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ABSTRACT: The objective of this paper is to present the properties and potentials of Gumbel Power function 

(GuPF) distribution to rainfall and wind speed datasets using the T-X methodology. The density and hazard rate 

function of the GuPF distribution are unimodal and increasing respectively. Statistical properties of the new 

distribution such as quantile, moments, and probability weighted moments (PWMs), order statistics and entropy are 
derived. The Maximum likelihood estimation method is used to estimate the parameters of the proposed model. The 

superiority of GuPF distribution over other distributions with the same baseline is illustrated using two 

environmental datasets. 
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The power function distribution is a very flexible 

parametric distribution which has been applied in 

modelling data from actuarial science, biological 

studies and reliability analysis. Through inverse 

transformation, the power function can be derived 

from the Pareto distribution Bursa and Ozel (2017). 

The cumulative density function (cdf) and probability 

density function (pdf) of a two-parameter power 

function are given by 

 
d

x
F x

c

 
  
 

                                                        (1) 

 
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           (2) 

Where d and c are shape and scale parameters 

respectively. Due to its tractability, power function has 

attracted the interest of many researchers who have 

attempted to extend it through the addition of shape 

parameters. Some extensions of power function 

distribution include Exponentiated Weibull-Power 

function Amal et al. (2017), Exponentiated Weibull 

power function Hassan and Nassar (2017)  

Exponentaited Kumaraswamy-Power function Bursa 

and Ozel (2017), Kumaraswamy-Power Abdul-

Moniem, (2017), Transmuted Power function Haq et 

al. (2016), Log-Weighted Power function Mandouh 

and Mohamed (2020), Another generalized 

Transmuted Power function Nwezza and Uwadi 

(2021), Weibull-power function Tahir et al (2016), 

Transmuted Topp-Leone power function Hassan et al. 

(2021), exponentiated generalized power function 

Hassan and Nassar (2020) and New cubic transmuted 

power function distribution Haq et al (2023). The 

transformed transformer (T-X) family of distribution 

was introduced by Alzaatreh et al. (2013) as a method 
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of generating probability distributions. Many authors 

have used the T-X framework to propose different 

probability distributions. See Tomy et al (2019) for a 

review on the T-X family of distributions.  A random 

variable X is said to be generated from the T-X family 

of distribution if the cdf has the form given in (3) 

   
 

   
( )W F x

G x r t dt R W F x


              (3) 

T is a random variable defined on the interval  , ,a b

a b    with cdf and pdf  R t  and  r t  

respectively and  F x  is the cdf of the baseline 

distribution. The function   W F x  acts as a 

“transformer” and different choices of  .W will 

result to different T-X distributions and the form 

 .W  takes depends on the support of  r t . For 

details of different definitions of  .W based on the 

support of the random variable T  see Alzaatreh et al., 

(2013). This paper proposes Gumbel power function 

(GuPF) distribution using the T-X methodology, 

studies its properties and explores the potentiality of 

the proposed distribution using rainfall and wind speed 

datasets.  

 

MATERIALS AND METHODS 
Let T  be a random variable from Gumbel distribution 

with cdf and pdf given by 

  exp exp
t

R t
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and 
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 (5) 

Define  .W as the logit of the cdf of the baseline 

distribution  F x . The cdf of the proposed T-X 

family of distribution can be expressed as  
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      (6) 

Substituting (1) in (6) and simplifying yields the cdf 

of GuPF distribution.
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Where expB




 
  

 
.  The pdf of GuPF distribution 

is obtained from derivative of (7) as 

 

 

11

1
1

exp

d

d d

d d

d d

dBc x x
g x B

c x
c x

 



 
   
 

 
  
 

 
  

   
    

(8) 

 

The hazard rate function  h x of GuPF distribution is 

given by  
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The plots of pdf and  h x of GuPF distribution are 

given in Figure 1. The plots indicate that the pdf of 

GuPF distribution is unimodal and skewed to the right 

while the  h x is increasing. 

 

 

Fig 1: Pdf plots of GuPF distribution (left), Plots of  h x for GuPF distribution (right) 
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Statistical Properties: Derivation of some statistical 

properties of GuPF distribution are provided in this 

section. 

 

Quantile Function: Let a random variable X  have a 

GuPF distribution. The quantile function of GuPF 

distribution say ( )Q u  of X is derived directly from 

(7) as  1X G u and is given as 

   

1

1
1 log

d

Q u c u
B
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

  
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                    (9) 

Where u  is uniformly distributed between 0 and 1 and 

 1 .G
is the inverse function of  .G . The lower 

quartile, the median and upper quartile of the GuPF 

distribution are derived by respectively substituting for 

0.25,0.5u  and  0.75 in (9). 

 

Useful Expansions: A useful re-representation of pdf 

and cdf GuPF distribution are derived in this 

subsection. The expression for GuPF distribution as 

given (8) can be re-written as 
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(10) 

Applying the expansion of the exponential function 

and the binomial expansion of the form 
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is a power function distribution with 

power parameter  
1

1d j i
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 
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 and scale 

parameter c . Thus GuPF distribution can be expressed 

as an infinite linear combination of power function 

with shape parameter  
1

1d j i


 
  

 
. 

Furthermore, considering the expansion of  hG x for 

0h  we have  
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Using the expansion of the exponential function and 

the general binomial formula in (12) we have 
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While the re-representation given (11) is very useful in 

deriving the moments and incomplete moments of the 

GuPF distribution (13) is handy in deriving the 

Probability weighted moments (PWM) and Order 

statistics of the GuPF distribution. 

 

Moments and Incomplete Moments: Non-central 

Moments:  The non-central moments are very 

important and necessary in any statistical analysis and 

applications. Hence we derive the  rth  non-central 

moment of GuPF distribution. Given that X is 

distributed as (8) the rth  moment is derived as 

follows. 
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The first four non-central moments of GuPF 

distribution can be obtained by setting 1,2,3,4r   

in (15). The moment generating function (mgf) of a 

random variable is given as 
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Following the same line of reasoning used in arriving 

at (15), the mgf of GuPF distribution is given by 

 
 

 0 0 0

1
1

1!
1

r
r

X

r ij ij

j i
t

M t dc
r

r d j i





  

  

  
   

  
      
  

 

     

(16) 

Incomplete Moment: The incomplete moments say 

 r z of GuPF distribution is obtained using (11) as 
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(17) 

Applications of (17) can be found in mean deviation 

from the mean and inequality curves such as the 

Bonferenoni curves and Lorenze curves. 

 

Probability Weighted Moments: A class of moments 

called the probability weighted moments (PWMs), 

was proposed by Greenwood et al. (1979). PWMs can 

be used to obtain estimators of parameters and 

quantiles of distributions which can be expressed in 

inverse forms Hassan et al. (2017). The PWMs of a 

random variable X ,r s is defined by 
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Substituting (11) and (13) into (18) above and 

replacing h  with s  the PWMs of GuPF distribution is 

derived as follows 
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Renyi Entropy: The entropy of a random variable X  is a measure of variation of uncertainty. It has applications 

in physics, engineering and economics. According to Renyi (1961), the Renyi entropy is defined by 
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By using  g x  as defined in 10, in 20 we have that 
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                   
                                   

            (21) 

Applying the expansion of exponential and general binomial expansion functions to (21) and simplifying we have 

 
 

1

, 0

d j i

ij

i j

x
g x V

c

 




 
    

 



 
  

 
                                                                                    (22) 
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Where      
1

1
1

i i i

ij

i jd
V B

c
j

  
 





 
     

  
 

 

Substituting (22) in (20) and integrating we have 

   
1

, 0

1 1
log 1 1 0 0

1
R ij

i j

I x c V d j    
 






    
              

  

The q-entropy is defined by 

   
1

log 1 0 0
1

q

qH x g x dx q q
q





 
    

  
                                                                       (23) 

Thus the q-entropy of GuPF distribution is given by 

   
1

, 0

1 1
log 1 1 1 0 0

1
q ij

i j

H x c V d j q q q q
q 






    
               

                             (24) 

Order Statistics 

Let 1 2 3, , , nX X X X   be independent and identically distributed random variables having a continuous 

distribution function ( )G x . Let (1) (2) (3) ( )nX X X X     be the corresponding ordered sample. The 

density of the rth order statistics, for 1, ,r n  is given by 

 
 

     1

:

0

1
1

, 1

n r
v v r

r n

v

n r
g x g x G x

vB r n r


 



 
   

   
                                                          (25) 

where  .,.B  is a beta function. The density of rth  order statistic for GuPF distribution is easily derived by 

substituting (11) and (13) in (25) and replacing h  with 1v r  and simplifying we have 
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1 1
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    

 
 


 

Hence the rth order statistics of GuPF distribution can be expressed as 

 

 
 

 0 0

:
, 1

n r

ijkm

v ijkm

r n d
g x f x

B r n r




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 
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 
                                                                                                       (26) 

Where  
 

 

1
1

1
1

1

v

ijkm ij km

d j i
n r

v m
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
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 
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      
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, 

 

 
1

1
m

d d j i k
 

    
       

   
 and  

d
f x is the pdf of the baseline distribution with power 

parameter d 
. 
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Estimation: In this section, the method of maximum likelihood (MLE) is employed in obtaining the ML estimates 

of parameters of GuPF distribution. Let 1 2 3, , , nX X X X be a random sample from GuPF distribution with a 

set of parameters  , , ,c d   . The loglikelihood function l  for the vector of the parameter 

 , , ,c d    is given as 

 
1 1

1

1

1
log log log log 1 log 1 log

n n
d d
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i i
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i

d d
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           

   
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 



       (27) 

The associated score function   , , ,
l l l l

U
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Setting each element of the score function to zero and solving the resulting system of equations will yield the 

MLEs  ˆˆ ˆ ˆˆ, , ,c d   of  , , ,c d   . These systems of equations cannot be solved analytically hence 

numerical optimization methods such as Newton-Raphson’s algorithm are normally used in solving such systems 

of equations. 

 

RESULTS AND DISCUSSIONS 
We illustrate with two different datasets the potentials 

of the proposed distribution. The first dataset consists 

of the annual maximum daily precipitation mm at 

Busan, Korea for the 1904-2011 period. This dataset 

was used by Mansoor et al. (2016). The data are: 24.8, 

140.9, 54.1, 153.5, 47.9, 165.5, 68.5, 153.1, 254.7, 

175.3, 87.6, 150.6 , 147.9, 354.7, 128.5, 150.4, 119.2, 

69.7, 185.1, 153.4, 121.7, 99.3, 126.9, 150.1, 149.1, 

143, 125.2, 97.2, 79.3, 125.8, 101, 89.8, 54.6, 283.9, 

94.3, 165.4, 48.3, 69.2, 147.1, 114.2, 159.4, 114.9, 

58.5, 76.6, 20.7, 107.1, 244.5, 126, 122.2, 219.9, 

153.2, 145.3, 101.9, 135.3, 103.1,74.7, 174, 126, 

144.9, 226.3, 96.2, 149.3, 122.3, 164.8, 188.6, 273.2, 

61.2, 84.3, 130.5, 96.2, 155.8, 194.6, 92, 131, 137, 

106.8, 131.6, 268.2, 124.5, 147.8, 294.6, 101.6, 103.1, 

274.51,40.2,153.3, 91.8, 79.4, 149.2, 168.6, 127.7, 

332.8, 261.6, 122.9, 273.4, 178, 177, 108.5, 115, 241, 

76, 127.5, 190, 259.5, 301.5.  The second dataset is on 

average monthly wind speed in km/h collected from 

AE-FUNAI metrological centre from 2014-2016. The 

data is as follows: 9.2, 9.15, 11.15, 10.04, 7.64, 9.73, 

12.89, 10.21, 8.24, 8.43, 7.46, 6.55, 11.17, 13.55, 

11.23, 9.77, 9.85, 10.97, 10.09, 9.28, 8.28, 8.02, 9.68, 
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9.25, 13.21, 10.65, 13.21, 12.92, 11.99, 12.68, 10.72, 

11.41, 10.9, 9.13, 8.97, 10.7. 

Figures 2 and 3 depict the box plot, Total time to test 

(TTT) plot, kernel density plot and violin plot of the 

rainfall and wind speed data to check for outliers, 

shape of the hazard rate function, and nature of 

datasets. The boxplot for the first dataset shows that it 

has outliers while that of the second dataset has no 

outliers. The TTT plots for both datasets are concave 

implying that the datasets have an increasing hrf hence 

justifying the use of GuPF distribution in fitting both 

datasets. The kennel density plot shows that both 

datasets are asymmetric. 

 
Fig 2: Box, TTT, kennel density and violin plots for the first dataset 

 

 
Fig 3: Box, TTT, kennel density and violin plots for the second dataset 

 

The performance of the proposed distribution is 

compared with another generalized transmuted power 

(AGTPF) distribution Nwezza and Uwadi (2021), 

Transmuted Power function (TPF) distribution Haq et 

al. (2016) and Power function (PF) distribution 

Menoconi and Barry (1996) which are of the same 

baseline with GuPF distribution. The ML estimates 

and standard errors in parenthesis for the first and 

second datasets are respectively given in Tables 1 and 

3 while the goodness of fit statistics for GuPF 

distribution and other competing models with the same 

baseline distribution are given in Tables 2 and 4 

respectively. The goodness of fit statistics considered 

are Komogorov-Simrov (KS), Cramer-Von-Mises 

(CV), Anderson Darling (AD), Akaike information 

criterion(AIC), Bayesian Information Criterion (BIC) 

and log-likelihood. Generally, the smaller the values 

of these goodness of fit statistics the better the model. 

It is evident from Tables 2 and 4 that GuPF distribution 

has the least value of all goodness of fit statistics 

considered hence it is adjudged the best among the 

four competing models. A visual comparison of the fits 

of the two datasets is given in Figures 4 and 5. The 

fitted GuPF, AGTPF, TPF, and PF densities and 

histogram for the first and second datasets suggest that 

the fit of the GuPF distribution performs better than the 

other competing models with the same baseline 

distribution. Also the fitted cdf of GuPF distribution 

closely fits the empirical cdfs of the two datasets better 

than other densities considered. 
 

Table 1: Estimates and Standard errors (SE) for first datasets 

Distribution Parameters 

GuPF(ɛ,α,d,c)  -0.153(0.70) 0.742(0.15) 0.654(0.35) max(x)=354.7 

AGTPF(θ,λ,d,c)  0.859(0.12) 1.738(0.32) 1.797(0.17) max(x)=354.7 

TPF(λ,d,c) 0.952(0.04) 1.412(0.11)  max(x)=354.7 
PF(d,c) 0.976(0.10)   max(x)=354.7 
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Table 2: Goodness of fit Statistics for the first dataset 

Distribution KS CV AD AIC BIC -loglik 

GuPF 0.126 0.384 2.063 1183.3 1191.3 588.68 
AGTPF 0.164 0.581 3.006 1191.1 1199.0 592.54 

TPF 0.202 1.134 5.660 1198.7 1204.3 597.35 

PF 0.299 2.623 12.873 1234.9 1237.5 616.45 

 

Table 3: Estimates and Standard errors (SE) for the second dataset 

Distribution Parameters 

GuPF(ɛ,α,d,c)  -2.367(1.64) 1.481(0.60) 6.750(3.83) max(x)=13.55 

AGTPF(θ,λ,d,c)  0.592(0.31) 1.490(0.50) 5.207(0.89) max(x)=13.55 
TPF(λ,d,c) 0.833(0.20) 4.602(0.67)  max(x)=13.55 

PF(d,c) 3.372(0.56)   max(x)=13.55 

 
Table 4: Goodness of fit Statistics for the second dataset 

Distribution KS CV AD AIC BIC -loglik 

GuPF 0.097 0.046 0.279 141.86 146.6 67.93 

AGTPF 0.139 0.151 0.908 150.32 155.08 72.16 
TPF 0.169 0.215 1.125 149.53 152.7 72.76 

PF 0.248 0.496 2.394 152.84 154.42 75.42 

 

 
Fig 4: Estimated pdfs left and cdfs right for the first dataset 

 
Fig 5: Fitted pdfs (left) and fitted cdfs (right) for second dataset 
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Statistical properties such as the moments, PWMs, 

entropy and order statistics of GuPF distribution were 

obtained. Estimates of the parameters of the GuPF 

distribution were derived through the method of 

maximum likelihood. Two environmental datasets 

namely rainfall and wind speed data were used to fit 

GuPF distribution alongside AGTPF, TPF and PF 

distributions. Evidence from the goodness of fit 

statistics and other plots meant for visual comparison 

proved that GuPF distribution fits the two datasets 

better than other competing distributions with the same 

baseline.   

 

Conclusion: We proposed a new distribution called the 

Gumbel power function (GuPF) distribution in this 

article. It was shown that the pdf of the new 

distribution can be expressed as an infinite linear 

combination of the baseline distribution. 
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