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ABSTRACT: The hydrogen atom is a fundamental system in quantum mechanics that has been extensively 

studied due to its simplicity and relevance to atomic physics. The accurate determination of the energy levels of the 
hydrogen atom is of paramount importance for various applications in physics and chemistry. Hence, the objective of 

this work is to solve the fourth-order generalized Schrodinger problem for the hydrogen atom using the Frobenius 

series application. Findings obtained demonstrate the effectiveness and efficiency in determining the energies of the 
hydrogen atom, thereby contributing to a deeper understanding of quantum mechanical systems. 
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In quantum mechanics, point interactions refer to 

idealized interactions that occur at a single point in 

space. These interactions are used in theoretical 

models to simplify the description of certain physical 

systems (Arnbak et al., 2011; Calcada et al., 2019; 

Coutinho et al., 1997; Gadella et al., 2009; Schmidt et 

al., 2002; Zolotaryuk, 2010) 

One of the most common examples of a point 

interaction is the delta function potential, often 

denoted as 𝛼𝛿(𝑥), where is 𝛼 is a constant and 𝛿(𝑥) 

and is the Dirac delta function. The Dirac delta 

function is a mathematical construct that is zero 

everywhere except at 𝑥 =  0, where it is infinite, yet 

integrates to 1 over the entire real line. 

In the context of quantum mechanics, a delta function 

potential can model, for instance, an electron 

interacting with a localized impurity or a particle 

interacting with an infinitely thin, infinitely high 

potential barrier (Lieb, 1963; Lieb and Liniger, 1963). 

Other applications are seen in (Comtet et al., 2010; 

Exner, 1995; Kundu, 1999). Solving the Schrödinger 

equation with point interactions can be quite 

challenging because the delta function potential 

introduces singularities in the equations. One-

dimensional non-relativistic quantum mechanics' 

simplest point interaction is provided by the well-

defined and well-known Dirac's -function potential. 

However, attempts to consider more generic 

interactions, like those connected to a potential, have 

been known to run into problems with the description 

of the interaction (Albeverio et al., 1993; Griffiths, 
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1993; Roman and Tarrach, 1996; Seba, 1986a, 1986b; 

Zhao, 1992) 

 

It's important to note that point interactions are 

idealized models and do not represent real-world 

physical interactions which are typically smoothed out 

over some finite region. They serve as useful tools for 

gaining insight and understanding in specific 

situations. The one-dimensional hydrogen atom, often 

referred to as a quantum mechanical model of a 

hydrogen atom in one spatial dimension, is a 

simplified theoretical framework used to gain insights 

into the behavior of electrons in hydrogen-like 

systems. In this model, the electron's motion is 

constrained to a single dimension, typically 

represented along the x-axis. One key aspect of the 

one-dimensional hydrogen atom is the singularity at 

𝑥 = 0 in the potential energy term. This singularity is 

indicative of a point interaction, which means that the 

potential energy goes to infinity as the distance 

between the electron and the nucleus approaches zero. 

This singularity is a characteristic feature of the 

Coulomb potential (Palma and Raff, 2006). Due to this 

singularity, the one-dimensional hydrogen atom has 

some unique properties and poses mathematical 

challenges. The solutions to the Schrödinger equation 

in this scenario involve specialized functions known 

as irregular and regular Coulomb wave functions, 

which are complex and not as well-behaved as the 

solutions in three dimensions. Due to the existence of 

singularities at the origin, one-dimensional quantum 

mechanical issues can be more difficult and complex 

from a topological standpoint than their three-

dimensional counterparts. The one-dimensional 

hydrogen atom, which has been solved using a wide 

range of techniques, serves as an excellent example of 

this (Abramovici and Avishai, 2009; CalÃ§ada et al., 

2014; Calçada et al., 2019; Carrillo-Bernal et al., 

2015; Coutinho and Amaku, 2009; Gebremedhin and 

Weatherford, 2015; Ivetic, 2018; Jaramillo et al., 

2009; Kurasov, 1996; Loudon, 2016; Palma and Raff, 

2006) 

 

Despite these methods and clear conclusions, there is 

still controversy in the literature regarding the parity 

of the solutions and whether or not the ground state is 

limited. It is also evident that the various approaches 

limit their solutions to only second order in treating the 

one-dimensional hydrogen atom. The fourth order 

equation has not yet yielded the approximate bound 

and scattering state solutions that perturbative 

methods did for the harmonic oscillator problem 

(Koffa et al., 2013; Walter, 1971). The exact solution 

of the fourth-order differential equation has not been 

looked into, despite the fact that these works are 

fascinating and greatly progress novel physics. A full 

understanding of the characteristics of the hydrogen 

atom in one dimension is anticipated from such a 

consideration. Hence, the objective of this work is to 

solve the fourth-order generalized Schrodinger 

problem for the hydrogen atom using the Frobenius 

series application. 

 

Theory  

To the fourth order of ℏ, our complete quantum 

mechanical wave equation for the hydrogen atom 

reduces to 

 

𝑖ℏ
𝜕

𝜕𝑡
Ψ(𝑟, 𝑡) = (𝑚𝑜𝑐2 −

ℏ2

2𝑚𝑜

∇2 −
ℏ4

8𝑚𝑜
3

∇4 −
𝑧𝑒2

𝑟
) Ψ(𝑟, 𝑡)   (1) 

 

 

Where Ψ is the fourth order quantum mechanical 

wavefunction of the hydrogen atom. The fourth order 

quantum mechanical wave function of the hydrogen 

atom is precisely the second order quantum 

mechanical wave function for the hydrogen atom but 

it is augmented by the most natural and unique (with 

no analogy in any previous theory of quantum 

mechanics) and hence hitherto unknown quantum 

mechanical energy wave operator for more physical 

completeness, based upon the experimental physical 

facts available. 

−
ℏ4

8𝑚𝑜
3

∇4    (2) 

 

Now the variable may be separated in the fourth order 

quantum mechanical wavefunction for the hydrogen 

atom as; 

Ψ(𝑟, 𝑡) = 𝑈(𝑟)𝑒𝑥𝑝 (
−𝑖𝐸𝑡

ℏ
)      (3) 

Where E is the fourth order quantum mechanical 

energy and U is the corresponding fourth order 

quantum mechanical energy wavefunction which is 

given by; 

 

0 =
ℏ4

8𝑚𝑜
3

∇4𝑈(𝑟) +
ℏ2

2𝑚𝑜

∇2𝑈(𝑟)

+ [(𝐸 − 𝑚𝑜𝑐2) +
𝑧𝑒2

𝑟
] 𝑈(𝑟)  (4) 

Subject to the conditions of uniqueness and regularity 

everywhere and continuity across all boundaries and 

normalization. The fourth order quantum mechanical 

energy wave equation for the hydrogen atom (4) may 

be written equivalently and more precisely as;  

0 = 𝛼∇4𝑈(𝑟) + 𝛽∇2𝑈(𝑟) + [(𝐸 − 𝑚𝑜𝑐2) +
𝑧𝑒2

𝑟
] 𝑈(𝑟)  (5) 

 

Where  

𝛾 =
ℏ4

8𝑚𝑜
3

 and 𝛽 =
ℏ2

2𝑚𝑜

   (5) 
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Precisely as in the solution of the second-order 

quantum mechanical wave equation above, we seek 

the solution of (5) as  

𝑈(𝑟) = 𝑅(𝑟)𝛾𝑙𝑚(θ, Φ)   (6) 

 

Where 𝛾𝑙𝑚 is the spherical harmonic function of 

order 𝑙𝑚 and 𝑅(𝑟) is the fourth order quantum 

mechanical wave energy radial wavefunction. 

 

The choice of equation (6) transforms equation (5) 

into the form; 

 

 

0 = γ [𝑅′′′′(𝑟) +
4

𝑟
𝑅′′′(𝑟) −

2𝑙(𝑙 + 1)

𝑟2
𝑅′′(𝑟) −

4

𝑟3
𝑅′(𝑟) +

𝑙(𝑙 + 1)(𝑙2 + 𝑙 − 2)

𝑟4
𝑅(𝑟)] + 𝛽 [𝑅′′(𝑟) +

2

𝑟
𝑅′(𝑟) −

𝑙(𝑙 + 1)

𝑟2
𝑅(𝑟)]

+ [(𝐸 − 𝑚𝑜𝑐2) +
𝑧𝑒2

𝑟
] 𝑅(𝑟)  (7) 

 

Next as in the solution of the second order quantum mechanical wave equation above, we seek the solution of 

equation (7) as 

𝑅(𝑟) =
1

𝑟
𝑄(𝑟)   (8) 

 

Which upon substitution into eqn (7) yields 

0 = γ [𝑄′′′′(𝑟) −
2𝑙(𝑙+1)

𝑟2
𝑄′′(𝑟) +

4𝑙(𝑙+1)

𝑟3
𝑄′(𝑟) +

𝑙(𝑙+1)(𝑙2+𝑙−6)

𝑟4
𝑄(𝑟)] + 𝛽 [𝑄′′(𝑟) −

𝑙(𝑙+1)

𝑟3
𝑄(𝑟)] + [(𝐸 − 𝑚𝑜𝑐2) +

𝑧𝑒2

𝑟
] 𝑄(𝑟)   (9) 

 

By introducing the dimensionless variable 𝜉 defined by; 

 

𝜉 =
𝑟

𝑎
#(10)    (10) 

 

Where “a” is a constant parameter. Then, the fourth order quantum mechanical energy radial wave equation for 

the hydrogen atom (7) transforms as; 

0 =
γ

𝑎4
[𝑄′′′′(𝜉) − 2𝑙(𝑙 + 1)𝜉−2𝑄′′(𝜉) + 4𝑙(𝑙 + 1)𝜉−3𝑄𝐼(𝜉) + 𝑙(𝑙 + 1)(𝑙2 + 𝑙 − 6)𝜉−4𝑄(𝜉)] +

𝛽

𝑎4
[𝑄′′(𝜉) − 𝑙(𝑙 + 1)𝜉−2𝑄(𝜉)] + [(𝐸 − 𝑚𝑜𝑐2) +

𝑧𝑒2

𝑎
𝜉−1] 𝑄(𝜉)   (11) 

We proceed to seek the solution of eqn (11) in the form 

 

𝑄(𝜉) = 𝜉𝑙+1𝑊(𝜉) (12) 

 

This choice further transforms eqn (12) as follows; 

 

0 =
γ

𝑎4
[𝑊′′′′ + 4(𝑙 + 1)𝜉−1𝑊′′′ + 4𝑙(𝑙 + 1)𝜉−2𝑊′′ − 4𝑙(𝑙 + 1)𝜉−3𝑊′] +

𝛽

𝑎2
[𝑊′′ + 2(𝑙 + 1)𝜉−1𝑊′]

+ [(𝐸 − 𝑚𝑜𝑐2) +
𝑧𝑒2

𝑎
𝜉−1] 𝑊         (13) 

 

We seek the solution of eqn (13) in the form  

𝑊 = exp(−𝜆𝜉) 𝐹 (14) 

 

It follows that eqn (14) can be expressed as; 

0 = 𝐹′′′′ + [−4𝜆 + 4(𝑙 + 1)𝜉−1]𝐹′′′ + [(6𝜆2 +
𝛽𝑎2

γ
) − 12𝜆(𝑙 + 1)𝜉−1 + 4𝑙(𝑙 + 1)𝜉−2] 𝐹′′ +

{[−4𝜆3 −
2𝜆𝛽𝑎2

γ
] + [12𝜆2(𝑙 + 1) +

2(𝑙+1)𝛽𝑎2

γ
] 𝜉−1 − 8𝜆𝑙(𝑙 + 1)𝜉−2 − 4𝑙(𝑙 + 1)𝜉−3} 𝐹′ + {[𝜆4 +

𝛽𝑎2

γ
𝜆2 +

𝑎4(𝐸−𝑚𝑜𝑐2)

γ
] + [−4𝜆3(𝑙 + 1) −

2(𝑙+1)𝜆𝛽𝑎2

γ
+

𝑎3𝑧𝑒2

γ
] 𝜉−1 + 4𝜆2𝑙(𝑙 + 1)𝜉−2 + 4𝜆𝑙(𝑙 + 1)𝜉−3} 𝐹  (15) 

 

For the purpose of the equivalence of the independent variable 𝜉 in both the second and fourth order quantum 

mechanical energy wave equations for the hydrogen atom, we choose the parameter;   
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𝑎 =
ℏ2

𝑚𝑜𝑒2
(16) 

We also choose the parameter 𝜆 such that the constant term in the coefficient of 𝐹 in eqn (15) vanishes. 

0 = 𝜆4 +
𝛽𝑎2

γ
𝜆2 +

𝑎4(𝐸 − 𝑚𝑜𝑐2)

γ
(17) 

Explicitly, using (16) and (5a) 

𝐸 = 𝑚𝑜𝑐2 − (
𝑚𝑜𝑒4

2ℏ2
) 𝜆2 − (

𝑚𝑜𝑒8

8𝑐2ℏ4
) 𝜆4 (18) 

Now, with the above choices, the fourth order quantum mechanical energy radial wave equation (15) becomes  

 

0 = 𝐹′′′′ + [−4𝜆 + 4(𝑙 + 1)𝜉−1]𝐹′′′ + [(6𝜆2 +
𝛽𝑎2

γ
) − 12(𝑙 + 1)𝜆𝜉−1 + 4𝑙(𝑙 + 1)𝜉−2] 𝐹′′ +

{[−4𝜆2 −
2𝛽𝑎2𝜆

γ
] + [12(𝑙 + 1)𝜆2 +

2(𝑙+1)𝛽𝑎2

γ
] 𝜉−1 − 8𝑙(𝑙 + 1)𝜆𝜉−2 − 4𝑙(𝑙 + 1)𝜉−3} 𝐹′ + {[−4(𝑙 + 1)𝜆3 −

2(𝑙+1)𝛽𝑎2𝜆

γ
+

𝑧𝑎3𝑒2

γ
] 𝜉−1 + 4𝑙(𝑙 + 1)𝜆2𝜉−2 + 4𝑙(𝑙 + 1)𝜆𝜉−3} 𝐹     (19) 

The quantum mechanical energy radial wave equation (19) has thus been reduced to the form that admits series 

solution. Thus, using the Frobenius series solution of the form 

𝐹 = ∑ 𝐴𝑛𝜉𝑠+𝑛

∞

𝑛=0

(20) 

Where ‘s’ is a constant index and 𝐴𝑛 are constants. Substituting (20) into (19) with necessary transformations 

yields 

0 = ∑ (𝑠 + 𝑛)(𝑠 + 𝑛 − 1)(𝑠 + 𝑛 − 2)(𝑠 + 𝑛 − 3)𝐴𝑛𝜉𝑠+𝑛−4 − 4𝜆 ∑ (𝑠 + 𝑛 − 1)(𝑠 + 𝑛 − 2)(𝑠 + 𝑛 −∞
𝑛=1

∞
𝑛=0

3)𝐴𝑛−1𝜉𝑠+𝑛−4 + 4(𝑙 + 1) ∑ (𝑠 + 𝑛)(𝑠 + 𝑛 − 1)(𝑠 + 𝑛 − 2)𝐴𝑛𝜉𝑠+𝑛−4∞
𝑛=0 + [6𝜆2 +

𝛽𝑎2

γ
] ∑ (𝑠 + 𝑛 − 2)(𝑠 +∞

𝑛=2

𝑛 − 3)𝐴𝑛−2𝜉𝑠+𝑛−4 − 12(𝑙 + 1) 𝜆 ∑ (𝑠 + 𝑛 − 1)(𝑠 + 𝑛 − 2)𝐴𝑛−1𝜉𝑠+𝑛−4 + 4𝑙(𝑙 + 1) ∑ (𝑠 + 𝑛)(𝑠 + 𝑛 −∞
𝑛=0

∞
𝑛=1

1)𝐴𝑛𝜉𝑠+𝑛−4 + [−4𝜆2 −
2𝛽𝑎2𝜆

γ
] ∑ (𝑠 + 𝑛 − 3)𝐴𝑛−3

∞
𝑛=3 𝜉𝑠+𝑛−4 + [12(𝑙 + 1)𝜆2 +

2(𝑙+1)𝛽𝑎2

γ
] ∑ (𝑠 + 𝑛 −∞

𝑛=2

2)𝐴𝑛−2 𝜉𝑠+𝑛−4 − −8𝑙(𝑙 + 1)𝜆 ∑ (𝑠 + 𝑛 − 1)𝐴𝑛−1
∞
𝑛=1 𝜉𝑠+𝑛−4 − 4𝑙(𝑙 + 1) ∑ (𝑠 + 𝑛)𝐴𝑛

∞
𝑛=0 𝜉𝑠+𝑛−4 +

[−4(𝑙 + 1)𝜆3 −
2(𝑙+1)𝛽𝑎2𝜆

γ
+

𝑧𝑎3𝑒2

γ
] ∑ (𝑠 + 𝑛)𝐴𝑛−3

∞
𝑛=3 𝜉𝑠+𝑛−4 + 4𝑙(𝑙 + 1)𝜆2 ∑ (𝑠 + 𝑛)𝐴𝑛−2

∞
𝑛=2 𝜉𝑠+𝑛−4 + 4𝑙(𝑙 +

1)𝜆 ∑ 𝐴𝑛−1
∞
𝑛=1 𝜉𝑠+𝑛−4      (21) 

Now setting 𝑛 = 0, the indicial equation can be expressed as  

 

𝑠2 + 4𝑙𝑠 + 4𝑙2 − 1 = 0 (22) 

 

Therefore, the solutions of the indicial equation are  

𝑠 = 0;    𝑠 = 2;    𝑠 = −2𝑙 + 1;     𝑠 = −2𝑙 − 1 (23) 
 

The general recurrence relation is given by 

0 = [(𝑠 + 𝑛)(𝑠 + 𝑛 − 1)(𝑠 + 𝑛 − 2)(𝑠 + 𝑛 − 3) + 4(𝑙 + 1)(𝑠 + 𝑛)(𝑠 + 𝑛 − 1)(𝑠 + 𝑛 − 2) +
4𝑙(𝑙 + 1)(𝑠 + 𝑛)(𝑠 + 𝑛 − 1) − 4𝑙(𝑙 + 1)(𝑠 + 𝑛)]𝐴𝑛 + [−4(𝑠 + 𝑛 − 1)(𝑠 + 𝑛 − 2)(𝑠 + 𝑛 − 3) −

12(𝑙 + 1)(𝑠 + 𝑛 − 1)(𝑠 + 𝑛 − 2) − 8𝑙(𝑙 + 1)(𝑠 + 𝑛 − 1) + 4𝑙(𝑙 + 1)]𝜆𝐴𝑛−1 + {[6(𝑠 + 𝑛 − 2)(𝑠 + 𝑛 − 3) +

12𝑙(𝑙 + 1)(𝑠 + 𝑛 − 2) + 4𝑙(𝑙 + 1)]𝜆2 + (𝑠 + 𝑛 − 2)(𝑠 + 𝑛 + 2𝑙 − 1)
𝛽𝑎2

𝛾
} 𝐴𝑛−2 + [−4(𝑠 + 𝑛 + 𝑙 − 2)𝜆3 −

2(𝑠 + 𝑛 + 𝑙 − 2
𝛽𝑎2

𝛾
𝜆 +

𝑧𝑒2𝑎3

𝛾
] 𝐴𝑛−3;    𝑛 = 3,4,5 …   (24) 

 

RESULTS AND DISCUSSION 
For ground level of the hydrogen atom, we choose the coefficient of 𝐴0 in the recurrence relation for 𝐴3  in (24) 

to vanish.  

0 = −4(𝑠 + 𝑛 + 𝑙 − 2)𝜆3 − 2(𝑠 + 𝑙 + 1)
𝛽𝑎2

𝛾
𝜆 +

𝑧𝑒2𝑎2

𝛾
  (25) 
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The above equation determines the quantum mechanical parameter 𝜆 which we shall demote by 𝜆𝑛𝑙𝑚 and the 

corresponding quantum mechanical Eigen energy for the ground level of the hydrogen atom denoted by 𝐸0𝑙𝑚 

From the case of the ground level, it is obvious that the general level of the hydrogen atom is obtained by 

choosing the coefficient of 𝐴𝑛−3 in the recurrence relation for 𝐴𝑛 in (24) to vanish. This can be written 

conveniently expressed as  

0 = −4(𝑠 + 𝑛 + 𝑙 + 1)𝛾𝜆3 − 2(𝑠 + 𝑛 + 𝑙 + 1)𝛽𝑎2𝜆 + 𝑧𝑒2𝑎3 (26) 

Neglecting the first term containing 𝛾 as small compared to others, it follows that; 

𝜆 =
𝑧

𝑠 + 𝑛 + 𝑙 + 1
(27) 

Consequently, the fourth order quantum mechanical eigenvalue reduces to the second order quantum 

mechanical Eigenvalue as the first approximation for all levels of the hydrogen atom. 

To obtain the general solution of the quantum mechanical Eigenvalue equation for the hydrogen atom, we write 

(26) more conveniently as; 

0 = 𝜆3 + 𝐵𝜆 + 𝐷      (28) 
Where 

 

𝐵 =
𝛽𝑎2

2𝛾
=

2ℏ2𝑐2

𝑒4
      (29) 

𝐷 =
𝑧𝑒2𝑎3

4(𝑠 + 𝑛 + 𝑙 + 1)𝛾
= −

2𝑧ℏ2𝑐2

(𝑠 + 𝑛 + 𝑙 + 1)𝑒4
   (30) 

Equation (28) is therefore a cubic equation in standard form with positive determinant. Since 𝐵 > 0, it follows 

from the cubic formula that equation (28) possesses exactly one real root given by; 

 

𝜆 = (
4𝐵

3
)

1
2⁄

𝑠𝑖𝑛ℎ {
1

3
𝑠𝑖𝑛ℎ−1 [

−2𝐷

𝐵 (
4𝐵
3

)
]}      (31) 

 

now follows that for each of the quantum number , n, the value of the quantum mechanical parameter 𝜆 for the 

hydrogen atom  is given by (31) and which may be denoted as 𝜆𝑛𝑙𝑚 and the quantum mechanical energy 

relation (18) defines the exact quantum mechanical Eigen energies for the general level of the hydrogen atom 

which may be denoted as 𝐸𝑛𝑙𝑚. 

It can be shown that by series expansion and a lot of manipulations, from equation (31) that  

𝜆𝑛𝑙𝑚 =
𝑧

(𝑠 + 𝑛 + 𝑙 + 1)
[1 −

𝑧2𝑒4

2(𝑠 + 𝑛 + 𝑙 + 1)2ℏ2𝑐2
… ] (32) 

Consequently, the quantum mechanical Eigen energies of the hydrogen atom are given approximately but more 

explicitly from equations (18) and (33) as; 

𝐸𝑛𝑙𝑚 = 𝑚𝑜𝑐2 −
𝑚0𝑧2𝑒4

2(𝑠 + 𝑛 + 𝑙 + 1)2ℏ2
[1 −

𝑧2𝑒4

2(𝑠 + 𝑛 + 𝑙 + 1)2ℏ2𝑐2
… ]

−
𝑚0𝑧4𝑒8

8(𝑠 + 𝑛 + 𝑙 + 1)4ℏ4𝑐2
[1 −

𝑧2𝑒4

2(𝑠 + 𝑛 + 𝑙 + 1)2ℏ2𝑐2
… ]                   (33) 

 

This is the expression for the quantum mechanical 

energies of the hydrogen atom. For each level of the 

hydrogenic atom, 𝑛 = 0,1,2,3, …, the quantum 

mechanical Eigen value 𝜆𝑛𝑙𝑚, given by  equation (32) 

together with the recurrence relations determine four 

linearly independent solutions of the quantum 

mechanical wave equation (20) denoted by 

𝐹𝑛𝑙𝑚,𝑖,𝑖=0,1,2,3, at least one of which gives the 

corresponding  quantum mechanical wave function. 

The first profound physical results of the work in this 

paper is the discovery of the indefinitely fine 

corrections of the famous Schrodinger’s quantum 

mechanical Eigen energies of the hydrogenic atom 

which are more significant as the atomic number 

becomes lager (or equivalently as the electron moves 

faster compared with the speed of light in vacuo. The 

second profound physical result of our work is the 

discovery of the indefinitely fine extension of the 

renowned Schrodinger’s quantum mechanical Eigen 

functions of the hydrogenic atom which are also very 

significant with larger atomic number (equivalently, as 

the electron moves faster compared with the speed of 

light in vacuo). This is where lies a profound 
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experimental challenge of our new discovery to the 

law of quantum mechanical theory. The mathematical 

result of this paper is also the discovery of infinitely 

many complete sequences of orthogonal functions 

which are bases of the mathematical space 𝐶(0, ∞) or 

𝐿(0, ∞). Each of our bases is unprecedented and 

mathematically the most elegant and interesting 

generalization or extension of the established basis of 

confluent hypergeometric functions. Each of our bases 

is generated from a Sturm-Liouville differential 

equation of order greater than two, compared to the 

second order confluent hypergeometric differential 

equation. Consequently, our discovery to the law of 

quantum mechanics in paper has opened up the 

profound mathematical revolution into fourth and 

higher order Sturm-Liouville differential equations in 

the mathematical space 𝐶(0, ∞) Herein lies an eternal 

mathematical interest of our discovery to the law of 

quantum mechanics in this paper. 

 

Hydrogenic atom is the basis of all atomic physics, 

consequently, the fourth and higher order of ħ to the 

Eigen solution of the quantum mechanical problem of 

the hydrogenic atom in this paper imply corresponding 

unprecedented revolutions in atomic physics and all 

areas of it applications.  

 

It is well-known that the Laguerre polynomial function 

𝐿𝑛 of mathematical physics are related to the confluent 

hypergeometric function 𝐹 by; 

 

𝐿𝑛(𝑥) = Γ(𝑛 + 1)𝐹(−𝑛, 𝑙, 𝑥) (34) 

for all-natural number n. Consequently, by replacing 

the confluent hypergeometric function by each of the 

formerly un-known generalization of the confluent 

hypergeometric function in this paper, we obtain 

corresponding hitherto unknown generalization of the 

classic Laguerre polynomial of mathematical physics. 

The generalized Laguerre function 𝐿𝑛
𝑝

 are related to the 

confluent hypergeometric functions 𝐹 by   

 

𝐿𝑛
𝑝 (𝑥) =

Γ(p + n + l

Γ(p + l)
𝐹(−𝑛, 𝑝 + 1, 𝑥) (35) 

For arbitrary p and all natural numbers n. consequently 

by replacing the confluent hypergeometric functions 

in (35) by each of the previously unknown 

generalization of hypergeometric functions of this 

paper, we obtain corresponding generalization of the 

classic generalized hitherto unknown Laguerre 

functions of mathematical physics. 

It is well known that the Hermite polynomials 𝐻𝑛 are 

related to the generalized Laguerre function by; 

𝐻𝑛(𝑥) = 𝐿𝑛

±
1
2(𝑥) (36) 

For all natural numbers n. Consequently, by replacing 

the confluent hypergeometric function in (36) by each 

of the once unfamiliar generalizations of the confluent 

hypergeometric functions in this paper, we obtain 

corresponding hitherto unknown generalizations of the 

classic generalized Hermit’s polynomial functions of 

mathematical physics. 

 

It has been established that although Dirac’s 

relativistic law of quantum mechanics predicts 

corrections to the pure Schrodinger’s quantum 

mechanical energy eigen values for the hydrogenic 

atom, Dirac’s theory does not lead to any new 

sequence of orthogonal functions similar to the wave 

functions of the hydrogenic atom in this paper. It may 

be noted that for each level of the quantum mechanical 

energy eigen function for the hydrogenic atom, 𝐹4,𝑛𝑙𝑚 

is a unique (hitherto unknown in any previous theory 

of quantum mechanics) and mathematically most 

elegant and natural generalization or extension of the 

second order quantum mechanical energy Eigen 

function of the hydrogenic atom 𝐹2,𝑛𝑙𝑚 (which are the 

well-established hypergeometric functions of 

mathematical physics). Consequently, our new 

addition to the law of quantum mechanics for all 

entities of non-zero rest masses at all speeds less than 

the speed of light in vacuo in all inertial reference 

frames applied to the electron in the coulomb’s 

interaction field of a nucleus yielded the most natural 

and unique generalization of the confluent 

hypergeometric differential equation of mathematical 

physics. It may also be shown that, precisely as in the 

case of the second order quantum mechanical Eigen 

functions, the sequence of fourth order quantum 

mechanical Eigen functions for the hydrogen atom 

constitute an unknown complete orthonormal basis for 

the mathematical space 𝐶(0, ∞) of all piecewise 

smooth and continuous functions on the interval 

(0, ∞).  

 

Conclusion: Conclusively, the profound discovery and 

contribution in this paper is the quantum mechanical 

wave equation for the hydrogen atom  and its energies 

and eigen functions correct to the order of  ℏ2 and ℏ4. 

Therefore, the door is henceforth opened for the 

derivations of the Eigen energies and Eigen functions 

of the hydrogen atom correct to all orders of ℏ2𝑛; 𝑛 =
1,2,3, … and hence their physical and mathematical 

applications. 
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𝑖ℏ
𝜕

𝜕𝑡
Ψ(𝑟, 𝑡) = {𝑚𝑜𝑐2 [1 +

ℏ2

𝑚𝑜
2𝑐2

∇2 (1 −
ℏ2

𝑚𝑜
2𝑐2

∇2

−1

)]

1
2

−
𝑧𝑒2

𝑟
} Ψ(𝑟, 𝑡)  (37) 
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