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ABSTRACT: A new model for the transmission of a pneumonia epidemic, considering awareness and a mass 

action incidence function, is presented. Stability analyses for disease-free and endemic equilibrium points are 

conducted. The Basic Reproduction Number (𝑅𝑂)for pneumonia with awareness is defined and analyzed, showing 

stability when (𝑅𝑂 < 1) and transitioning to an endemic state when (𝑅𝑂 > 1) . Additionally, a special case is 

highlighted where the Basic Reproduction Number (𝑅𝑂
∗

) (without awareness) is greater than (𝑅𝑂) Basic Reproduction 

Number with awareness, i.e. (𝑅𝑂
∗ = 1.0965 > 𝑅𝑂 = 0.8772). Furthermore, a numerical simulation is provided 

to depict how awareness influences the dynamic management of the disease. The results underscore the crucial role 
of awareness in educating the public about infection risks, ultimately contributing to a decrease in the health burden 

by mitigating the epidemic peak. 
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Pneumonia is an infection of the lungs that is caused 

by bacteria, viruses, fungi or parasites. It is most 

dangerous for older adults, babies and people with 

other diseases or impaired immune systems (Fekadu et 

al., 2023 and Getachew et al.,2017). Pneumococcal is 

spread through contact with people who are ill or who 

carry the bacteria in their throat. One can get 

pneumococcal pneumonia from respiratory droplets 

from the nose or mouth of an infected person. It is 

common for people, especially children, to carry the 

bacteria in their throats without being sick. After a 

person is infected and diagnosed with pneumonia, he 

should be on medication for a particular period of 

time; the infection is contagious for 10 to 14 days after 

the infected person stops getting treatment (Sayed et 

al., 2022 and (WHO)a, 2021). When a person breathes 

pneumonia-causing germs into his lungs and his 

body's immune system cannot prevent its entry, the 

organisms settle in small air sacs called alveoli and 

continue multiplying. A lung infection caused by a 
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compromised immune system can also lead to 

pneumonia which is also more prone to individuals 

with old age or respiratory problems than healthy 

people (Aleem et al., 2021, Dipo et al., 2023, Fekadu 

et al., 2023and Marcus et al., 2021).  As the body 

sends white blood cells to attack the infection, the sacs 

become filed with fluid and pus - causing pneumonia. 

Pneumonia has Bacterial, Viral, Fungal, and other 

primary causes. Other substances that caused 

pneumonia are smoke, abuse alcohol, those that have 

other medical conditions, such as chronic obstructive 

pulmonary disease (COPD), emphysema, asthma, or 

HIV/AIDS (Marcus et al., 2021). This pneumonia is 

not common but may occur among those with weak 

immunity due to AIDS, immunosuppressive drugs and 

other medical problems (Dipo et al., 2023 and (WHO) 

b, 2022). Pneumonia exists in two types: typical and 

atypical. Typical pneumonia is marked by symptoms 

such as cough, fever, dyspnea, sudden chills, pleuritic 

chest pain, with no constitutional symptoms. In 

contrast, atypical pneumonia lacks cough, presents 

milder symptoms like reduced fever and dyspnea, and 

includes constitutional symptoms like myalgia and 

rhinitis. Physically, typical pneumonia exhibits more 

respiratory distress, higher fever, and consolidation 

findings, unlike atypical pneumonia. (Das et al., 2019, 

Etbaigha et al., 2018 and Fekadu et al., 2023).Many 

researchers have been done using mathematical 

models to understand the dynamical spread of disease 

(Goel et al.,2020; 2019a; 2019b, Musibau et al, 2022, 

Otunuga 2018, Otunuga 2017 and Qiuz 2008). To 

understand the dynamic spread of pneumonia, 

numerous researchers have dedicated efforts to 

developing mathematical models for this infectious 

disease. In the study conducted by Tilahun 2019, 

seven compartmental mathematical models were 

examined. The research asserts that to destabilize the 

endemic equilibrium and transition it to a disease-free 

equilibrium, the implementation of high efficacy 

treatment and vaccination programs as an optimal 

control strategy is imperative. The findings further 

demonstrate that a decrease in the contact rate related 

to either pneumonia or meningitis significantly 

contributes to the effective control of co-infection of 

pneumonia and meningitis at the population level. 

Marcus and Newton, investigated the dynamics of 

pneumonia disease using a deterministic SEIR model. 

They found that the pneumonia-free equilibrium is 

locally asymptotically stable when the 10 R , and 

the pneumonia endemic equilibrium is globally 

asymptotically stable in the invariant region whenever

10 R . The research also conducted sensitivity 

analysis, revealing that transmission rates and the rates 

at which exposed individuals become infectious are 

the most sensitive parameters. Center manifold theory 

was applied to detect the presence of forward 

bifurcation in the model. While extensive research has 

focused on mathematical analysis, modeling, and 

optimal control of pneumonia disease in society (Dipo 

et al., 2023), there remains a notable gap in 

understanding the impact of awareness on the dynamic 

spread of pneumonia. This paper addresses this gap by 

introducing an awareness parameter into the 

compartmental mathematical model presented. The 

significance of awareness in mitigating pneumonia's 

endemicity is emphasized, highlighting the crucial role 

of societal awareness in curbing the dynamic spread of 

the pneumonia infectious disease. 

 

The study is organized as follows: Section 2 

introduces a SEITR model for pneumonia with 

awareness. Section 3 presents the model analysis, 

while Section 4 covers the numerical analysis. The 

study concludes with the discussion and conclusions 

in Section 5. 

 

Deterministic Model Formulation and Description: 

The total population of human )(tN  is been 

subdivided  into five compartments. That is, 

Susceptible persons )(tS , Exposed persons )(tE , 

Infected pesons )(tI , Treated persons )(tT   and the 

Recovered persons )(tR , Therefore; 

)()()()()()( tRtTtItEtStN  (1)  

 

The susceptible population increases with new births 

or immigration at the rate . Additionally, it grows 

when individuals from the recovered compartment 

transition back to the susceptible compartment due to 

treatment waning or loss of treatment immunity at the 

rate . Conversely, the population decreases with new 

infections at the rate   and due to natural deaths at 

the rate  . Hence; 

RSS   )1(  (2) 

The exposed compartment population rises when a 

susceptible individual, aware about pneumonia, 

contacts an infected person, with a force of infection 

denoted by . Although non-infectious at this stage, 

the population decreases as exposed individuals’ 

transition to the infectious stage at a given rate . 

Moreover, the exposed population undergoes 

reduction due to natural death at a specified rate and 

natural immunity at a designated rate  and 1 . 

Hence;  

ES )()1( 1   (3) 

The infected compartment population increases as 

individuals move from the Exposed class to the 

http://www.medicalnewstoday.com/articles/249182.php
http://www.medicalnewstoday.com/articles/141287.php
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Infected class at a given rate  . This population is 

subsequently reduced by natural death and death due 

to the disease at rates   and  . Furthermore, it 

undergoes additional reduction through natural 

immunity and treatment of infected individuals at rates

2  and   respectively. 

IE )( 2    (4) 

 

The population of the treated individuals increased due 

to treatment of infected individuals at the rate  . It 

decreases each time an individual recovers and is 

moved to the recovered class at the rate  , the 

population is futher reduced by the natural death at the 

rate  . Thus,  

 

TI )(      (5) 

 

The population of the recover individuals are 

increased due to natural immunity of exposed and 

infected individuals at the rate 1 and 2  

respectively.The recovered class also increased due to 

individuals who have been treated and fully recovered 

at the rate  , it later reduced due individuals that loss 

treatment immunity and natural death at the rate   and

  respectively. Thus,  

RTIE )(21    (6) 

 

The force of infection that is associated to the disease 

is denoted by  and is given by mass action function; 

N

I
      (7) 

 

Putting equations (2) to (7) seven above together, we 

obtain the system of non linear diffferential equation 

with mass action function: 

RTIER

TIT

IEI

ESE

RSSS

)('

)('

)('

)()1('

)1('

21

2

1





















 (8) 

N

I
      (9) 

 

For simplicity, equations (8) becomes 

RKTIER

TKIT

IKEI

EKSE

RSSS

421

3

2

1

'

'

'

)1('

)1('





















  (10) 

 

Where 

 
Table 1: Description of variables 

Variables Description 

S  Susceptible 

E  Exposed 

I  Infected 

T  Treated 

R  Recovered 

 

Table 2: Descriptions of Parameters and Values used for 

Simulations 

Parameter

s 
Description 

Value 

  Recruitment Rate 50 

  Awareness 0.2 

  Treatment rate 0.3 

  Force of Infection  

  Natural Death 0.03 

  Immunity loss 0.01 

  Progression to Infected 0.01 

  Death due to Infection 0.02 

1  Natural recovery of Exposed 
0.6 

2  Natural recovery of Infected  
0.6 

  Recovery of Treated  0.2 

  Effective contact rate 0.04 

 
Fig. 1.Model Flowchart 

 

Model Analysis: Since the model (9) monitors the 

human populations, all its associated parameters are 
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non-negative. Therefore, the following non-negativity 

result holds. 

 

Theorem 3.1: For the model of systems of equation to 

be epidemiologically meaningful and mathematically 

well posed, we prove that all variables are non-

negative .0t  

Let: 

 }0)0(,0)0(,0)0(,0)0(,0)0({ RTIES

 

 

Then, the solution: 

 

)}(),(),(),(),({ tRtTtItEtS  of the model 

system equation (8) are positive .0t  

 

Proof: 

In order to prove the theorem (3.1), the equations of 

the system (8) were used. From the first equation of 

the model (8): 

 

RSSS   )1(' (10) 

 

It then follows that: 

 

S
dt

dS
     

 

Thus, 

0 S
dt

dS
  is the first order homogeneous 

differential equation. 

I.F.=     
tdt 

 
 (11)

 

 

If we multiply both sides by IF, we get 

0 tt S
dt

dS     

It then follows that: 

 

dtSd t 0)(     (12) 

Integrating on both sides gives:  

 

CS t   

 

Where C is a constant of the integration, it follows 

that: 

 
tCtS  )(   (13) 

 

Applying the initial condition that, when 

),0()(,0 StSt  we have: 

CS )0(  

 

Hence: 
tStS  )0()(  (14) 

 

Since ,0)0(0  Sand then: 

 

,0)( tS  if  tandt 0  

 

Therefore: 

.00)(  ttS  

 

Similarly, it can be shown that 

0,0,0,0  RandTIE 0 t . 

 

Therefore, the model formulated is mathematically 

and epidemiologically well posed. 

Lemma1.  

The closed set 









 



RTIESRRTIESD :),,,,( 5

  is positively invariant. 

Proof. By adding together all the equations of the 

model (8) gives, 

INdtdN  /  

At disease free, in view of the fact that

NdtdN  / , then, 0/ dtdN if NN 

.  

Thus, using a standard comparison theorem, 

)1)(/()0( ttNN       

it is clear that 



)(tN  if 




)0(N  for all 0t

.  

The solution with initial conditions in D remains in 

D for all 0t (i.e., the  -limits sets of the system 

in (1) are contained in D ). Hence, the model is 

epidemiologically and mathematically well-posed in

D .   

 

The Basic Reproduction Number, (𝑅o): The disease 

free Equilibrium (DFE) of the model (9) is given as; 









 0,0,0,0,*)*,*,*,*,(0




RTIESE  

The Basic Reproduction Number, 𝑅0, in an 

epidemiological study is used to show how an 

infection is transmissible. It is the average number of 
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new infections which infected person can transmit in a 

transmittable period(Adesanya et al, 2016, Adewale et 

al, 2015a; 2015b; 2015c; 2016, Ajao et al, 2023, 

Akinola et al, 2021  and Akinwumi et al, 2021).  

The Basic Reproduction Number is calculated using 

the method of next generation matrix and

)( 1

0

 FVR  , where F is the new infection terms 

V is other remaining transfer terms. Given is the 

matrices F and V below, 















 



00

)1(
0

1




F  (15) 













2

1

1

0

K

K
V


   (16)  

 

Therefore,  

 

21

0

)1(

KK
R



 
  

 

It is easy to predict whether an infection will 

spread exponentially or die after some time or remain 

constant without spreading further, as measured by the 

value of the reproduction number, when 𝑅0< 1, the 

disease will dies off because every infected person will 

transmit the disease to less than one person in the 

transmittable period. When R0 = 1, the disease will 

become endemic and will stay with each infected 

person transmitting to one new person. When 𝑅0> 1, a 

disease will spread and the infected people will grow 

exponentially which will lead to a pandemic as is seen 

in corona virus.  

 

Lemma 2; Special case of basic of Basic 

Reproduction Number when Awareness 0  

 

The Basic Reproduction Number ( *0R ) Without 

Awareness: The Basic Reproduction Number in the 

absence of awareness i.e. 0  is calculated using 

the method of next generation matrix and

)( 1

0

 FVR  , where F is the new infection terms 

and V is other remaining transfer terms. Given is the 

matrices F and V in equations 17 and 18, 

 



















00

0
2





F   (17) 













2

1

2

0

K

K
V


  (18) 

 

Therefore,  

 

21

0 *
KK

R



  

 

It is very obvious here that, the Basic Reproduction 

Number *0R  (without awareness) is greater than the 

Basic Reproduction Number 0R  (with awareness) i.e. 

00* RR  . This shows that awareness of the disease 

is an important tool that plays a major role in the 

dynamical curtailing or total eradication of a disease. 

 

Local Stability of Disease Free Equilibrium 

Theorem 3.2: The disease free equilibrium of the 

model equation (9) is locally stable if R0<1 and 

unstable if R0> 1.  

Proof: To determine the local stability of 0E , the 

Jacobian matrix below is computed corresponding to 

Disease Free Equilibrium 0E . Considering the 

stability of the disease free equilibrium at









0,0,0,0,





 













































421

3

2

1

0

0

000

000

00)1(0

0)1(0

)(

K

K

K

K

EJ


















(19) 

The eigenvalues are   ,
3K  and 4K and the 

remaining eigenvalues can be determined from the 

characteristics equation of the remaining sub-matrix 

given as; 

0
)1(

2

1 





K

K







     (20) 

The characteristic equation from equation (20) is 

given below; 
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0)( 21
21

2 








KK
KK

Let; 

12 b , )( 211 KKb   

and 


 21
0

KK
b


  

If 01 b and 00 b , then, we have  







 21KK



  (21) 

Hence, 1
)1(

21




KK


 

Hence, the disease equilibrium point is locally 

asymptotically stable whenever 1oR .This theorem 

implies that if the initial sizes of the sub-populations 

of the model are in the basin of attraction of the 

disease-free equilibrium, the disease is controllable 

provided 1oR
 

 

Global stability of disease-free equilibrium: 

We study the global stability of equilibrium 

without disease for a special case when 0 and we 

implement the approach of (Ajao et al, 2023) then 

the equations of the model may be rewritten in the 

form. 

; 

),(

),(

IMG
dt

dI

IMF
dt

dM





 

With 0)0,( PG , where 
3RP represents the 

uninfected classes ),,( RTS and 
2RI   represents 

the infected classes ),( IE . Also, )0,( *MEo   

denotes the disease-free equilibrium of the model. 

The two conditions (H1) and (H2) stated below must 

be satisfied for the model to be globally stable 

(H1): For 
*),0,( MMF

dt

dM
  is globally 

asymptotically stable 

(H2): 

0),(),,(),( 


IMGIMGAIIMG  for 

DIM ),(  

Where )0,( *MGDA I is an M-matrix (the off-

diagonal elements of A are non-negative) and D is the 

region is the feasible region where the model is 

biologically meaningful. If (H1) and (H2) are satisfied, 

then the following theorem holds; 

Theorem 3.3:  The disease-free equilibrium 

)0,( *MEo   is a globally asymptotically stable 

equilibrium of the model if 10 R  and that the 

conditions (H1) and (H2) are satisfied 

Proof: 

Now ),( RSM   and ),,,( TLIII PS  








 


0
)0,(
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
  (22) 

And   
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Since ,10    clearly   0, 


IMG , 









 0,




oE  is a globally asymptotic stable 

equilibrium of the model equations. Hence, the two 

conditions above are satisfied. Therefore, the disease-

free equilibrium is globally asymptotically stable. This 

implies biologically that the elimination of pneumonia 

is independent of the initial sizes of the sub-

populations whenever the basic production number is 

less than one. 

 

Sensitivity Analysis: Sensitivity analysis is used to 

investigate or determine how sensitive the threshold 

amount is to the basic reproduction number with 

respect to its parameters, through this investigation, 

we will know which of the parameters causes the 

highest decrease in the basic reproduction number and 

also which parameters have the greatest effect on basic 

reproduction number (Olopade et al., 2016; 2017, 

2021a; 2021b; and 2022). Intervention strategies must 

be targeted to find the most effective disease control. 

The analysis tells us how important each variable is in 

disease transmission. The normalized forward 

sensitivity index of the reproduction number with 

respect to its parameters will be computed below. 

 

Definition: supposing a variable ‘P’ depends 

differentiably on a parameter ‘ w ’, then, normalized 
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forward sensitivity index of ‘p’ with respect to ‘ w ’ is 

denoted by
pX , which is defined as  

p

w

w

p
X p




  

As we have explicit for 0R , we derive an analytical 

expression for the sensitivity of 0R  as  

0

00

R

w

dw

dR
X

R

w   (23) 

For each parameter involved in 0R , the Sensitivity 

Analysis is therefore calculated.  

To each parameter involved in Basic Reproduction 

Numbers )( 0R , the sensitivity indices of 0R  with 

respect to each of the parameter are calculated as 

follows: 

 

Table 3.Sensitivity Index of Parameters in )( 0R  

Parameter Sensitivity   

Expression 

Sensitivity 

Value 

  1 1 

1  

1

1

K


   

-0.9376 

2  

2

2

K


  

-0.6316 

  

21

2121

2

)()

(23(

KK

K







  

-1.0785 

  

21

2)1(

KK

K



 
 

0.9843 

  

1


 

-0.2500 

   
1 1 

  

2K


  

-0.0211 

   

2K


  

-0.3158 

 

 
Fig. 2. Sensitivity Chart 

 

Numerical Simulation: To authenticate the theoretical 

calculations of the model (9), the numerical 

simulations of the model are carried out by Elzaki 

Decomposition Method (Akinola  et al, 2017) using a 

set of estimated limit standards specified as shown in 

Table (2) through preliminary assessment
250,250,1000,2500,3000  RTIES

. 

 
Fig. 3. Graph of Total population 
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Fig. 4 Graph of Total population 

 
Fig. 5 Graph of Total population 

 

 
Fig. 6. Graph of Basic Reproduction Number Against the 

Awareness 

 

This study has formulated five new nonlinear 

differential equations to investigate the impact of 

disease awareness on the dynamic spread of 

pneumonia. These equations aim to assess the 

dynamic patterns of illness propagation in the public, 

emphasizing the importance of awareness in 

controlling the Pneumonia epidemic model. The 

mathematical representation of this research was 

implemented and verified using the Maple program 

with the differential transformation method. 

 

As shown in Table 3 and Figure 2, Sensitivity analysis 

is a statistical technique used to assess how variations 

in the input parameters of a model affect its output. 

Sensitivity analysis with positive and negative values 

helps analysts understand the direction and strength of 

relationships within a model, providing insights into 

which factors are more influential and how changes in 

those factors impact the overall outcomes. Effective 

transmission rate   and recruitment   are the most 

sensitive parameters in this work. Medical 

professionals must focus on positive index parameters, 

particularly those that have a strong impact on the 

fundamental duplicate amount of )( 0R  i.e. Effective 

diffusion rate   and recruitment   to maintain a 

disease-free environment.In Figure 3, the influence of 

awareness is depicted when the awareness parameter

2.0 . The graphical representation illustrates a 

notable decline in the counts of both exposed and 

infected individuals within the population. The 

introduction of awareness to the model results in a 

substantial reduction in the exposed class, specifically 

decreasing from an initial count of 2500 to a new count 

of 1000. This observation underscores the significant 

impact that incorporating awareness can have on 

mitigating the number of individuals in the exposed 

category, indicative of the positive effect of awareness 

in curtailing the spread of the modeled epidemic. In 

Figure 4, the pronounced effect of disease awareness 

on exposed and infected individuals is evident. The 

graphical representation vividly illustrates that as the 

level of awareness increases, there is a significant 

reduction in the count of exposed and infected 

individuals within the population. Specifically, when 

the awareness parameter is set at a certain value, 

denoted as 6.0 , it is observed that the population 

of exposed and infected individuals decreases notably 

from an initial count of 2500 to a substantially lower 

count of 400. This outcome underscores the 

substantial impact of heightened awareness in 

diminishing the number of individuals concurrently in 

the exposed and infected states, highlighting the 

effectiveness of awareness in mitigating the spread of 

the modeled disease. 
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In Figure 5, the visualization demonstrates that a 

substantial value of the awareness rate can result in the 

effective containment of pneumonia diseases. 

Specifically, when the awareness parameter reaches a 

sufficiently large value, denoted as 1 , there is a 

remarkable decrease in the count of individuals within 

the exposed class. The numerical representation 

showcases a reduction from an initial count of 2500 to 

a complete elimination, reaching zero. This 

compelling observation underscores the pivotal role of 

awareness in effectively curtailing the progression of 

pneumonia epidemic diseases, highlighting its 

significant impact in achieving containment and 

prevention.  

 

Figure 6 provides a comprehensive depiction of the 

dynamic interplay between awareness and the 

threshold reproduction number. When there is no 

awareness, indicated by 0 )10965.1*( 0 R

. However, as awareness increases, denoted by

2.0 , there is a noticeable reduction in the 

threshold reproduction number, specifically 

decreasing from 1.0965 to 0.8772. This reduction in 

the threshold reproduction number signifies a 

consequential decrease in the endemic level within the 

community. The illustration effectively underscores 

the intricate relationship between awareness and the 

potential for disease endemicity, emphasizing the role 

of heightened awareness in mitigating and controlling 

the spread of the Pneumonia epidemic. 

 

In conclusion, this research employs qualitative 

analysis to establish the well-posedness and 

uniqueness of solutions for the model. The 

computation of the basic reproduction number  0R  

using the next generation matrix, along with the 

examination of model equilibrium stability, indicates 

the existence of two equilibrium points for each 

model. The disease-free equilibrium is found to be 

locally asymptotically stable when  10 R   and 

unstable otherwise, paving the way for the presence of 

the endemic equilibrium whenever  10 R  . 

Furthermore, sensitivity analysis of parameters within 

the basic reproduction number unveils that the 

effective contact rate and population recruitment (via 

birth or immigration) are the key factors contributing 

to an increase in the basic reproduction number, 

subsequently facilitating the further spread of the 

pneumonia disease in the environment. Moreover, the 

research underscores the pivotal role of disease 

awareness in controlling the pneumonia epidemic 

model.  

 

Conclusion: It is noted that heightened awareness 

significantly diminishes the number of infected 

individuals and curtails the spread of the disease 

within the community. This observation highlights the 

crucial impact of awareness in mitigating and 

managing the dynamics of the modeled pneumonia 

epidemic. 
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