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ABSTRACT: Reservoirs of natural gas and gas condensate have been proposed as a potential for providing 

affordable and cleaner energy sources to the global population growth and industrialization expansion simultaneously. 

This work evaluates reservoir simulation for production optimization using Deep Neural network - artificial neural 
network (DNN-ANN) model to predict the dew point pressure in gas condensate reservoirs from Field-X in the Niger 

Delta Region of Nigeria. The dew-point pressure (DPP) of gas condensate reservoirs was estimated as a function of gas 

composition, reservoir temperature, molecular weight and specific gravity of heptane plus percentage. Results obtained 
show that the mean relative error (MRE) and R-squared (R2) are 0.99965 and 3.35%, respectively, indicating that the 

model is excellent in predicting DPP values. The Deep Neural Network - Artificial Neural Network (DNN-ANN) model 

is also evaluated in comparison to earlier models created by previous authors. It was recommended that the DNN - 
ANN model developed in this study could be applied to reservoir simulation and modeling well performance analysis, 

reservoir engineering problems and production optimization.  
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The search for more affordable and cleaner energy 

sources to suit people's needs is gradually growing as 

the world's population and industrialization 

simultaneously advance (Ejelonu and Emegha, 2022; 

Emegha et al., 2022). Reservoirs of natural gas and gas 

condensate have been proposed as a potential way of 

decreasing this need.  The increased usage of natural 

gas on a global scale is a development in the energy 

sector that is improving the economy and the 

environment (Faraji, 2021).  Classes of hydrocarbon 

reservoirs known as gas-condensate reservoirs are 

distinguished by the production of surface gas and 

varied amounts of stock-tank oil (STO) (Faraji, 2021). 

Gas-condensate reservoirs are crucial when it comes 

to the sizeable global energy market. Gas condensates 

are present in approximately 68% of the world's gas 

reservoirs (Zhang et al., 2019). Gas-condensate fluid 

has API gravity between 400 and 600, which is a 

measurement of weight or density (Whitson and Brulé, 

2000). The majority of well-known gas-condensate 

reservoirs are located between 5000 and 10,000 feet 

below the surface, at pressures between 3000 and 8000 
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psi and temperatures between 2000 and 400 °F 

(Elsharkawy, 2001; Moses and Donohoe, 1987). 

When developing a gas condensate field, reservoir 

engineers must consider a number of key parameters, 

one of which is the dew point pressure (DPP). Gas 

reservoir engineers must precisely calculate the DPP 

for gas condensate reservoirs in order to conduct 

proper field development activities for gas condensate 

(Ahmed, 2006). In general, three main techniques 

have been found and used to forecast the dew point 

pressure of gas condensate: (i) laboratory 

measurement; (ii) equations of state (EOS); and (iii) 

empirical correlations (Skylogianni et al., 2015; Louli 

et al., 2012). For gas condensate reservoirs, 

determining DPP experimentally at reservoir 

temperature can be costly, time-consuming, and 

occasionally rife with inaccuracies (Hosein and Dawe, 

2012). The cost and amount of time needed to execute 

the test constitute a significant limitation even though 

all tests produce satisfactory outcomes. Several 

additional types of error can also be introduced during 

experimental measurements, ranging from inaccurate 

measurements occurring during the test to the 

collection of gas sample errors (Arabloo and Rafiee - 

Taghanaki, 2014; Hosein and Dawe, 2012). The 

search for a more accurate, as well as faster model has 

been sparked by an understanding of these 

shortcomings of the current approaches.  Recently, 

there has been a lot of interest in the artificial neural 

network concept. Artificial neural networks have 

demonstrated its usefulness in a number of industries, 

including the world of social media, machine learning, 

drilling technology, space flight, face and speech 

recognition, etc. The neural network is a highly 

parallel, distributive, flexible, and biologically 

inspired system (Ahmadi et al., 2014). Also, neural 

networks are powerful tools that can learn complex 

patterns and relationships in data, even when the data 

is incomplete or inaccurate (Ali, 1994). Generally, 

artificial neural networks (ANNs) have been used as 

prediction tools that are based on simple mathematics. 

Each algorithm has its own distinct advantages and 

disadvantages. For example, the accuracy of neural 

network algorithms depends on their architecture 

(Kubat, 1999), whereas the accuracy of support vector 

machine (SVM) algorithms depends on the quantity of 

trustworthy data supplied into the algorithm (Zhang et 

al., 2019). There is a significant variance between the 

dew- point forecasts produced by various algorithms. 

The overall accuracy of their final forecasts is 

impacted by the fact that some algorithms are more 

susceptible to data bias than others. Numerous models 

have been developed in the past by various 

researchers, but they often lack the transparency and 

reproducibility required for scientific rigor (Aghamiri 

et al., 2017; Al- Shammasi, 2001). The purpose of this 

study is to predict the dew point pressure in gas 

condensate reservoirs utilizing artificial neural 

networks algorithm by employing Tensor Flow, 

Keras, Python, and Jupyter Notebooks. By utilizing 

experimental data collected from the Niger-delta 

region, it will aid in developing a model that is more 

accurate than others in testing, training, and validating 

the data collected for the artificial neural network 

model. Although research on the use of artificial 

neural networks for gas-condensate reservoirs has 

been done, there are still unresolved problems and 

shortcomings in choosing the most accurate model for 

prediction. Therefore, this study evaluates reservoir 

simulation for production optimization using Deep 

Neural network - artificial neural network (DNN-

ANN) model to predict the dew point pressure in gas 

condensate reservoirs from Field-X in the Niger Delta 

Region of Nigeria. 

 

MATERIAL AND METHODS 
Data Acquisition and Analysis: The artificial neural 

network was created using a collection of test data 

obtained from field X in the Niger-Delta region. Field 

X's recent gas condensate reservoir samples are 

included in these statistics. 

 

Material and Equipment: The neural network model 

was implemented using the following techniques and 

technologies. 

 

TensorFlow is an open-source, free machine learning 

software library. Although it can be applied to many 

different tasks, deep neural network training and 

inference are given special attention. 

 

Keras is a Python-based deep learning API. 

 

Python is a high-level, interpreted language. It is the 

current language for artificial intelligence and is 

utilized for a wide range of scientific and engineering 

applications. Numerous libraries, including Numpy, 

Pandas, Sci-kit-Learn, and Matplotlib, are included 

with Python. 

 

Colab: In order to "create open-source software, open 

standards, and services enabling interactive computing 

spanning dozens of programming languages," Colab is 

a project and community. It is a cloud place where you 

may execute your programs to save time by not having 

to implement them locally. 

 

Design Concept: Multivariate regression and the Deep 

Neural Network technique were used to create the 

model. 
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Deep Neural Network: DNNs are artificial neural 

networks (ANNs) with more than two layers between 

the input and output layers. Notwithstanding the wide 

range of neural network configurations, all neural 

networks are composed of the same constituent parts: 

neurons, synapses, weights, biases, and functions. 

These pieces behave similarly to human brains and 

may be trained just like any other ML algorithm. Deep 

neural networks are capable of modeling intricate non-

linear interactions. The object is expressed as a layered 

composition of primitives in the compositional models 

generated by Deep Neural Network architectures. It is 

possible to model complex data using fewer units with 

the additional layers than with a shallow network that 

performs comparably because they enable the 

composition of characteristics from lower levels. 

Generally speaking, feed-forward systems—in which 

data flows directly from the input layer to the output 

layer—are what deep neural networks are. The DNN 

starts by creating a map of virtual neurons and 

assigning random numerical values, or "weights," to 

the connections between them. When the weights and 

inputs are multiplied, an output between 0 and 1 is 

generated. If the network was having problems 

accurately recognizing a particular pattern, an 

algorithm would adjust the weights. The method is 

able to determine the optimal mathematical operation 

to fully examine the data while simultaneously giving 

some factors more weight than others. 

 

 
Fig 1: Schematic diagram of the deep neural network an architecture of DNN model comprised of input, hidden, and output layers (Soo et 

al., 2020) 

 

Multivariate Regression: Numerous data factors are 

analyzed using multivariate regression, a supervised 

machine learning technique. Multivariate regression is 

an extension of multiple regressions and consists of 

several independent variables and one dependent 

variable. Taking into account the quantity of 

independent variables, we try to predict the outcome. 

 

Below is the generalized equation for the 

multivariate regression model- 

 

y =  β0  +  β1. x1  +  β2. x2 + . . . . . . . . + βn. xn     (1) 

 

Where; n   = the number of independent variables; 

β0 - βn  = the coefficients; x1- xn  = the independent 

variable. 

 

Neural Network Data Input: Selecting the input 

variables for the model comes next, after discovering 

and obtaining the data set. The foundation for dew 

point pressure prediction using existing correlations is 

the concept that dew point pressure for retrograde gas 

condensates is a function of the hydrocarbon and non-

hydrocarbon reservoir fluid compositions, reservoir 

temperature and the heptane plus percentage. 

The correlation between the Dew point pressures and 

the other variables is seen in Equation 2 

 

Pd  =  𝑓(T, Zi, MWC7, SGC7)           (2) 

 

Where: 𝑃𝑑  = Dew point pressure (psia); 𝑍𝑖  =   

Composition of the system; T = Reservoir 

Temperature 

MWC7 = Molecular weight of Heptane plus 

fraction; SGC7  = Specific gravity of Heptane plus 

fraction 

 

This strategy led to the selection of temperature, non-

hydrocarbon composition ( H2S , Co2  and N2 ), 

hydrocarbon compositions of 𝐶1 through 𝐶7, heptane 
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plus specific gravity, and heptane plus fraction (MW-

𝐶7+) molecular weight as the input parameters for the 

artificial neural network model for the prediction of 

dew point pressure of retrograde gas. 

 

Neural Network Training and Testing: The artificial 

Deep Neural Network design must be developed after 

the input data has been selected; the original network 

structure was a seven-layer network. The number of 

neurons in the hidden layers and the weights applied 

to the input parameters were calculated using the keras 

library. Since the purpose of constructing a 

computational model is high accuracy in general 

analysis and prediction, it is imperative that the model 

be trained for predicting unknowns. After training, the 

final model should produce outputs with accuracy. A 

series is split into training and testing data to prevent 

over- or under-fitting and to assess how a model 

performs on data that has not been seen yet. Typically, 

the data is divided into ratios of 80% to 20% or 70% 

to 30%. 60% of the data used in this model went 

toward training, 20% went toward testing, and 20% 

went toward validation. 

 

Tables 1 and 2 show the value of some of the data after 

normalization. The data was normalized using the 

formula: 

 
𝑥 − 𝜇

𝑠
                                       (3) 

 

Where: x = value of sample; 𝜇  = The mean; s = 

standard deviation 

 
Table 1: Value of some Normalized data (1) 

𝑁2  𝐶𝑂2    𝐶1     𝐶2      𝐶3  I − 𝐶4  n − 𝐶4 I − 𝐶5 

-0.5294 0.6959 0.0751 0.4211 -0.3208 -0.5677 -0.5422 -0.6479 

1.7644 -1.2373 0.1589 -1.0563 0.6042 1.0983 1.0119 1.0966 

0.4024 1.2096 -0.8033 -0.1211 0.6311 0.7045 0.8415 0.7194 

0.6892 -0.2660 -1.8335 1.9771 1.5921 1.3104 1.2035 1.2852 

-1.0312 -0.9478 0.7479 -0.6712 -0.3119 -0.6283 -0.3294 -0.4593 

-0.4649 1.1105 0.6994 0.0266 -0.8813 -0.8464 -0.9724 -0.9261 

-0.8305 -0.5649 0.9555 -0.5761 -1.3233 -1.0706 -1.2129 -1.0676 

 
Table 2: Value of some Normalized data (2) 

            

        N − 𝐶5  

 

𝐶6 

 

𝐶7+ 

Reservoir 

temp.[deg] 
MW of 𝐶7+ 
[g/mol] 

Specific 

gravity of 𝐶7+  

dewpoint 

pressure 
[psia] 

-0.6015 -0.3239 -0.2703 0.1459 -0.3247 0.8117 0.5887 

1.0111 0.8436 -0.2703 -0.4290 -1.6794 0.7426 -1.1228 

0.8916 0.7089 0.5916 0.8879 -0.1577 0.8194 -0.2838 

1.1902 1.4274 1.8816 1.5624 0.0894 0.8302 0.3343 

-0.3626 -0.4587 -0.4358 0.0206 1.0485 -1.0410 1.6427 

-1.0077 -1.1952 -1.3199 -1.3862 -0.3299 -1.1348 -1.2236 

-1.1211 -1.0021 -0.1767 -0.8016 1.354 -1.0281 0.0644 

 

RESULT AND DISCUSSION  
The dew point pressure (DPP) of gas condensate 

reservoirs was estimated using the Deep Neural 

Network-Artificial Neural Network (DNN-ANN) 

technique. The model was trained using 60% of the 

experimental data, validated using 20%, and tested 

using the remaining 20%. This method of validation, 

known as k-fold cross-validation, ensures that the 

model generalizes effectively to new data. The DNN-

ANN model's MRE and R2  values are noticeably 

higher than those of earlier models. This implies that 

compared to earlier models, the DNN-ANN model are 

more accurate at predicting DPP values. Also, the 

calculated statistical parameters shown in Tables 3 and 

4 demonstrate the confidence of this algorithm. 

Statistical and graphical analyses were conducted to 

evaluate the performance of this method. 

 

Table 3: Evaluating the performance of DNN-ANN model using 

statistical analysis for the training set. 

𝑅2 MRE MSE RMSE 

0.999861 6.363996 2903.2349 53.881676 

 
Table 4: Evaluating the performance of DNN-ANN model using 

statistical analysis after testing 

𝑅2 MRE MSE RMSE 

0.999432 0.440941 921.067743 30.349098 

 

Graphical Comparison: Figure 2 depicts a graphical 

comparison of the experimental and expected DPP 

levels. The data points are concentrated around the 45-

degree line, demonstrating that the DNN-ANN model 

can predict DPP values with high accuracy. The 

graphical comparison demonstrates that the DNN-

ANN model can predict DPP values over a wide 

variety of reservoir conditions. This implies that the 

model is robust and may be used to forecast DPP 

values for gas condensate reservoirs. 
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Fig 2: Plot of Predicted vs. Experimental values 

 

The model's accuracy and loss throughout training at 

each epoch are displayed in Figures 3 and 4. Each 

epoch saw a drop in loss and an increase in accuracy, 

suggesting that the model was improving its ability to 

estimate dew point pressure. The accuracy and loss 

curves demonstrated how well the DNN-ANN model 

learned the training set while avoiding over-fitting. 

The model's accuracy and loss during validation at 

each epoch are indicated in figures 5 and 6. These 

imply that the model is picking up new skills and doing 

well when validated against data. Loss gauges the 

degree to which the model's predictions agree with the 

actual value. A better model is indicated by a lesser 

loss. However, a higher accuracy indicates a more 

accurate model. This indicates that the new model is 

learning from the data and improving its capacity to 

make exact predictions. Finally, the fact that the model 

performs well on the validation data indicates that it 

generalizes well to previously unseen data. This is 

significant because it indicates that the model is likely 

to perform well on new data sets that it has not before 

encountered. Overall, figures 5 and 6 indicate that the 

model fits the data well and can be used to estimate 

dew point pressure accurately.  

 

 
Fig 3: plot of Accuracy vs Epoches at training 

 

 
Fig 4: plot of Loss vs Epoch at Training 

 

 
Fig 5: plot of Accuracy vs Epoch at Validation 

 

 
Fig 6: plot of Loss vs Epochs at Validation 

 

Comparison of the results of the current model with 

some previously published models: Table 5 compares 

the performance of our DNN-ANN model to earlier 

models such as NK Correlation, EA Empirical model 
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and Gene Expression Programming (GEP) (Table 5). 

As can be observed, our DNN-ANN model 

outperforms all other previously published models in 

terms of accuracy. The MRE and R2  values for the 

DNN-ANN model are much higher than those 

reported for earlier models. This implies that the 

DNN-ANN model can predict DPP values more 

accurately than earlier models. There are several 

reasons why the DNN-ANN model outperforms 

earlier models. Initially, the DNN-ANN model can 

figure out intricate non-linear correlations between the 

input variables (specific gravity of heptane plus 

percentage, molecular weight, reservoir temperature, 

and gas composition) and the output variable (DPP). 

Conversely, previous models were usually based on 

correlations that were either linear or semi-linear.  

 

Secondly, the DNN-ANN model used a sizable 

collection of experimental data for training process. 

The model was trained on a broad range of reservoir 

conditions found in this data set, which helped it 

understand the intricate interactions between the input 

and output variables. In contrast, prior models were 

usually trained on smaller data sets that encompassed 

a more limited set of reservoir conditions. Based on 

the DNN-ANN model, some advantages over earlier 

models in addition to the quantitative comparison are 

displayed in Table 5. As an illustration, the DNN-

ANN model is more adaptable and simpler to modify 

for different data sets and reservoir circumstances. 

Furthermore, the DNN-ANN model is simpler to 

understand and more transparent than earlier models. 

To sum up, the present DNN-ANN model serves as a 

highly effective instrument for forecasting the dew 

point pressure of gas condensate reservoirs. Based on 

the information provided above, we can draw the 

conclusion that the model has the ability to 

significantly boost the oil and gas industry's bottom 

line by enhancing the development and management 

of gas condensate reservoirs.  

 
Table 5: Comparison to Previous Models 

Models References 𝑹𝟐 MRE (%) RMSE 

N.K correlation  (Nemeth and Kennedy, 1967) 0.66 9.641 780.456 

E.A Empirical Model (Elsharkawy, 2001)  0.42 11.22 915.420 

Gene Expression Programing (GEP) (Ahmadi and Elsharkawy 2017) 0.9667 7.20 500.49 

DNN-ANN Current Work 0.99965 3.35 42.11 

 

Conclusion: To forecast the dew point pressure (DPP) 

of gas condensate reservoirs as a function of gas 

composition, reservoir temperature, molecular weight, 

and heptane plus percentage, a DNN - ANN model 

was created. The model was trained and evaluated on 

a large data set of gas condensate reservoir parameters, 

and it performed admirably on the training set, with a 

mean relative error (MRE) of 0.99965 and an R-square 

value of 0.999861. The model yielded an MRE of 

3.35% and an R-squared value of 0.999432, indicating 

strong performance on the testing set.  
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