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ABSTRACT: The objective of this paper was to investigate the Cutting Speed, Feed Rate and Depth of Cut to 

predict Tool wear during Turning of AISI 1040 Medium Carbon Steel Blanks using Artificial Neural Network 

Approach. The significance of the cutting parameters was investigated using the Analysis of Variance and results 

revealed the feed rate as the most influential factor, followed by the interaction of cutting speed and depth of cut. The 

Artificial Neural Network model exhibited notable correlation coefficients (R) in training (0.81301), validation 
(0.99932), and test (0.99922) datasets, with an overall coefficient of 0.86662, affirming the model's efficacy in 

predicting tool wear. The minimum predicted tool wear (0.1007mm) was observed at a 0.50mm depth of cut, cutting 

speed of 200m/min, and feed rate of 0.15mm/rev, demonstrating a close alignment with the observed data. The ANN 
predictions effectively capture the intricate relationship between tool wear and process parameters, substantiated by 

high correlation coefficients. 
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Machining encompasses the removal of undesired 

material from a workpiece to attain a desired shape or 

surface finish. This precise process achieves specified 

dimensions by gradually eliminating excess material 

using a cutting tool. Turning, executed on a lathe 

machine, is a machining method where a single-point 

cutting tool eliminates surplus material from the 

surface of a rotating cylindrical workpiece. The 

cutting tool is linearly fed in a direction parallel to the 

axis of rotation and this engagement with the 

workpiece induces friction which gradually leads to 

wear on the tool surface. Machining, being a heat-

generating activity, can intensify wear due to elevated 

temperatures. Additionally, the workpiece material 

might contain abrasive particles, contributing to the 

gradual erosion of the cutting tool's surface during the 

cutting process. The continuous formation and 

removal of chips in cutting exposes the tool to 

dynamic loads, influencing its wear characteristics. In 

essence, tool wear is an inevitable outcome during 

machining which according to Bartarya and 

Choudhury (2012), has a major effect on the cutting 

edge geometry, machined surface quality and 

workpiece dimensions. The progression of tool wear 

is a gradual phenomenon influenced by various factors 

such as tool and workpiece materials, tool geometry, 

process parameters, cutting fluids, and machine tool 

characteristics. As tool wear progresses, the cutting 
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tool loses its cutting edge and ability which causes an 

increase in cutting force and power consumption 

resulting in chatter vibration and poor surface integrity 

(Demirpolat et al., 2023). Ultimately, tool wear 

culminates in the abrupt failure of the cutting tool and 

as highlighted by Palanisamy et al. (2008), it results in 

productivity loss, part rejection, and subsequent 

economic setbacks.  Twardowski and Wiciak-Pikuła 

(2019) affirm that it is quite important to effectively 

predict tool wear during machining as it facilitates 

timely tool replacement thereby avoiding the 

consequences of tool wear. Numerous authors have 

endeavored to predict and mitigate tool wear through 

diverse modeling approaches. Suresh and 

Basavarajappa (2014) employed the response surface 

methodology to formulate mathematical models, 

investigating the impact of machining parameters on 

both surface roughness and tool wear. The findings 

highlighted abrasion as the primary contributor to tool 

wear under elevated cutting conditions. The cutting 

speed emerged as the most influential parameter on 

tool wear, indicated by a significant F-value of 711.21. 

Following closely, the feed rate exhibited considerable 

influence with an F-value of 422.86, while the depth 

of cut had the least impact, reflected by an F-value of 

237.86.Mgbemenaet al. (2016) utilized the Taguchi 

technique, employing an L9 orthogonal array, to 

optimize turning parameters for minimizing tool wear 

and maximizing metal removal rate while turning AISI 

1080 carbon steel. Through the analysis of variance 

(ANOVA), they assessed the impact of turning 

parameters on Metal Removal Rate (MRR) and Tool 

Wear Rate (TWR). The results highlighted the depth 

of cut as the most influential parameter for MRR, 

while cutting speed and feed rate were deemed the 

most significant for TWR. The optimal machining 

conditions for maximum metal removal rate and for 

minimizing tool wear rate were identified at a cutting 

speed of 140 rpm, a feed of 0.30 mm/rev, and a depth 

of 0.75 mm. The study concluded that AISI 1018 low 

carbon steel exhibited a maximum MRR of 35.29 

mm³/s and a minimum TWR of 0.21 mm/s. Gouarir et 

al. (2018) introduced an advanced strategy called in-

process tool wear prediction system integrating 

machine learning and an adaptive control system. This 

system employs a force sensor to monitor tool flank 

wear progression and a Convolutional Neural Network 

(CNN) for predicting tool wear, achieving a reported 

prediction accuracy of 90%.Kong et al. (2018) 

presented a robust model for predicting tool wear 

width, combining the Gaussian Process Regression 

(GPR) model with the radial basis function kernel 

principal component analysis (KPCA_IRBF). The 

GPR model not only predicts tool wear values but also 

offers an equivalent confidence interval, allowing for 

quantitative modeling of Gaussian noises and accurate 

tool wear monitoring. Experimental validation 

confirmed the effectiveness of this approach, 

demonstrating superior prediction accuracy compared 

to artificial neural networks (ANN) and support vector 

machines (SVM). Twardowski and Wiciak-Pikuła 

(2019) utilized a neural network model to forecast tool 

wear by considering cutting forces and mechanical 

vibrations. In their study, they noted that the accuracy 

of predicting tool wear values was significantly 

influenced by the proper selection of the number of 

neurons in the hidden layer and the activation function 

in the ANN model. The correlation coefficient derived 

from the analysis of cutting forces exceeded that from 

the analysis of vibration accelerations. Although wear 

prediction based on cutting force components yielded 

slightly better results than vibration accelerations, the 

authors concluded that, for difficult-to-cut materials, 

both cutting forces and vibration acceleration serve 

well in assessing tool wear. Abbas et al. (2021) 

employed four process parameters: depth of cut, 

cutting speed, feed rate, and cutting length to 

investigate their impact on crater and flank wear as 

well as surface roughness during the machining of 

Ti6Al4V alloy with carbide inserts. ANOVA results 

from the experimental data indicated that cutting 

length and depth of cut exerted the most significant 

influence on the crater and flank wear of the cutting 

tool, while cutting speed had a minor effect on tool 

wear. Further analysis revealed that at high speeds, 

flank wear was predominantly caused by abrasion, 

while increased cutting length accelerated crater wear. 

Baig et al. (2021) formulated a tool wear prediction 

model based on vibration signatures during the turning 

of EN9 and EN24 steel alloys. They employed an 

Artificial Neural Network (ANN) for predicting flank 

wear, utilizing a Levenberg–Marquardt model with 

hyperbolic tangent sigmoid and logarithmic sigmoid 

transfer functions for 15 neurons. Flank wear was 

measured using a tool maker’s microscope. The model 

demonstrated effectiveness, producing optimal results 

with a regression coefficient of 0.9964, showcasing 

close correlation between the predicted values and 

experimental observations. Ghosh et al. (2022) 

employed the Taguchi method to optimize Tool wear 

and Material Removal Rate (MRR) during the turning 

of mild steel AISI 1018. Cutting parameters such as 

speed, feed, depth of cut, and types of cutting fluids 

(three levels each) were considered, using two 

vegetable-based cutting fluids and a semi-synthetic 

water-emulsified cutting fluid. Taguchi S/N ratio, 

Orthogonal Analysis and ANOVA were utilized to 

identify the factors with the most and least influence 

on the response parameters. Experimental results 

indicated that the statistically dominant parameters 

affecting tool wear were cutting speed (67.07%) and 

depth of cut (24.13%). The authors concluded that the 
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optimal combination for tool wear involved cutting 

speed (250 rpm), feed (0.08mm/rev), and depth of cut 

(1.5 mm), using mustard oil as the cutting fluid, 

resulting in a tool wear of 0.085 mm. Khan et al. 

(2022) investigated the turning of AISI D2 steel with 

prime inserts, finding that cutting speed had the 

highest impact on tool wear (55.38%), followed by 

feed rate (13.72%) and depth of cut (11.43%). 

Maximum tool wear, attributed to crater wear, was 

observed at high feed rates and depths of 

cut.Demirpolat et al. (2023) conducted an 

experimental study to explore the impact of cutting 

parameters and two different environmental 

conditions on the turning behavior of AISI 52100 

bearing steel. The study considered Minimum 

Quantity Lubrication (MQL) and dry conditions, 

examining tool flank wear, surface roughness, cutting 

force, and chip shape. The findings revealed that the 

most significant increase in flank wear (34%) occurred 

under dry and high-cutting speed conditions, 

especially with an increased depth of cut. 

Additionally, a notable rise in flank wear was observed 

at a low depth of cut (0.2 mm) as the feed rate 

increased from 0.1 to 0.3 mm/rev in both dry and MQL 

conditions. However, machining at low cutting speed 

in the dry environment resulted in lower flank wear 

compared to the combined MQL and high cutting 

speed condition. The minimum flank wear occurred at 

a feed rate of 0.1 mm/rev, a depth of cut of 0.2 mm, a 

cutting speed of 30 m/min, and with the MQL 

combination. The study concluded that cutting 

environmental conditions significantly affect tool 

flank wear progression and that MQL-assisted 

machining effectively protects against tool flank wear 

and crater wear during the turning of AISI 52100. The 

present study engages three key process parameters 

namely the cutting speed, feed rate and depth of cut to 

predict Tool Wear during turning of AISI 1040 

medium carbon steel blanks using Artificial Neural 

Network approach. 

 

MATERIALS AND METHODS 
AISI 1040 steel, characterized by its ductility and ease 

of machining, is a medium carbon steel featuring a 

substantial carbon content. Boasting a machinability 

rating of 60, it finds utility in the automotive industry 

and the manufacturing of machine components like 

axles, gears, and crankshafts. Its robust strength, 

coupled with excellent wear and fatigue resistance, 

makes it well-suited for use in high-stress applications. 

Twenty (20) AISI 1040 steel cylindrical blanks 

measuring 200 x 50mm were employed in the 

experiments conducted using a CNC lathe machine. 

Carbide turning inserts were utilized for the machining 

process, during which tool flank wear manifested on 

the cutting tool's flank face due to heightened friction 

between the tool and the workpiece. Measurement of 

the flank wear was carried out using a Mitutoyo 

vertical profile projector PJA3000. Tables 1 and 2 

display the chemical composition and properties of 

AISI 1040 medium carbon steel, while table 3 

illustrates the range of process parameters obtained 

from literature. 

 
Table 1: Chemical Composition of the AISI 1040 Steel  

S/N Element Composition (%) 

1 Iron (Fe) 98.6-99 

2 Manganese (Mn) 0.60-0.90 
3 Carbon (C) 0.370-0.440 

4 Sulfur (S) ≤ 0.050 

5 Chromium (Cr) 0.07 

 

Table 2: Mechanical Properties of the AISI 1040 Steel  

S/N Properties Value 

1 Tensile strength 620 MPa 
2 Yield strength 415 MPa 

3 Bulk modulus  140 GPa 

4 Shear modulus  80 GPa 
5 Tensile strength 620 MPa 

6 Hardness, Brinell 201 

 
Table 3: Process parameters and their ranges 

 Process Parameters 

Parameter 

Ranges 

Depth of cut 

(mm) 

Cutting speed 

(m/min) 

Feed rate 

(mm/rev) 

0.25 150 0.10 

0.50 200 0.15 
0.75 250 0.20 

 

The experiments, which aimed to predict and 

minimize tool wear, were conducted following the 

Central Composite Design Matrix (CCD) outlined in 

table 4 which also contains the experimental results for 

the tool wear. 
Table 4: Experimental Data Set 

std run Depth 

of Cut 
(mm) 

Cutting 

Speed 
(m/min) 

Feed 

Rate 
(mm/rev) 

Experimental 

Tool Wear 
(mm) 

1 1 0.25 150.00 0.10 0.4 

5 2 0.25 150.00 0.20 0.23 

16 3 0.50 200.00 0.15 0.09 
7 4 0.25 250.00 0.20 0.32 

19 5 0.50 200.00 0.15 0.49 

2 6 0.75 150.00 0.10 0.41 
11 7 0.50 115.91 0.15 0.32 

6 8 0.75 150.00 0.20 0.47 
10 9 0.92 200.00 0.15 0.09 

12 10 0.50 284.09 0.15 0.15 

18 11 0.50 200.00 0.15 0.36 
8 12 0.75 250.00 0.20 0.24 

15 13 0.50 200.00 0.15 0.66 

4 14 0.75 250.00 0.10 0.85 
13 15 0.50 200.00 0.07 0.26 

3 16 0.25 250.00 0.10 0.39 

14 17 0.50 200.00 0.23 0.39 
20 18 0.50 200.00 0.15 0.47 

17 19 0.50 200.00 0.15 0.26 

9 20 0.08 200.00 0.15 0.49 

 

Modelling using ANN: Utilizing a predictive model, 

the Artificial Neural Network is employed to predict 
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tool wear outcomes. During the network training 

process, a feed-forward backpropagation algorithm is 

utilized along with a hyperbolic tangent (tan-sigmoid) 

transfer function for the input layer to compute the 

layer output based on the network input. Additionally, 

a linear (purelin) transfer function is employed for the 

output layer. The optimal architecture of the neural 

network is illustrated in figure 1. 

 

 
Fig 1: ANN architecture for Tool wear 

 

The  number of hidden neuron was set at 10 neurons 

per layer and the network performance was monitored 

using the mean square error of regression (MSEREG). 

The selected optimization training algorithm is 

Levenberg-Marquardt optimization while the network 

training function is Trainlm.For this study, 60% of the 

data was employed to perform the network training, 

25% for validating the network while 15% was used to 

test the performance of the generated network. The 

network properties for tool wear  is presented in figure 

2 

 
Fig 2.: ANN properties applied for predicting Tool wear 

The neural network diagram for predicting tool wear 

is presented in figure 3 showing the selected network 

training settings.  

 

 
Fig 3: Network training diagram for predicting tool wear 

 

Figure 4 presents the performance curve for the trained 

network. The plot displays the error of the neural 

network as a function of the training epochs and shows 

the performance of the neural network during training 

and validation. The training curve shows how the error 

decreases during the training process as the neural 

network adjusts its weights and helps to detect 

overfitting. The best validation performance of 

0.015365 occurs at epoch 1 which indicates that the 

model achieved its highest performance on the 

validation data set after the completion of the first 

epoch of training though seven (7) epochs were used 

in the iteration process. It also suggests that the mean 

squared error reduces significantly after one epoch. 

 

 
Fig 4: Performance curve for trained network to predict tool wear 
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RESULTS AND DISCUSSION 
The experimental results from table 4 were evaluated 

with an analysis of variance (ANOVA) to determine 

the extent of influence the process parameters have on 

the tool wear. The ANOVA result is given in table 5. 

 
Table 5: ANOVA table for the Tool Wear 

Source Sum of 

Squares 

Df Mean 

Square 

F 

Value 

p-value 

Prob> F 

 

Model 0.57 9 0.064 10.32 0.0006 Significant 

A-depth of cut 3.556E-003 1 3.556E-003 0.58 0.4652  

B-cutting speed 0.021 1 0.021 3.44 0.0935  

C-feed rate 0.069 1 0.069 11.25 0.0073  

AB 0.049 1 0.049 7.94 0.0182  

AC 6.845E-006 1 6.845E-006 1.110E-003 0.9741  

BC 1.551E-003 1 1.551E-003 0.25 0.6269  

A^2 0.15 1 0.15 24.20 0.0006  

B^2 0.021 1 0.021 3.44 0.0935  

C^2 0.22 1 0.22 34.93 0.0001  

Residual 0.062 10 6.169E-003    

Lack of Fit 0.014 5 2.746E-003 0.29 0.9020 not significant 

Pure Error 0.048 5 9.592E-003    

Cor Total 0.63 19     

       

R-Squared = 0.9028, Adj R-Squared = 0.8153,  Pred R-Squared = 0.7187 

 

The R-Squared value of 0.9028 estimates that about 

90% of the observed variation can be explained by the 

model’s inputs. The Predictive R-Squared value of 

0.7187 is in reasonable agreement with the Adjusted 

R-Squared value of 0.8153. From the ANOVA table, 

the most influential parameter on the tool wear is the 

feed rate with an F-value of 11.25 and P-value of 

0.0073. This is followed by the interaction of the depth 

of cut and cutting speed which have an F-value of 7.94 

and P-value of 0.0182. 

 

 
Fig 5: Neural network gradient plot for predicting 

tool wear 

ANN Results: The gradient plot of the neural network 

for predicting tool wear which indicates the number of 

epochs used up during the training process is presented 

in figure 7.  

 

 
Fig 6: Regression plot of training, validation and testing for tool 

wear 

 

It is observed that during the training of the network, 

seven (7) epochs were used and the gradient value of 

0.0021126 was observed at epoch 7.  The model also 



Artificial Neural Network-Based Tool Wear Prediction in Turning…..                                                             464 

NTUKIDEM, B. I; ACHEBO, J. I; OZIGAGUN, A; UWOGHIREN F. O; OBAHIAGBON, K. O. 

undertook six validation checks and a damping 

parameter value of 1e-07 (0.0000001) occurred at 

epoch 7. The regression plots (training, validation and 

testing data set) of figure 6 show scatter plots of the 

predicted outputs against the actual target outputs. 

They are evaluated using the correlation coefficient 

“R” which assesses to what degree the predictions 

made by the neural network align with the actual target 

values. 

 
Table 6: ANN Tool Wear prediction 

run Depth 

of 
Cut 

(mm) 

Cutting 

Speed 
(m/min) 

Feed 

Rate 
(mm/rev) 

Experimental 

Tool Wear 
(mm) 

ANN 

predicted 
Tool 

wear 

(mm) 

1 0.25 150.00 0.10 0.4 0.40796 

2 0.25 150.00 0.20 0.23 0.20198 

3 0.50 200.00 0.15 0.09 0.1007 

4 0.25 250.00 0.20 0.32 0.34337 
5 0.50 200.00 0.15 0.49 0.4907 

6 0.75 150.00 0.10 0.41 0.40515 

7 0.50 115.91 0.15 0.32 0.32884 
8 0.75 150.00 0.20 0.47 0.48451 

9 0.92 200.00 0.15 0.09 0.10581 
10 0.50 284.09 0.15 0.15 0.14397 

11 0.50 200.00 0.15 0.36 0.3907 

12 0.75 250.00 0.20 0.24 0.24441 
13 0.50 200.00 0.15 0.66 0.64381 

14 0.75 250.00 0.10 0.85 0.84341 

15 0.50 200.00 0.07 0.26 0.26742 
16 0.25 250.00 0.10 0.39 0.38109 

17 0.50 200.00 0.23 0.39 0.38655 

18 0.50 200.00 0.15 0.47 0.3907 
19 0.50 200.00 0.15 0.26 0.2907 

20 0.08 200.00 0.15 0.49 0.49131 

 

The correlation coefficients (R) for the training, 

validation, and test datasets were 0.81301, 0.99932, 

and 0.99922, respectively, while the overall 

correlation coefficient for all datasets was 0.86662. 

This collective R value of 0.86662 implies a strong 

positive correlation between the neural network's 

predictions and the actual target values, indicating the 

network's effectiveness in predicting tool wear. The 

experimental and ANN predicted results for tool wear 

are provided in table 6. 

 

The experimental and predicted results of the ANN 

were juxtaposed and the outcome shown in figure 7, 

illustrates the accuracy of the network's predictions. 

Remarkably, there is a substantial correlation between 

the results obtained through the ANN predictions and 

the experimental determinations. The experimental 

minimum tool wear was 0.09mm, while the minimum 

value predicted by the ANN was 0.1007mm. 

 

 
Fig 7: Comparison of Experimental values and ANN prediction 

 

Conclusion: This study focused on predicting tool 

wear in turning AISI 1040 carbon steel, highlighting 

the feed rate as the most influential parameter. 

Experimental results showed increased tool wear with 

higher depth of cut and cutting speed. The ANN 

predictions closely aligned with experimental values, 

affirming the model's effectiveness. This research lays 

the groundwork for optimizing turning operations, 

emphasizing the ANN model's potential for precise 

tool wear prediction with specific process parameters. 

Integration with optimization algorithms can further 

enhance turning parameters. 
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