

− 8.43 + 0.5𝐻6
(𝑛)

  

  for q =2 

    𝐻6
(𝑛+1) − 3.5𝐻3

(𝑛+1)
+ 8.55 = −𝐻2

(𝑛)
− 8.56 +

0.5𝐻3
(𝑛)

   for q =3 

 

The results converged after six(11) iterations are 

 

 
Fig 3: Surface Plot of Example 1 using IADI method 

 

Example 2: 

A domain is bounded at the top and bottom by 

Neumann boundaries with no flow. Water infiltration 

occurs at the rate of 1m and 2m per day on the left and 

right boundaries respectively based on the piezometric 
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head.  Express this mathematically and compute the 

hydraulic heads at the internal nodes. 

 

These can be expressed mathematically as: 

∇2= 0                              {(𝑥, 𝑦):                        0 <  𝑥
< 1, 0 < 𝑦 < 1 

𝐵𝐶:                                  𝐻(0, 𝑦)  = 1                0 ≤ 𝑦
≤ 1 

 𝐻(1, 𝑦)   = 2                0 ≤ 𝑦 ≤ 1 

𝐻1(𝑥, 0) = 0                  0 ≤ 𝑥 ≤ 1 

𝐻1(𝑥, 1)  = 0                 0 ≤ 𝑥 ≤ 1                        𝑁𝑦

= 6, 𝑁𝑥 = 6 

 
Fig 4: Schematic Diagram for Example 2 

 

In figure 4, the central difference formula for the first 

derivative is used for the Neumann Boundary with no 

flow. 
𝑑𝑦

𝑑𝑥
=

𝐻𝑖+1,𝑗−𝐻𝑖−1,𝑗

2∆𝑥
= 0 which implies that  𝐻𝑖+1,𝑗 =

𝐻𝑖−1,𝑗 for example 𝐻2,1 = 𝐻0,1 

 

Method 1: Alternating Direction Implicit Method 

(ADI) 

 
Fig 5: ADI Diagram for Example 2 

 

From figure 5 and equations (18) and (20), we generate 

equations for the row iteration equations and the 

column iterations respectively.  Starting at n = 0 and 

apply the boundary using the central difference for 

first derivative that is 𝐻𝑖+1,𝑗 = 𝐻𝑖−1,𝑗 and 𝐻𝑖,𝑗+1 =

𝐻𝑖,𝑗−1.  

For Row q = 1 

              1 − 4𝐻21
(𝑛+1)

+ 𝐻22
(𝑛+1)

= −2𝐻17
(𝑛)

     

 for p = 1 

𝐻21
(𝑛+1) − 4𝐻22

(𝑛+1)
+ 𝐻23

(𝑛+1)
= −2𝐻18

(𝑛)
 

 for p = 2 

𝐻22
(𝑛+1) − 4𝐻23

(𝑛+1)
+ 𝐻24

(𝑛+1)
= −2𝐻19

(𝑛)
 

 for p = 3 

         𝐻23
(𝑛+1) − 4𝐻24

(𝑛+1)
+ 2 = −2𝐻20

(𝑛)
 

 for p = 4 

 

For Row q = 2 

                1 − 4𝐻17
(𝑛+1)

+ 𝐻18
(𝑛+1)

 = −𝐻21
(𝑛)

− 𝐻13
(𝑛)

  

 for p = 1 

    𝐻17
(𝑛+1) − 4𝐻18

(𝑛+1)
+ 𝐻19

(𝑛+1)
= −𝐻22

(𝑛)
− 𝐻14

(𝑛)
  

 for p = 2 

  𝐻18
(𝑛+1) − 4𝐻19

(𝑛+1)
+ 𝐻20

(𝑛+1)
  = −𝐻23

(𝑛)
− 𝐻15

(𝑛)

 for p = 3 

            𝐻19
(𝑛+1) − 4𝐻20

(𝑛+1)
+ 2  = −𝐻24

(𝑛)
− 𝐻16

(𝑛)

 for p = 4 

 

For Row q = 3 

                1 − 4𝐻13
(𝑛+1)

+ 𝐻14
(𝑛+1)

 = −𝐻17
(𝑛)

− 𝐻9
(𝑛)

  

 for p = 1 

    𝐻13
(𝑛+1) − 4𝐻14

(𝑛+1)
+ 𝐻15

(𝑛+1)
= −𝐻18

(𝑛)
− 𝐻10

(𝑛)
  

 for p = 2 

  𝐻14
(𝑛+1) − 4𝐻15

(𝑛+1)
+ 𝐻16

(𝑛+1)
  = −𝐻19

(𝑛)
− 𝐻11

(𝑛)

 for p = 3 

           𝐻15
(𝑛+1) − 4𝐻16

(𝑛+1)
+ 2  = −𝐻20

(𝑛)
− 𝐻12

(𝑛)

 for p = 4 

This continues until it gets to Row q = 6 

For the column iterations, we will use equation (20) 

and figure 5. 

For Column p = 1  

      2𝐻17
(𝑛+1)

− 4𝐻7
(𝑛+1)

= −1 − 𝐻22
(𝑛)

 

 for q =1 

𝐻21
(𝑛+1) − 4𝐻17

(𝑛+1)
+ 𝐻13

(𝑛+1)
= −1 − 𝐻18

(𝑛)
 

 for q = 2 

     𝐻17
(𝑛+1) − 4𝐻13

(𝑛+1)
+ 𝐻9

(𝑛+1)
= −1 − 𝐻14

(𝑛)

 for q = 3 

𝐻13
(𝑛+1) − 4𝐻9

(𝑛+1)
+ 𝐻5

(𝑛+1)
= −1 − 𝐻10

(𝑛)
 

 for q = 4 

     𝐻9
(𝑛+1) − 4𝐻5

(𝑛+1)
+ 𝐻1

(𝑛+1)
= −1 − 𝐻6

(𝑛)

 for q = 5 

    2𝐻5
(𝑛+1) − 4𝐻1

(𝑛+1)
= −1 − 𝐻2

(𝑛)
 

 for q = 6 

 

For Column p = 2  

             2𝐻18
(𝑛+1)

− 4𝐻22
(𝑛+1)

      = −𝐻21
(𝑛)

− 𝐻23
(𝑛)

 for q = 1 

H5 H6 H7 H8

1 H1 H2 H3 H4 2

1
H5 H6 H7 H8 2

1 H9 H10 H11 H12 2

1 H13 H14 H15 H16 2

1 H17 H18 H19 H20 2

1 H21 H22 H23 H24 2

p = 1 p = 2 p = 3 p = 4

q = 1

q = 2

q = 3

q = 4

q = 5

q = 6

H17          H18 H19 H20
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𝐻22
(𝑛+1) − 4𝐻18

(𝑛+1)
+ 𝐻14

(𝑛+1)
= −𝐻17

(𝑛)
− 𝐻19

(𝑛)
 

 for q = 2 

𝐻18
(𝑛+1) − 4𝐻14

(𝑛+1)
+ 𝐻10

(𝑛+1)
= −𝐻13

(𝑛)
− 𝐻15

(𝑛)
 

 for q = 3 

𝐻14
(𝑛+1) − 4𝐻10

(𝑛+1)
+ 𝐻16

(𝑛+1)
= −𝐻9

(𝑛)
− 𝐻11

(𝑛)
 

 for q = 4 

𝐻10
(𝑛+1) − 4𝐻6

(𝑛+1)
+ 𝐻2

(𝑛+1)
= −𝐻5

(𝑛)
− 𝐻7

(𝑛)
 

 for q = 5 

            2𝐻6
(𝑛+1)

− 4𝐻2
(𝑛+1)

      = −𝐻1
(𝑛)

− 𝐻3
(𝑛)

 for q = 6 

 

This continues until it gets to Column p = 4 

Now, starting the iterations of both row and column at 

n = 0 

The iterations continue until the results the results 

converge 

At iteration 18, the results converged and the results 

are: 

 

 
Fig 6: Surface Plot of ADI of example 2 

  

Method 2: Improve Alternating Direction Implicit 

Method (IADI) 

 

Using figure 5 and equation (23) for the row iterations 

and equation (24) for the column iterations. 

Take k = 1.2, equation for row iteration at n = 0 is 

𝐻𝑝−1,𝑞
(1)

− (3.2)𝐻𝑝,𝑞
(1)

+ 𝐻𝑝+1,𝑞
(1)

= −𝐻𝑝,𝑞−1
(0)

−𝐻𝑝,𝑞+1
(0)

+ (0.8)𝐻𝑝,𝑞
(0)

     (37)
 

 

Equation for column iteration at n = 0 is 

𝐻𝑝,𝑞−1
(2)

− (3.2)𝐻𝑝,𝑞
(2)

+ 𝐻𝑝,𝑞+1
(2)

= −𝐻𝑝−1,𝑞
(1)

−𝐻𝑝+1,𝑞
(1)

+ (0.8)𝐻𝑝,𝑞
(1)  (38)

 

 

The results of the iteration after 8 iterations are: 

 

 
Fig 7: Surface Plot of IADI for example 2 

 

Example 3 (Well Drawdown) 

A fully penetrated well is situated in a horizontal 

isotropic aquifer of thickness 30m. The confined 

aquifer assumed to be of circular shape and the 

discharging well is located at the center of the aquifer, 

the radius of the homogeneous, isotropic aquifer is 

1100 m. The transmissivity, T is 400 m2/d and the 

pumping rate Q from the well is 2000 m3/d. Before 

pumping, the static water level in the well is 30 m, the 

hydraulic head along the circular boundary of the 

aquifer is 30 m and it is assumed that drawdown 

extends out to a radial distance of 1100 m from the 

well. That is the static water level remains unaffected 

for distances that exceed 1100 m from the well. Take 

∆x = 100. (Karvonen, 2002). 

 

Solution: 

∆x = ∆y = 100, T = 400 m2/d, R = 0.2m/d, Q = 2000 

m3/d 

𝑅 = −
𝑄

(∆x)2
=  

2000

10000
= −0.2 

𝑅(∆x)2

𝑇
= 0.2 ∗ 100 ∗

100

400
= 5 
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Fig 8:  The circular aquifer with the well at the center 

 

As shown in Figure 8, we will consider only one 

quadrant and use the solution of the one quadrant to 

get the solution of the other 3 quadrants. We will use 

rectangular coordinates for the solution. Because of 

symmetry, it is required that the line x and y axes be 

no-flow boundary. From Figure 8 and table  

1, we can see that all the nodes that the distance from 

the well is greater than 1100m takes the value 30m. 

There is No flow boundary on the left and bottom of 

the quadrant and constant head on the right and top 

boundary = 30m. 

 

Method 1: Alternating Direction Implicit Method 

(ADI) 

Using figure 8, table 1 and equations (18) and (20), 

starting the iteration at p = 0 and applying the 

boundary conditions on the left and at the bottom since 

they are no flow boundaries 

 
𝑑𝑦

𝑑𝑥
=

𝐻𝑝+1,𝑞−𝐻𝑝−1,𝑞

2∆𝑥
= 0 which implies that  

𝐻𝑝+1,𝑞 = 𝐻𝑝−1,𝑞  and 𝐻𝑝,𝑞+1 = 𝐻𝑝,𝑞−1   

 𝐻2,1 = 𝐻0,1 and 𝐻1,2 = 𝐻1,0    

For Row Iteration at n = o,  

𝐻𝑝−1,𝑞
(1)

− 4𝐻𝑝,𝑞
(1)

+ 𝐻𝑝+1,𝑞
(1)

= −𝐻𝑝,𝑞−1
(0)

− 𝐻𝑝,𝑞+1 
(0)

(39) 

For Column Iteration at n = o, 

𝐻𝑝,𝑞−1
(1)

− 4𝐻𝑝,𝑞
(1)

+ 𝐻𝑝,𝑞+1
(1)

= −𝐻𝑝−1,𝑞
(0)

− 𝐻𝑝+1,𝑞
(0)

  (40) 

And for the pumping node, using equations (21) and 

(21) 

For Row Iteration at n = o,  

𝐻𝑝−1,𝑞
(1)

− 4𝐻𝑝,𝑞
(1)

+ 𝐻𝑝+1,𝑞
(1)

= −𝐻𝑝,𝑞−1
(0)

− 𝐻𝑝,𝑞+1 
(0)

− 5  (41) 

For Column Iteration at n = o, 

𝐻𝑝,𝑞−1
(1)

− 4𝐻𝑝,𝑞
(1)

+ 𝐻𝑝,𝑞+1
(1)

= −𝐻𝑝−1,𝑞
(0)

− 𝐻𝑝+1,𝑞
(0)

− 5   (42) 

Alternating the row and the column, the results after 

iteration 203 is presented in table 2 

 

 
Fig 9: Surface Plot of ADI for Example 3 

 

Method 2: Improved Alternating Direction Implicit 

Method (IADI) 

Using Table 1 and equations (23) and (24), generate 

the equations for the Improved Alternating Direction 

implicit method (ADI), for n = 0 and k = 1.1, 
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applying the boundary condition as in the second 

method 

the row equation becomes 

𝐻𝑝−1,𝑞
(1)

− (3.1)𝐻𝑝,𝑞
(1)

+ 𝐻𝑝+1,𝑞
(1)

= −𝐻𝑝,𝑞−1
(0)

− 𝐻𝑝,𝑞+1
(0)

+ (0.9)𝐻𝑝,𝑞
(0)

    (43) 

the column equation becomes 

𝐻𝑝,𝑞−1
(2)

− (3.1)𝐻𝑝,𝑞
(2)

+ 𝐻𝑝,𝑞+1
(2)

= −𝐻𝑝−1,𝑞
(1)

− 𝐻𝑝+1,𝑞
(1)

+ (0.9)𝐻𝑝,𝑞
(1)   (44) 

At the well node, for p = 0, k=1.1, using equations 

(25) and (26) for row and column iterations 

𝐻𝑝−1,𝑞
(1)

− (3.1)𝐻𝑝,𝑞
(1)

+ 𝐻𝑝+1,𝑞
(1)

= −𝐻𝑝,𝑞−1
(0)

− 𝐻𝑝,𝑞+1
(0)

+ (0.9)𝐻𝑝,𝑞
(0)

− 5   (45) 

While the column iteration uses 

𝐻𝑝,𝑞−1
(2)

− (3.1)𝐻𝑝,𝑞
(2)

+ 𝐻𝑝,𝑞+1
(2)

= −𝐻𝑝−1,𝑞
(1)

− 𝐻𝑝+1,𝑞
(1)

+ (0.9)𝐻𝑝,𝑞
(1) 

− 5  (46) 

Alternating the row and the column, the result after 

iteration 48 is presented in Table 3 

 

 
Fig 10: Surface Plot of IADI for Example 3 

 

Example 4: Unsteady Flow 

A rectangular aquifer is subdivided into a 7x7 grid 

with uniform grid spacing of 100m in both x and y 

directions. The Transmissivity is homogeneous at a 

value of 0.1m2/s.  The Storage coefficient is 0.001. The 

North and South Boundaries are impervious with zero 

flux.  The west and East boundaries are constant head 

boundaries with head values at 50m, which also serves 

as the initial head at all nodes at time t = 0.  Recharge 

due to precipitation is zero (0).  A pumping well starts 

operating at time t = 0 at a constant rate of 1m3/s, 

located at node (4, 4), take ∆t = 10s,  Compute heads 

for the interior nodes at time t = 50s and 100s.  

(Kinzelbach, 1986) 

 

Given:   T = 0.1m2/s, S = 0.001, R = 1m3/s,  H (east 

and west) = 50m, Hy (north and south) = 0 

∆t = 10s, ∆x = ∆y = 100m 

            
𝑅

𝑇
=

1

0.1
= 10,    𝑟 =

𝑇∆t

𝑆∆𝑥2 =
0.1∗10

0.001∗10000
= 0.1 

  

where      𝛾 =
𝑇∆𝑡

𝑆(∆𝑥)2 =  
0.1𝑥10

0.001𝑥10000
= 0.1,   𝑅 =

𝑄

(∆𝑥)2 =
1

1002 = 0.0001 

  

therefore, 
𝑅(∆𝑥)2

𝑇
=

0.0001∗1002

0.1
= 10 

 

 

Method 1: Explicit Finite Difference Method 

(EFDM) 

Using table 1 and equation (47) for the nodes without 

a well at time t = 0, 𝛾 = 0.1 

𝐻𝑝,𝑞
1 = 𝐻𝑝,𝑞

0 + 0.1(𝐻𝑝+1,𝑞
0 + 𝐻𝑝−1,𝑞

0 + 𝐻𝑝,𝑞+1
0

+ 𝐻𝑝,𝑞−1
0 − 4𝐻𝑝,𝑞

0 )  (47) 

 

And equation (48) for the pumping well (pumping 

takes place at node 18) 

 

𝐻𝑝,𝑞
1 = 𝐻𝑝,𝑞

0 + 0.1(𝐻𝑝+1,𝑞
0 + 𝐻𝑝−1,𝑞

0 + 𝐻𝑝,𝑞+1
0

+ 𝐻𝑝,𝑞−1
0 − 4𝐻𝑝,𝑞

0 − 10)  (48) 

 

All initial values = 50 and applying the boundary 

conditions 

Use initial time t = 0 to compute the results at the 

next time step of time t = 10secs, and the results at 

time t = 100 seconds are presented in figure 11 

 
Table 1: mathematical interpretation of Example 4 with the well at the centre 

No flow boundary  H1 H2 H3 H4 H5 

 grid 100 200 300 400 500 600 700 

100 50 H1 H2 H3 H4 H5 50 

200 50 H6 H7 H8 H9 H10 50 

300 50 H11 H12 H13 H14 H15 50 

400 50 H16 H17 well H19      H20 50 

500 50 H21 H22 H23 H24 H25 50 

600 50 H26 H27 H28 H29 H30 50 

700 50 H31 H32 H33 H34 H35 50 

No flow boundary   H31 H32 H33 H34 H35 
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Fig 11: Surface Plot of EFDM for Example 4 at time t=100seconds 

 

Method 2: Crank Nicolson Method 

Using equation (49) for the nodes without the 

pumping well at time t = 0, 𝜑 = 0.1 

𝐻𝑝,𝑞
1 = 𝐻𝑝,𝑞

0 +
1

2
0.1(𝐻𝑝+1,𝑞

1 + 𝐻𝑝−1,𝑞
1 + 𝐻𝑝,𝑞+1

1 +

𝐻𝑝,𝑞−1
1 − 4𝐻𝑝,𝑞

1 + +𝐻𝑝+1,𝑞
0 +  

+𝐻𝑝−1,𝑞
0 + 𝐻𝑝,𝑞+1

0 + 𝐻𝑝,𝑞−1
0 − 4𝐻𝑝,𝑞

0 )  (49) 

And equation (50) for the nodes with the pumping 

well (Note that pumping takes place at node 18 that is 

H18) 

  

𝐻𝑝,𝑞
1 = 𝐻𝑝,𝑞

0 +
1

2
0.1(𝐻𝑝+1,𝑞

1 + 𝐻𝑝−1,𝑞
1 + 𝐻𝑝,𝑞+1

1

+ 𝐻𝑝,𝑞−1
1 − 4𝐻𝑝,𝑞

1 + +𝐻𝑝+1,𝑞
0 + 

+ 𝐻𝑝−1,𝑞
0 + 𝐻𝑝,𝑞+1

0 + 𝐻𝑝,𝑞−1
0 − 4𝐻𝑝,𝑞

0 − 2(10)) (50) 

 

Use the initial time t = 0 to compute the results at the 

next time step of time t = 10 seconds, and the results 

of distribution of heads at time t = 100s are presented 

in figure 12 

 

 

Fig 12: Surface Plot of EFDM for Example 4 at time t=100seconds 

RESULTS AND DISCUSSION 
Table 2 shows the results of ADI and IADI in example 

1 and their comparison, the results of the comparison 

give zero error showing that the two methods can be 

used to solve steady-state groundwater flow equations. 

However, comparing the results using the number of 

iterations in Table 3 showed that IADI has the least 

number of iterations, this finding can be interpreted as 

support that IADI is the most effective method of 

solutions ((Karvonen, 2002; Shittu et. al., 2024). 

 
Table 2: Comparing the results of Example 1  

 
 

Table 3. Comparing the number of iterations of Example 1 

 
 

Table 4: Comparing the results of example 2 

Heads ADI IADI ERROR 

H1 1.200000 1.200000 0.000000 

H2 1.400000 1.400000 0.000000 

H3 1.600000 1.600000 0.000000 

H4 1.800000 1.800000 0.000000 

H5 1.200000 1.200000 0.000000 

H6 1.400000 1.400000 0.000000 

H7 1.600000 1.600000 0.000000 

H8 1.800000 1.800000 0.000000 

H9 1.200000 1.200000 0.000000 

H10 1.400000 1.400000 0.000000 

H11 1.600000 1.600000 0.000000 

H12 1.800000 1.800000 0.000000 

H13 1.200000 1.200000 0.000000 

H14 1.400000 1.400000 0.000000 

H15 1.600000 1.600000 0.000000 

H16 1.800000 1.800000 0.000000 

H17 1.200000 1.200000 0.000000 

H18 1.400000 1.400000 0.000000 

H19 1.600000 1.600000 0.000000 

H20 1.800000 1.800000 0.000000 

H21 1.200000 1.200000 0.000000 

H22 1.400000 1.400000 0.000000 

H23 1.600000 1.600000 0.000000 

H24 1.800000 1.800000 0.000000 

 

Table 4 showed the results of the two methods of 

solution of example 2, ADI and IADI and they yield 

45.00

46.00

47.00

48.00

49.00

50.00

1 2 3 4 5 6 7
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the same results with zero error, this illustrated that the 

two methods are reliable in solving the steady-state 

groundwater flow governing equation, but comparing 

using the number of iterations in Table 5 showed that 

IADI converged faster than ADI with the lowest 

number of iterations, this shows that IADI is reliable 

and the best method of solution (Shittu et. al., 2024). 
 

Table 5: Comparing the number of iterations of example 2 

 
 

 

Table 6 compares the results of the two methods used 

in example 3, it could be observed that the results give 

zero error, this shows that the two methods are 

applicable in finding the solution of the governing 

equation of the steady-state groundwater flow, 

however Table 7 illustrated the comparison of the two 

methods using the number of iterations and it was also 

observed that IADI has the least number of iterations 

which makes IADI more reliable than ADI (Karvonen, 

2002). 

 
Table 6:  Comparing the results of example 3 

HEADS ADI IADI ERROR 

H1 26.78456 26.78456 0.000000 

H2 28.03456 28.03456 0.000000 

H3 28.60147 28.60147 0.000000 

H4 28.93602 28.93602 0.000000 

H5 29.16972 29.16972 0.000000 

H6 29.34955 29.34955 0.000000 

H7 29.49618 29.49618 0.000000 

H8 29.6204 29.6204 0.000000 

H9 29.72873 29.72873 0.000000 

H10 29.82566 29.82566 0.000000 

H11 29.91487 29.91487 0.000000 

 
Table 8: Comparing the result of example 4 at time t =100seconds 

Heads Explicit Method Crank Nicolson Method 

H1 49.90575 49.90061 

H2 49.80435 49.80411 

H3 49.90575 49.90061 

H4 49.64371 49.65187 

H5 49.14390 49.16925 

H6 46.85207 49.65187 

H7 49.14441 49.17025 

H8 46.85207 46.90569 

H9 49.14441 49.17025 

H10 49.64371 49.65187 

H11 49.14390 49.16925 

H12 49.64371 49.65187 

 

In table 8, the results of using Explicit finite difference 

method and Crank Nicolson method for example 4 is 

shown, and the results showed that the two methods 

can be effectively used in finding the solution of 

transient groundwater flow equation, therefore the two 

methods (EFDM and CNM) can be used for all real 

life engineering problems. 

 

 
Fig 13: Pumping time against hydraulic head 

 

 

Fig 14: Pumping time against drawdown 

 

Figure 13 shows that increase in time resulted in a 

decrease in hydraulic head which suggests that the 

direction of groundwater flow is from higher elevation 

to lower elevation However in Figure 14, it could be 

observed that drawdown increases with time which 

shows the effects of over-pumping on groundwater 

flow. When water is pumped faster than it is 

recharged, drawdown increases, this lowers the cone 

of depression to the bottom of the water and thereby 

the water in the well dries up (Kinzelbach, 1986). 

 

Conclusion: In this study, the investigation of 

direction of groundwater flow and factors affecting 

drawdown and effects of over-pumping for steady and 
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48.50000
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49.50000
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unsteady states has been carried out. The problems 

considered showed that the two methods used are 

efficient and reliable in solving steady and unsteady-

state groundwater flow and can be used for all partial 

differential equations of real-life problems and that the 

direction of flow of groundwater is from higher 

hydraulic head to lower hydraulic head and that over 

pumping lowers the cone of depression to the bottom 

of the well and thereby dries up the water in the well. 
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