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ABSTRACT: The Hardness of a material is used to quantify its toughness and how reliable it is to withstand 

load with little or no deformation. High structural integrity in terms of hardness can be predicted if combinations of 

process parameters and their response pattern can be studied. Hence, the objective of this work is to 

predict the hardness of mild steel welded joints in a tungsten inert gas welding process using 

Artificial Neural Network (ANN). The central composite design matrix was applied to train the network, 

while the box-beckhen design matrix were employed to predict the unknown responses. 200 pieces of mild steel 

coupons measuring 27.5x10x10mm were prepared and used for the experiment, the experiment was performed 20 

times, using 5 specimens for each run, after which the hardness was measured and results analyzed respectively. The 
outcomes obtained indicates ANN capability in predicting the hardness of mild steel welded joints with a p-value 

less than 0.05, and an R2 of 87.44 with an allowable system noise of 7.14242. 
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Material hardness is the ability of materials to resists 

penetration, abrasion, scratching or cutting. This 

property assist material to resists permanent 

deformation (Tomkowski et al., 2017). Some of the 

activities carried out during metal working or 

fabrications, involves bending and forming due to the 

materials ductility and malleability which is desirable 

to bring about a designed shape, this properties 

increase the machinability and weldability of the 

material, however, materials needs to maintain 

fabrication shape and degree of freedom, if they are to 

perform their designed task (Achebo, 2011) and 

(Achebo, 2012) this is where the material’s hardness 

plays a key role. Welding is the most extensively used 

method of metal joining, in various industries such as 

the oil and gas, rig design and marine transportation, 

construction, automobile industries etc (Kumar, 

2011). Due to the quick joining process that create a 

permanent waterproof bond and provides better cost 

saving, its applications are numerous. An overall 

weight reduction in weld operation is obtained when 

compared to other joining methods. The structural 

reliability of the weldments are strongly attributed to 

the process parameters applied in preparing the 

weldment, it is expected for a welded joints to be 

stronger than its parent metal, but in actual fact, most 

weld failures occurs at the welded interphase which 

can mainly be attributed to poor combination of 

process parameters. Sometimes the failures can als be 

attributed to inexperience of the welder (Olabi and 

Hashmi, 1995) and (Etin-osa and Achebo 2017). Etin-

Osa and Etin-Osa, (2019), linked some of the 
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structural failures to Poor weld, material hardness is 

reduced at this poor interphase and may lead to 

increases in wear rate of the weldment, this poor skill 

in welding may also encourages high corrosion 

activities as porosity are created in this type of welds.  

 

It has been proven by several researchers that the 

choice of welding input process parameters can alter 

the quality of the weldment, therefore, if the weld 

combinations and responses can be studied, future 

predictions can be made with better quality (Elgueder, 

2011), (Withers and Bhadeshia 2014) and (Ogbeide 

and Ebhota 2021). Hence, the objective of this work is 

to predict the hardness of mild steel welded joints in a 

tungsten inert gas welding process using Artificial 

Neural Network (ANN) 

 

MATERIALS AND METHODS 
Materials: The weld current, gas flow rate and weld 

voltage are the parameters considered for this 

research. The range of the process parameters used for 

both the central composite design and box-bechken 

design was obtained from literature and presented in 

Table 1. The TIG welding and test were conducted at 

the Department of Welding and fabrication 

technology, Petroleum Training Institute (PTI), Warri, 

Delta State, Nigeria.  

 
Table 1. Welding process parameters limits 

Process parameters Unit Symbol Low (-) High (+) 

Welding Current Amp I 120 170 

Welding Voltage Volts V 20 25 
Gas Flow Rate Lit/mill F 12 14 

 

The selected input parameters have the upper (+) and 

lower limits (-). The limits of the four welding 

variables are shown in Table 1. 

 

Methods: Artificial neural network (ANN) was 

applied to train the experimental results obtained from 

PTI. The central composite design (CCD) of 

experiment were employed to generate the 

experimental matrix to train our network, thereafter, to 

test the robustness of ANN, another experimental 

matrix, using the box-bechken design (BBD) of 

experiment was created, and ANN was used to predict 

the responses. To obtain the hardness responses for the 

CCD matrix, 200 pieces of mild steel coupons 

measuring 27.5x10x10mm was used for the 

experiments, the experiment was performed 20 times, 

using 5 specimens for each hardness test. The hardness 

of the welded specimens was measured by means of 

Brinell hardness tester.  

 

 
Fig 1: Working Principle of Brinell hardness Test 

 

Presented in Figure 1, is a sketch of the specimen with 

an applied force on the indenter to create a mark on the 

weld surface. The procedure adopted is as follows: 

  

1 The indenter is pressed into the sample by an 

accurately controlled test force. 

2 The force is maintained for a specific dwell 

time, normally 10-15 seconds. 

3 After the dwell time is complete, the indenter 

is removed leaving a round indent in the sample. 

4 The size of the indent is determined optically 

by measuring two diagonals of the round indent using 

a portable microscope. 

5 The Brinell hardness number is a function of 

the test force divided by the curved surface area of the 

indent. The indentation is considered to be spherical 

with a radius equal to half the diameter of the ball. The 

average of the two diagonals is used in the following 

formula to calculate the Brinell hardness. 

 

Table 1 and 2 presents the matrix generated for CCD 

and BBD matrixes used for this research. Twenty (20) 

experimental runs were produced for the CCD, while 

seventeen (17) runs were generated for the BBD 

matrix. 

 

A simple neural network flow diagram is presented in 

Figure 2. MATLAB2015 was employed to perform 

the ANN training and prediction. The feed-forward 

backprop was selected as the network type, training 

function was set to TrainLM; learnGDM for adaptive 

function; MSE for the performance function; number 

of layers was set to 2; property was set to layer 1; 

number of neurons was set to 10 while transfer 

function was set to TanSIG.   
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Table 2: Central composite design matrix 

Run A:Welding Current B:Welding Voltage C:Gas Flow Rate 

 Amp Volts Lit/mill 

1 145 22.5 13 

2 145 22.5 13 

3 187.045 22.5 13 

4 145 22.5 11.3182 

5 170 20 12 

6 145 18.2955 13 

7 170 25 14 

8 120 20 14 

9 170 25 12 

10 120 25 12 

11 120 20 12 

12 102.955 22.5 13 

13 170 20 14 

14 145 22.5 14.6818 

15 145 22.5 13 

16 145 22.5 13 

17 145 26.7045 13 

18 145 22.5 13 

19 120 25 14 

20 145 22.5 13 

 

Table 3: Box-bechken design matrix 

Run A:Welding Current B:Welding Voltage C:Gas Flow Rate 

 Amp Volts Lit/mill 

1 120 22.5 14 

2 170 22.5 12 

3 145 20 12 

4 170 22.5 14 

5 145 20 14 

6 145 22.5 13 

7 145 22.5 13 

8 145 22.5 13 

9 145 22.5 13 

10 120 22.5 12 

11 145 25 14 

12 145 22.5 13 

13 145 25 12 

14 120 20 13 

15 170 25 13 

16 120 25 13 

17 170 20 13 

 

RESULTS AND DISCUSSION 
Each experimental run, comprising the current, 

voltage and gas flow rate used to join two parent 

metals made of mild steel, to produce a dimension of 

55mm x 10mm x10mm. The hardness test was 

measured and results presented in Table 2. These 

results were then used to train the ANN. The network 

architecture produced had an input parameter of three 

(3) variables, ten (10) hidden layer, one (1) output 

layer and one output response. The default parameters 

were maintained in the training parameter interface. 

After training, the iteration produced 13 Epochs in 

Figure 3, with the best validation performance of 

259.4173, occurring at the 7th Epoch. 

 
Table 4: Experimental result for the Hardness test 

Run 
A:Welding 
Current 

B:Welding 
Voltage 

C:Gas 
Flow Rate 

Hardness 
Test 

 Amp Volts Lit/mill N/mm2 

1 145 22.5 13 255.493 

2 145 22.5 13 246.792 

3 187.045 22.5 13 281.596 

4 145 22.5 11.3182 280.014 

5 170 20 12 254.702 

6 145 18.2955 13 249.956 

7 170 25 14 288.478 

8 120 20 14 256.284 

9 170 25 12 264.194 

10 120 25 12 293.461 

11 120 20 12 295.834 

12 102.955 22.5 13 302.162 

13 170 20 14 238.091 

14 145 22.5 14.6818 252.329 

15 145 22.5 13 250.747 

16 145 22.5 13 276.059 

17 145 26.7045 13 271.313 

18 145 22.5 13 259.448 

19 120 25 14 283.969 

20 145 22.5 13 238.091 

 

 
Fig 2: Simple Neural Network Diagram 

 

 
Fig 3: performance plot. 
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The gradient of 0.45672 and an Mu of 1e-11 obtained 

from the trained network was desirable and expected 

due to the robust correlation obtained for the training, 

validation and test plot shown in Figure 4. The trained 

network produced the following trained results based 

on the settings made to the ANN architecture in Table 

4. The difference between the experimental and the 

trained results gives the prediction error.   

 

 

 
Fig 4: Validation plot. 

 

Table 4: Experimental vs ANN trained result for the Hardness test 

Run 
A:Welding 

Current 

B:Welding 

Voltage 

C:Gas 

Flow Rate 
Exp 

ANN ERROR 

 Amp Volts Lit/mill N/mm2 N/mm2 N/mm2 

1 145 22.5 13 255.493 248.840208140555 6.65279185944516 

2 145 22.5 13 246.792 248.840208140555 -2.04820814055483 

3 187.045 22.5 13 281.596 281.359059953054 0.236940046946188 

4 145 22.5 11.3182 280.014 278.473499034029 1.54050096597075 

5 170 20 12 254.702 255.434590038100 -0.732590038099545 

6 145 18.2955 13 249.956 249.305435711884 0.650564288115959 

7 170 25 14 288.478 288.254273558578 0.223726441422002 

8 120 20 14 256.284 255.985941076944 0.298058923056459 

9 170 25 12 264.194 264.863109317300 -0.669109317299956 

10 120 25 12 293.461 293.549514620665 -0.0885146206647391 

11 120 20 12 295.834 295.565405332912 0.268594667087768 

12 102.955 22.5 13 302.162 301.828400695570 0.333599304430209 

13 170 20 14 238.091 238.116500022319 -0.0255000223184823 

14 145 22.5 14.6818 252.329 249.376334982405 2.95266501759539 

15 145 22.5 13 250.747 248.840208140555 1.90679185944518 

16 145 22.5 13 276.059 248.840208140555 27.2187918594452 

17 145 26.7045 13 271.313 271.007114078665 0.305885921334664 

18 145 22.5 13 259.448 248.840208140555 10.6077918594451 

19 120 25 14 283.969 283.532306043115 0.436693956885222 

20 145 22.5 13 238.091 248.840208140555 -10.7492081405548 



Prediction of Hardness of Mild Steel Welded Joints…..                                                                                 2385 

OGBEIDE, O. O; ETIN-OSA, C. E. 

Eq. (1) is used to shows the agreement between the 

experimental vs ANN. Table 5 presents the regression 

model summary between the experimental and ANN. 

Table 6 present the analysis of variance of Exp vs 

ANN, this results produced a p-value less than 0.05. 

 

Exp = 21.08 + 0.9279 ANN (1) 

 
Table 5: Model Summary 

S R-sq R-sq(adj) 

7.14242 87.44% 86.75% 

 

Table 6: Analysis of Variance 

Source DF SS MS F P 

Regression 1 6395.08 6395.08 125.36 0.000 

Error 18 918.26 51.01     

Total 19 7313.34       

 

The time series plot employed in Figure 6, was used to 

visualize the prediction accuracy of the trained 

network in accurately predicting the unknown 

response. From what was visualized in Figure 6, it was 

concluded that there was good agreement between Exp 

and ANN. 

 

 
Fig 6: Time series plot for Exp and ANN 

 

Based on the validations made in Table 4-6 and Figure 

6, the BBD matrix was fed into the network for 

prediction. Table 7 presents the BBD matrix with weld 

current, voltage, gas flow rate and the corresponding 

hardness response. The aim was to apply ANN in 

predicting the responses obtained from the work of 

Ogbeide and Ebhota (2021). Experiment was 

conducted using CCD matrix to weld mild steel plates 

and their corresponding hardness responses were 

obtained and presented in Table 4. The CCD data was 

then employed in training of the ANN architecture 

developed for this study with the performance plot 

presented in Figure 3. The validation plot of Figure 4, 

shows that the network was well trained as the training 

plot had a correlation (R) value of 0.89946, validation 

plot had a correlation (R) value of 0.99959, the test plt 

had a correlation (R) value of 0.9996 and the combined 

plot had a correlation of 0.93512 with shows a good 

agreement existing between the experimental and the 

predicted. Furthermore, Table 4 was employed to 

show this data side by side.  
 

Table 7: ANN prediction using BBD matrix 

Run 
A:Welding 
Current 

B:Welding 
Voltage 

C:Gas 
Flow Rate 

Hardness Test 

 Amp Volts Lit/mill N/mm2 

1 120 22.5 14 291.775095212023 

2 170 22.5 12 277.658864308376 

3 145 20 12 274.065873679849 

4 170 22.5 14 257.672484251330 

5 145 20 14 238.199618111997 

6 145 22.5 13 248.840208140555 

7 145 22.5 13 248.840208140555 

8 145 22.5 13 248.840208140555 

9 145 22.5 13 248.840208140555 

10 120 22.5 12 299.595560884586 

11 145 25 14 286.472000195261 

12 145 22.5 13 248.840208140555 

13 145 25 12 264.051689071786 

14 120 20 13 269.447334495543 

15 170 25 13 277.578493782620 

16 120 25 13 289.375975237759 

17 170 20 13 239.355322489702 

 

Table 5 threw more light on the model summary of the 

analysis having a the highest recorded noise in the 

system of 7.14242 with was acceptable, and an R2 of 

87.44% with an adjusted R2 of 86.75%, these values 

were all above 80% showing the robustness of the 

prediction tool in predicting the hardness of the 

samples. The ANOVA in Table 6 shows a P-value less 

than 0.0500, this indicates a significant model. The 

maximum hardness prediction was obtained at run 12 

in Figure 6, if compared with Table 4, it could be 

concluded that the current of 102.955 amps, voltage of 

22.5 volts and gas flow rate of 13 l/min, produced an 

optimum value of 302.162N/mm2 and a 

corresponding prediction from ANN of 301.83 

N/mm2 with an error of 0.333. The BBD reduction 

accuracy can be verified by comparing the response of 

run 1 in the CCD matrix of Table 4 to the run 6, 7, 8, 

9 and 12 of the BBD matrix produced in Table 7. It 

was noticed that the responses obtained were all within 

acceptable ranges  

 

Conclusion: In this study, the prediction of material 

hardness, using ANN on Tungsten Inert Gas (TIG) 

welding process with three (3) process parameters, 

namely: current, voltage and gas flow rate has been 

achieved. The outcomes obtained indicates ANN 

robustness capability in predicting the hardness of 
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mild steel welded joints with a p-value less than 0.05, 

and an R2 of 87.44 with an allowable system noise of 

±7.14242.  
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