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ABSTRACT: The Computer Numerical Control (CNC) of a Lathe Machine helps in shaping hard materials like 

metal and wood, while rotating on two axes and the amount of materials removed per unit time during the production 

process provides the material removal rate (MRR). Hence, the objective of this paper was to optimize the Material 
Removal Rate in a Computer Numerical Control Lathe Machine in Turning AISI 1040 Steel while focusing on 

cutting parameters such as depth of cut, cutting speed, and feed rate. Employing a central composite design with 

twenty experimental runs, ANOVA analysis revealed cutting speed (F-value: 80.40) as the most influential 
parameter on MRR. Initially, Artificial Neural Networks (ANN) predicted MRR, yielding optimal parameters: depth 

of cut (0.25 mm), cutting speed (250 m/min), feed rate (0.20 mm/rev), resulting in MRR of 27.88 mm3/min. Genetic 

Algorithm (GA) optimization surpassed ANN, yielding higher MRR (29.07442 mm3/min) with optimal parameters: 
depth of cut (0.65 mm), cutting speed (221.09 m/min), and feed rate (0.21 mm/rev). Confirmatory tests validated 

predictions. This study provides insights into enhancing CNC turning efficiency and productivity. 
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Machining is a subtractive manufacturing process 

involving precision tools and machinery to remove 

material from a workpiece, achieving desired 

dimensions and surface finishes. It employs cutting, 

grinding, or similar methods to produce precise 

components, meeting engineering specifications. 

Turning, a subset of machining, is performed on a 

lathe machine where a single-point cutting tool, is used 

to remove material from a rotating workpiece creating 

cylindrical shapes. During turning, the workpiece 

rotates on its axis while the cutting tool is traversed 

linearly along the surface of the rotating workpiece 

thereby removing material, producing cylindrical 

shapes with precise dimensions and surface finishes. 

Achieving optimal performance and desired outcomes 

in turning hinges greatly upon the manipulation of 

various factors known as cutting parameters. These are 

the variables that can be controlled or adjusted during 

the machining operation to influence the outcome and 

machining performance. Several cutting parameters 

exist but for this work, the cutting speed, feed rate and 

depth of cut have been selected. The cutting speed is 

the workpiece surface's rotational speed relative to the 

tool's edge. Feed rate dictates tool movement relative 

to the workpiece during cutting while the depth of cut 

determines the tool's depth within the workpiece 
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radius during machining operations like turning or 

boring. A key response is the material removal rate 

(MRR) defined as the volume of material removed 

from the workpiece per unit of time during the turning 

process expressed in mm3 per minute.  

 

It is often utilized as a criterion to maximize the 

production rate (Kalpakjian and Schmid, 2013) and 

also serves as an indicator of production efficiency in 

machining processes (Abolghasem and Mancilla-

Cubides, 2022). A higher material removal rate 

indicates faster machining, which is often desirable to 

increase productivity and reduce manufacturing costs. 

Several factors influence the material removal rate, 

including the selected cutting parameters as well as the 

properties of the workpiece material and the cutting 

tool.  

 

Higher cutting speed and feed rate increase material 

removal rates, but deeper cuts may also enhance MRR 

at the expense of tool life and surface finish. Achieving 

an optimal material removal rate requires balancing 

the cutting parameters to maximize efficiency without 

compromising other factors such as surface quality, 

tool life and energy consumption. Various studies aim 

to determine optimal material removal rates in turning 

operations using diverse approaches. Romesh et al. 

(2017) utilized Response Surface Methodology 

(RSM) to optimize Material Removal Rate (MRR) in 

CNC Lathe turning of EN8 Steel. Depth of cut proved 

most influential, contributing 72.64% to MRR, 

followed by cutting speed (32.84%), while feed rate 

had minimal impact. RSM analysis identified optimal 

parameters to be 1200rpm cutting speed, 0.3mm depth 

of cut, and 0.25mm/rev feed rate, achieving 

5476.16mm3/min MRR.  

 

A study conducted by Edem et al. (2020) employed 

the Taguchi method to optimize cutting parameters. 

The aim was to achieve minimum surface roughness 

values and high material removal rates during the 

turning of AISI 1018 steel and AISI 314 stainless steel 

alloy. Machining was performed under flood cutting 

environment using carbide inserts.  

 

Their findings indicated that feed significantly 

influenced both surface roughness and material 

removal rate. Optimal results revealed that a cutting 

speed of 110 m/min, feed of 0.10 mm/rev, and 1.0 mm 

depth of cut resulted in a higher material removal rate 

of 10844.62mm3/min for turning both materials. 

Kumar et al. (2020) optimized CNC turning of EN19 

alloy steel, maximizing material removal rate and 

minimizing surface roughness. Using Response 

Surface Methodology, they found feed as the 

dominant factor for material removal rate.  

Optimal values were: cutting speed 859.5960 rpm, 

feed 0.090mm/min, depth of cut 2.0 mm, determined 

via ANOVA. In investigating the impact of cutting 

parameters, Ehibor and Aliemeke (2021) explored the 

influence of cutting speed, depth of cut, and feed on 

surface roughness and material removal rate during the 

turning of AISI 1045 carbon steel. Employing the 

Taguchi technique with an orthogonal array and 

analysis of variance, they studied cutting 

characteristics.  

 

Optimal surface roughness was achieved at a cutting 

speed of 330 rpm, a feed rate of 0.2 mm/rev, and a 

depth of cut of 0.6 mm. Similarly, maximum material 

removal rate occurred at a cutting speed of 630 rpm, a 

feed rate of 0.4 mm/rev, and a depth of cut of 1.0 mm. 

Martowibowo and Damanik (2021) utilized Genetic 

Algorithm (GA) to optimize dry turning of AISI 316L 

steel with tungsten carbide inserts. They conducted 18 

experimental runs to analyze the impact of cutting 

speed, feed rate, depth of cut, and tool nose radius on 

material removal rate (MRR) and surface roughness 

(SR). Their findings revealed that MRR was 

significantly affected by a combination of cutting 

speed, feed rate, and depth of cut, while SR was 

influenced by feed rate and depth of cut. Optimal 

values were determined as 0.64cm3/min for MRR and 

0.458µm for SR, with corresponding parameters 

including 0.4 mm tool nose radius, 96.9m/min cutting 

speed, 0.035 mm/rev feed rate, and 0.217mm depth of 

cut. In an effort to accurately predict machining 

parameters, Muthuram and Frank (2021) merged 

optimization methods and predictive models to 

forecast the ideal parameters for turning Ti-6-Al 4-V 

Titanium alloy. The goal was to enhance surface 

roughness while mitigating the impact on material 

removal rate. Titanium alloy was selected for its high 

specific strength, resistance to chemical corrosion, and 

widespread application in aerospace and automotive 

sectors. 

 

Drawing on experimental data from Ramesh et al. 

(2012), various Artificial Intelligence techniques, 

including Genetic Algorithm (GA) and Artificial 

Neural Network (ANN), were employed and 

compared to identify the most effective prediction 

method. Results showed that ANN outperformed other 

models with a mean absolute percentage error of 

1.08%. ANN was then combined with GA to 

determine the optimal combination for minimizing 

surface roughness while maximizing material removal 

rate. The study concluded that the highest MRR and 

lowest surface roughness were achieved at an 

optimized cutting speed, feed, and depth of cut of 280 

m/min, 0.18 mm, and 1 mm, respectively. 

Abolghasem and Mancilla-Cubides (2022) conducted 
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a study aiming to optimize surface roughness and 

material removal rate in aluminum turning operations. 

Cutting speed, feed rate, depth of cut, and cutting tool 

nose radius were considered as process parameters. 

Artificial Neural Networks (ANN) and Particle Swarm 

Optimization (PSO) were employed to predict and 

search for optimal parameter values to minimize 

surface roughness (Ra) and maximize material 

removal rate (MRR). Findings indicate an inverse 

relationship between surface roughness and MRR, 

with maximum MRR (38201.6mm3/min) achieved at 

a cutting speed of 1995.84 rpm, feed rate of 1 mm/rev, 

depth of cut of 0.12 mm, and nose radius of 0.3 mm, 

resulting in a surface roughness of 0.994 µm. A recent 

study by Al-Tamimi and Sanjay (2023) employed an 

intelligent machining model featuring four strategies 

to minimize resultant force, specific cutting energy, 

and maximize metal removal rate in the dry cutting of 

Inconel alloy 825 on a CNC lathe. The study analyzed 

the effects of cutting speed, feed rate, and depth of cut 

on these responses. Optimized parameters were 

determined, highlighting the significant influence of 

cutting speed and feed rate on resultant force, and feed 

rate and depth of cut on metal removal rate and 

specific cutting energy. Additionally, a hybrid method 

(ANFIS-PSO) was developed and validated, achieving 

successful prediction and optimization of the 

responses. Implementation of ANFIS-PSO to 

maximize material removal rate yielded optimal 

cutting parameters: 101 m/min cutting speed, 0.43 

mm/rev feed rate, and 0.54 mm depth of cut. Elsiti and 

Elmunafi (2023) conducted a multi-response 

optimization study on turning martensitic stainless 

steel (AISI 420) using Grey Relational Analysis 

(GRA). The study aimed to optimize the material 

removal rate (MRR), tool life, and surface roughness.  

 

Turning operations utilized a coated carbide tool 

(KC5010), with cutting speed, feed rate, and depth of 

cut as the considered process parameters. Cutting 

speed was found to have the most significant impact 

on the responses. The optimized process parameters 

were 100 m/min cutting speed, 0.16 mm/rev feed rate, 

and 0.2 mm depth of cut, resulting in a tool life of 33.7 

min, total material removed of 107.8 cm3, and a 

surface roughness of 0.38 µm. Abass et al. (2023) 

engaged a Multi-Objective Genetic Algorithm 

(MOGA) to optimize the material removal rate (MRR) 

and other turning responses of AISI 1045 steel.  

 

The optimized parameters yielded a feed rate of 0.075 

mm/rev, cutting speed of 91.5 m/min, and depth of cut 

of 0.55 mm, resulting in an MRR of 3774.37mm3/min. 

Das et al. (2024) employed three Multiple Criteria 

Decision-Making (MCDM) tools: GRA, VIKOR, and 

MOORA, to assess the effects of speed, feed, and 

depth of cut (DOC) on Material Removal Rate (MRR) 

and Surface Roughness (SR) during the turning 

process of Cu–Ni alloys with a carbide cutting tool. 

Findings reveal that turning at a spindle speed of 1500 

rpm, feed rate of 0.57 mm/rev, and DOC of 1.2 mm 

achieves optimal MRR and SR. Utilizing the Grey 

Relational Grade-based Taguchi methodology, 

Zhujani et al. (2024) optimized surface roughness, tool 

wear, and material removal rate during the turning of 

Inconel 718. Cutting speed, feed rate, and depth of cut 

were chosen as the cutting parameters.     ANOVA 

results highlighted the depth of cut (69.30%) as the 

most influential factor on multiple performance 

characteristics, followed by cutting speed (14.52%), 

nose radius (11.87%), and feed rate (3.79%). The 

findings indicated that the highest material removal 

rate of 4550 mm3/min was achieved with a cutting 

speed of 100 m/min, a feed rate of 0.091 mm/rev, and 

a depth of cut of 0.4mm. Abderazek et al. (2024) 

introduced an innovative multi-objective optimization 

algorithm termed Improved Differential Evolution and 

Nelder-Mead (IDE-NM). Their study incorporated 

three lubrication conditions and five key process 

parameters: cutting speed, feed rate, depth of cut, 

lubrication mode, and cutting material type. With three 

objectives in mind, they employed artificial neural 

network (ANN) modeling to analyze the experimental 

results. Comparative analysis with four alternative 

algorithms demonstrated that IDE-NM surpassed them 

all, demonstrating its capability to provide optimal 

outcomes. Hence, the objective of this paper was to 

optimize the Material Removal Rate in a Computer 

Numerical Control Lathe Machine in Turning an AISI 

1040 Steel while focusing on cutting parameters such 

as depth of cut, cutting speed, and feed rate. 

 

MATERIALS AND METHODS 
AISI 1040 steel is a medium carbon steel renowned for 

its balanced combination of properties, making it a 

versatile material in various industrial applications. 

With a carbon content ranging between 0.37% to 

0.44%, along with alloying elements such as 

manganese, phosphorus, and sulfur, it offers a robust 

level of strength while retaining excellent ductility. 

This balance of strength and ductility makes it 

particularly well-suited for applications where 

components need to withstand mechanical stress while 

maintaining flexibility and resilience.  

 

It also exhibits notable wear and fatigue resistance, 

ensuring longevity and durability in components 

subjected to repetitive stress and strain. In addition to 

its mechanical properties, AISI 1040 steel is valued for 

its ease of shaping and forming using machining 

techniques. Its good machinability allows for efficient 
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manufacturing processes, enabling the production of 

intricate components.  

 

Consequently, AISI 1040 steel finds extensive usage 

across diverse sectors such as automotive, machinery, 

and general engineering, where it is particularly 

suitable for demanding applications requiring reliable 

performance. Typical uses include cylinder head 

studs, carriage and U bolts, concrete reinforcing, 

shafts, shipping containers and the construction of 

automotive bodies.  

 

Twenty cylindrical blanks of AISI 1040 steel, each 

measuring 200 x 50mm, were utilized in the 

experiments conducted on a Yunnan Machine Tool 

works CY-K6150B CNC lathe machine, with carbide 

turning inserts employed for the machining process.  

The quantity of material removed per unit of time 

expressed in mm3 per minute during the turning 

process is known as the material removal rate. It can 

be computed using equation (Kalpakjian and Schmid, 

2021) (1). 

 

𝑀𝑅𝑅 =  𝜋𝐷𝑎𝑣𝑔𝑑𝑓𝑁 (1) 

 

Where 𝐷𝑎𝑣𝑔 =  
𝐷𝑜+𝐷𝑓

2
 in mm, 𝐷𝑜 is the initial 

workpiece diameter in mm,  𝐷𝑓 is the final workpiece 

diameter in mm, d is the depth of cut in mm, f is the 

feed rate in mm/rev and N is the rotational speed of the 

workpiece. The initial and final diameters of the 

workpieces were measured using a digital Vernier 

caliper. The workpiece parameters and cutting 

parameter ranges are presented in tables 1 and 2 

respectively. 

 
Table 1: Workpiece Parameters 

Workpiece Material AISI 1040 medium carbon steel 

Length (mm) 200 
Diameter (mm) 50 

Chemical composition (%) C (0.37 - 0.44), Fe (98.47 - 99.20, 

Mn (0.60% - 0.90),     P (≤ 0.040), 
S(0.050), Cr, Ni, Mo, Cu, Si and   

V (≤ 0.25) 

Tensile strength (MPa) 620 MPa 
Yield strength(MPa) 415 MPa 

Bulk modulus (GPa) 160 GPa 

Shear modulus (GPa) 80 GPa 
Tensile strength(MPa) 620 MPa 

Brinell Hardness 201 

Poissons Ratio  0.29 
Elongation at Break (%) 25 

Reduction of Area (%) 50 

 

Table 2: Cutting parameter ranges 

Cutting Parameter Range 

Depth of cut (mm) 0.25, 0.50 and 0.75 

Cutting speed (m/min) 150, 200 and 250 
Feed rate (mm/rev) 0.10, 0.15 and 0.20 

 

Figures 1 and 2 show sample of the workpiece and the 

CNC lathe machine setup respectively. 
 

 
Fig 1: Workpiece sample 

 
Fig2: CNC Lathe with workpiece 

 

This study focuses on predicting and optimizing 

material removal rate (MRR), with turning 

experiments conducted according to the Central 

Composite Design Matrix (CCD) outlined in table 3, 

which also includes the experimental results for 

material removal rate. 

 

The ANOVA table highlights cutting speed as the 

primary parameter significantly impacting the material 

removal rate, with an F-value of 80.40.  This is 

followed by the depth of cut (F-value 11.89) and their 

interaction effects (AB and AC). Adjusting these 

parameters appropriately can lead to substantial 

improvements in MRR during machining operations. 

The predictive R-squared value of 0.8624 reasonably 

aligns with the adjusted R-squared value of 0.9163, 

indicating a good fit of the model. Moreover, the high 

R-squared value of 0.9560 suggests that 95.60% of the 

variation in the responses can be accounted for. The 

outcome of a one-way analysis of variance (ANOVA) 

presented in table 4, assesses the significance of 

cutting parameters in maximizing material removal 

rate. 
 

ANN Modelling: After the completion of experiments 

and the acquisition of datasets, the subsequent focus 

lies on the development of the ANN model.  
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The neural network was trained to predict material 

removal rate via a feed-forward backpropagation 

algorithm, with the input layer utilizing the hyperbolic 

tangent transfer function to compute the layer output 

from the network input. The output layer employed the 

linear transfer function, while each hidden layer 

consisted of 10 neurons. Network performance was 

monitored using the Mean Square Error of Regression 

(MSEREG). The network properties for the material 

removal rate are presented in figure 3. 
 

Table 3: Experimental Data Set 

std run Depth of 
Cut 

(mm) 

Cutting Speed 
(m/min) 

Feed Rate 
(mm/rev) 

Experimental 
MRR 

(mm3/min) 

1 1 0.25 150.00 0.10 9.32 
5 2 0.25 150.00 0.20 11.1 

16 3 0.50 200.00 0.15 8.82 

7 4 0.25 250.00 0.20 27.47 
19 5 0.50 200.00 0.15 14.82 

2 6 0.75 150.00 0.10 18.61 

11 7 0.50 115.91 0.15 11.42 
6 8 0.75 150.00 0.20 8.99 

10 9 0.92 200.00 0.15 15.44 

12 10 0.50 284.09 0.15 27.66 
18 11 0.50 200.00 0.15 10.92 

8 12 0.75 250.00 0.20 11.92 

15 13 0.50 200.00 0.15 9.82 
4 14 0.75 250.00 0.10 16.2 

13 15 0.50 200.00 0.07 10.1 

3 16 0.25 250.00 0.10 22.85 
14 17 0.50 200.00 0.23 9.97 

20 18 0.50 200.00 0.15 9.82 

17 19 0.50 200.00 0.15 10.3 
9 20 0.08 200.00 0.15 19.71 

Table 4: ANOVA table for the Material Removal Rate 

Source Sum of 

Squares 

Df Mean 

Square 

F 

Value 

p-value 

Prob > F 
 

Model 658.86 9 73.21 24.12 < 0.0001 significant 

A-depth of cut 36.10 1 36.10 11.89 0.0062  

B-cutting speed 244.05 1 244.05 80.40 < 0.0001  

C-feed rate 4.53 1 4.53 1.49 0.2500  

AB 107.90 1 107.90 35.54 0.0001  

AC 51.51 1 51.51 16.97 0.0021  
BC 8.36 1 8.36 2.76 0.1279  

A^2 81.58 1 81.58 26.87 0.0004  

B^2 136.22 1 136.22 44.87 < 0.0001  
C^2 1.32 1 1.32 0.44 0.5243  

Residual 30.36 10 3.04    

Lack of Fit 8.11 5 1.62 0.36 0.8540 not significant 
Pure Error 22.25 5 4.45    

Cor Total 689.22 19     

R-Squared = 0.9560,  Adj R-Squared = 0.9163,  Pred R-Squared = 0.8624 

 

 
Fig 3: ANN properties for predicting Material removal rate 

For this study, the Levenberg-Marquardt training 

algorithm was utilized, allocating 60% of the data for 

network training, 25% for validation, and 15% for 

testing the network's performance. The network 

training diagram for the material removal rate is 

presented in figure 4. Figure 5 illustrates the 

performance trajectory and the gradient plot of the 

neural network during both training and validation 

phases. The peak model performance on the validation 

dataset (1.9448) was observed following the third 

training epoch, signifying the epoch where the most 

accurate prediction for the material removal rate was 

achieved. The gradient plot shows that nine (9) epochs 

were used during the training process for the material 

removal rate. However, the most accurate prediction 
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occurred at the 3rd epoch, as evidenced by the lowest 

failure rate observed at this stage. Beyond the 3rd 

epoch, the validation failure rate increased. 

 

 
Fig 4: Network training diagram for predicting material removal 

rate 

 

 
Fig 5: Performance curve and gradient plot for trained network 

 

RESULTS AND DISCUSSION 
Figure 6 presents regression plots, illustrating scatter 

plots that compare the predicted outputs against the 

actual target outputs for the training, validation, and 

testing datasets. These plots are evaluated using 

correlation coefficients (R), which assess the degree of 

alignment between the neural network's predictions 

and the actual target values. The correlation 

coefficients for the training, validation, and test 

datasets were found to be 0.89169, 0.99196, and 

0.85959, respectively. An overall correlation 

coefficient of 0.91726 was computed across all 

datasets. This cumulative R value suggests a strong 

positive correlation between the neural network's 

predictions and the actual target values, affirming the 

network's proficiency in predicting material removal 

rate. 

 

 
Fig 6: Regression plot of training, validation and testing for 

material removal rate 

 

The predicted values for the material removal rate 

using the trained neural network are given in table 5. 

From the experimental data, the highest MRR 

recorded is 27.66mm3/min, achieved under the 

conditions of a depth of cut of 0.50 mm, cutting speed 

of 284.09 m/min, and feed rate of 0.15 mm/rev.  In 

contrast, the neural network (ANN) prediction yields 

a maximum MRR of     27.8838 mm3/min. This 

prediction corresponds to a depth of cut of 0.25 mm, 

cutting speed of 250 m/min, and feed rate of 0.20 

mm/rev. Upon comparison, it is observed that the 

experimental and predicted maximum MRR values are 

close in magnitude, indicating good agreement 

between the two sets of results. However, the ANN 

prediction slightly surpasses the experimental result, 

suggesting that the neural network model is capable of 

accurately forecasting material removal rates under 

specific machining conditions. The experimental 

outcomes were compared with the predictions 

generated by the ANN, and the accuracy of the 

network's predictions is depicted in figure 7. 
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Table 5: ANN Predicted result for material removal rate 

S/N Depth 

Of 

cut 

(mm) 

Cutting 

speed 

(m/min) 

Feed rate 

(mm/rev) 

Experimental 

MRR 

(mm3/min) 

ANN 

Predicted 

MRR 

(mm3/min) 

1 0.25 150 0.10 9.32 10.6464 

2 0.25 150 0.20 11.1 13.5828 

3 0.50 200 0.15 8.82 11.807 
4 0.25 250 0.20 27.47 27.8838 

5 0.50 200 0.15 14.82 11.807 

6 0.75 150 0.10 18.61 19.216 
7 0.50 115.91 0.15 11.42 20.7385 

8 0.75 150 0.20 8.99 13.3449 

9 0.92 200 0.15 15.44 15.0993 
10 0.50 284.09 0.15 27.66 27.1234 

11 0.50 200 0.15 10.92 11.807 

12 0.75 250 0.15 11.92 14.8329 
13 0.50 200 0.20 9.82 11.807 

14 0.75 250 0.10 16.2 14.2787 

15 0.50 200 0.07 10.1 10.6663 
16 0.25 250 0.10 22.85 23.5348 

17 0.50 200 0.23 9.97 11.4856 

18 0.50 200 0.15 9.82 11.807 
19 0.50 200 0.15 10.3 11.807 

20 0.08 200 0.15 19.71 18.7691 

 

 
Fig 7: Experimental data versus ANN predictions 

 

Genetic Algorithm (GA) optimization: Genetic 

algorithm optimization, a search algorithm inspired by 

natural selection and genetics, was employed for the 

optimization process. The objective function for 

maximizing MRR is  
𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑦 = 𝑁𝑡𝑢𝑘𝑖𝑑𝑒𝑚(𝑥) 

% 𝑦(1) − −𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 1
− − 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑅𝑒𝑚𝑜𝑣𝑎𝑙 𝑅𝑎𝑡𝑒 (𝑀𝑅𝑅) 

— 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 

% 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑅𝑒𝑚𝑜𝑣𝑎𝑙 𝑅𝑎𝑡𝑒 (𝑀𝑅𝑅) 

𝑦(1)

= 22.196434531576 + (44.645605802651 ∗ 𝑥(1))

− (0.32084043953033 ∗ 𝑥(2))

+ (47.183327212683 ∗ 𝑥(3)) − (0.2938 ∗ 𝑥(1) ∗ 𝑥(2))

− (203 ∗ 𝑥(1) ∗ 𝑥(3)) + (0.409 ∗ 𝑥(2) ∗ 𝑥(3))

+ (38.058296636373 ∗ 𝑥(1)2)

+ (0.001227343325342 ∗ 𝑥(2)2)
− (130.77775737561
∗ 𝑥(3)2)                                                                              (2)                
 

Where 𝑥(1) = depth of cut, 𝑥(2) = cutting speed and 

𝑥(3) = feed rate with their lower and upper bounds 
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taken as the lowest and highest values on the design 

matrix.  

 

The GA optimization was facilitated through the 

MATLAB software package, employing the 

Optimization Toolbox. Iterative processes were 

conducted to attain optimality, encompassing the 

determination of fitness limits, selection of crossover 

and mutation functions, as well as the management of 

generations and migration. Using a population size of 

50, termination occurred at the 270th generation where 

optimality was achieved. Table 6 presents the optimal 

solutions for the cutting parameters and material 

removal rate (MRR) obtained from the Genetic 

Algorithm (GA), along with the ANN's optimal results 

and the outcomes of confirmatory tests conducted 

using the optimal GA parameters. The confirmatory 

test results align well with the predictions made by the 

GA. 

 
Table 6: Optimal Solutions and Confirmatory Test Results 

S/N Parameter ANN  

Optimal 

prediction 

GA  

Optimal 

Solution 

Confirmatory 

test 

1. Depth of cut (mm) 0.25 0.65 0.65 

2. Cutting speed (m/min) 250 221.09 221.09 
3. Feed rate (mm/rev) 0.20 0.21 0.21 

4. Material removal rate (mm3/min) 27.8838 29.07442 29.49 

 

The maximum MRR predicted by the ANN is 

27.8838mm3/min corresponding to a depth of cut of 

0.25 mm, cutting speed of 250 m/min, and feed rate of 

0.20 mm/rev. The GA optimal solution yields a 

maximum MRR of 29.07442mm3/min and this 

optimized result is achieved with a depth of cut of 0.65 

mm, cutting speed of 221.09 m/min, and feed rate of 

0.21 mm/rev. It is observed that a significant 

improvement in MRR occurs with the GA optimal 

solution compared to the ANN solution as the GA 

optimization process has effectively identified 

machining parameters that result in higher material 

removal rates. This suggests that GA has successfully 

optimized the machining parameters to maximize 

MRR beyond what the ANN model predicted. 

Confirmatory tests validated the predictions, 

highlighting the efficacy of advanced optimization 

techniques. 

 

Conclusion: This study highlights the cutting speed as 

the most significant parameter in optimizing material 

removal rate (MRR) during CNC turning of AISI 1040 

steel. While Artificial Neural Networks (ANN) 

initially predicted MRR satisfactorily, Genetic 

Algorithm (GA) optimization notably improved MRR 

beyond ANN's capabilities. Confirmatory tests using 

the optimal GA parameters affirmed the predictions, 

underscoring the efficacy of advanced optimization 

techniques such as GA in enhancing machining 

performance. These findings contribute to the ongoing 

efforts in optimizing CNC turning processes, offering 

insights for improving productivity and cost-

effectiveness in machining operations. 
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