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ABSTRACT: Pipeline transportation of resources is considered a vital method due to low operational cost, and 

simple design and implementation. However, the presence of leakages within pipeline networks gives rise to 

noteworthy jurisdiction regarding environmental impact, economic implications, and safety considerations. The 

prompt identification and precise localization of such leakages are of utmost importance in order to get rid of their 
potential consequences on human existence. This project aims to detect leakages in a pipeline network based on 

hydraulic laboratory modelling with artificial intelligence systems. The dataset from both the hydraulic laboratory 

network and EPANET simulation respectively were used to train and test a model, then validate using for leakage 
prediction and localization using artificial neural network. The results shows that pressure is a more valid parameter 

to detect leakages to flowrate in a pipeline network. Also, artificial neural network developed model performed very 

well in predicting leak sizes with an accuracy of 96.89% respectively. The model developed based achieved validation 
accuracies which vary broadly between about 85% and 90%. Also, the F-score ranged between 80% and 91% which 

makes the model is valid to be used to predict and localize the leaks in real time. 
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Pipeline systems are used as the main transportation 

system for many applications, such as water 

distribution, oil and gas transportation, metropolitan 

heat systems, etc. Leakage in these pipeline systems 

can cause environmental and chemical damage. 

Leakage not only wastes resources but also creates 

environmental problems. Hence, monitoring systems 

for pipeline leakages are being increasingly 

demanded(Hieu et al., 2014). A leak’s frequency 

features, as well as its amplitude, depend on many 

factors, for instance, the size of leak, the type of 

transported fluid (i.e., water, oil), and pipeline 

pressure. If the pipe is large in diameter or less solid, 

then the leak sound contains lower frequency 

components. On the contrary, if pressure is higher, 

then higher-frequency components dominate. The 

amplitude of the leak sound is higher if the pressure or 

flow speed is higher or if the leak is large, but not very 

large (Billman & Isermann, 1984a; Hunaidi and Chu, 

1999) as cited by (Hieu et al., 2014) .If operational 

conditions of the pipeline, such as temperature, 

pressure, and flow do not change, then the leak sound 

is assumed to be a stationary signal, a signal whose 

frequency components do not change over time. The 

average economic loss due to incidents of pipeline 

leakages is enormous (Liu et al., 2008). To size the 42 

cost, in single incident of pipeline leakage at Sam 

Bruno community, USA on September 6, 2010. More 

43 than 840,000 gallons of crude oil spilled into 

Kalamazzo River with estimated cost of $800 million. 

The cause of the pipeline damages varies. Figure 1 

shows a pie chart that illustrates statistics of 45 the 

major causes of pipelines failure which include 

pipeline corrosion, human negligence, defects 46 
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befalls during the process of installation and erection 

work, and flaws occurs during the process of 47 

manufacturing and external factors (Bolotina et al., 

2018). 

Pipeline monitoring has become an important issue 

around the world for its high environmental and 

economic interest. In general, the main objective of a 

Leak Detection and Isolation (LDI) system is to detect 

and locate the smallest leaks as early as possible with 

minimal instrumentation. Usually, pressure and flow 

sensors are placed at pipeline ends, and are employed 

by the LDI system, that is used to locate them through 

mass balance and non-stationary 

calculations(Delgado-Aguiñaga et al., 2018). The leak 

detection task in pipelines can be tackled by using 

Fault Detection and Isolation (FDI) tools based on a 

fluid model that represents the physical dynamics of a 

specific installation. These tools include, for instance, 

algorithms in frequency domain (Brunone & Ferrante, 

2001) and time domain(Billman and Isermann, 1984b) 

; (Bermúdez et al., 2018; Kowalczuk and 

Gunawickrama, 2000) (Moustafa et al., 2012) based 

on the model described by (Chaudhry, 1979); (Wylie 

and Streeter, 1978). These algorithms were developed 

for a pipeline instrumented only with pressure and 

flow sensors at the ends and without branch junctions 

in between. Hence, the objective of this paper is to 

evaluate the detection of leakages in a pipeline 

network based on hydraulic laboratory modelling with 

artificial intelligence. 

 

MATERIALS AND METHODS 
Laboratory Setup: A laboratory-based test bench 

system was been designed to detect the leak, predict 

leak size and make the model effective and efficient. 

This system consists of U-shaped pipelines made of 

PVC pipes and is shown in Figure 1. Water was moved 

around in the system by a common water pump 

capable of providing up to 15 PSI of pressure. Three 

leaks were created in the pipe sections using hose bibb 

in three different locations. The first leak was created 

between sensor 1 and 2, the second leak was between 

sensor 3 and 4, and the third leak was between sensor 

5 and 6. Sensor 1 and 2 are 25cm apart, sensor 3 and 4 

are 25cm apart, sensor 5 and 6 are 25cm apart, sensor 

2 and 5 are 125cm apart and Sensor 1 and 6 are 250cm 

apart. Leak-1 is located halfway between sensor 1 and 

2, leak2 is located halfway between sensor 3 and 4, 

and leak-3 is located halfway between sensor 5 and 6. 

The flow and pressure sensors was installed to 

measure flow rate and pressure at different intervals. 

 

.Fig 1: Laboratory Setup 

 

A large number of datasets were been collected to 

verify the system. PVC pipes with three different 

diameters were used: 19mm, 25mm, and 38mm; three 

leak locations and five different leak sizes: 12.7mm, 

10.2mm, 7.6mm, 5.1mm, and 2.5mm to collect data 

with different conditions. About 2000 data across the 

various nodes was transferred to the cloud network at 

appropriate intervals. 

 

 
Fig 2: Data Logger Setup Box 



Detection of Leakages in a Pipeline Network based…..                                                                                   1795 

OLADELE, E. M; BABATOLA, J. O; AGBOLADE, O. A. 

Data Acquisition System: Data acquisition is the 

method of transforming data from one state to another 

state that is acceptable to the computing device for 

advance processing.  The system consists of sensors, 

hardware, AT megs 328 (Arduino), GSM internet 

module and a computing device with programmable 

software. 

 

Each of the data logger A, B, C and D box are all 

connected to the water pipeline and will be logging the 

values of the pressure and flow sensor to the server 

every 5 to10 seconds. The LoRa sx1278 will also be 

sending the same data through a LoRaWAN gateway 

to the server. 

 

EPANET Simulation: The performance of the pipeline 

network in detecting leakages was evaluated through 

the utilization of the EPANET simulation. EPANET 

2.2 software was employed. The simulation 

encompassed diverse scenarios, comprising distinct 

demand patterns, pipe diameters, and pressure 

conditions, with the aim of encompassing a broad 

spectrum of realistic operational circumstances. The 

results obtained from the EPANET simulation have 

provided significant revelations regarding the 

network's capacity to precisely identify leakages. The 

hydraulic network modelled in the laboratory was 

simulated on the EPANET software to compare the 

data from the simulation to a real life situation. The 

flow rate and pressure at across different nodes were 

gotten. The EPANET simulation gave allowances for 

parameters that could not be discovered through the 

laboratory experimental analysis like demand, water 

quality, temperature and volume. The data were 

analyzed at different nodes through the times series 

plot and frequency plot at different nodes. 

 

Model Training through Artificial Neural Network: 

The training algorithm used for this model is scaled 

conjugate gradient. The dataset collected was 10000. 

70% of this was used for testing, 15% was used for 

validation and 15% was used for training.  Although 

the data division is random, the algorithm performance 

arrived at a cross-entropy error. The input layer 

represents the nodes which are 3 in number, while the 

output layer is 1. The output is a Boolean output in 

which it is either 0 or 1. If it is 0 for leak detection, it 

means no leakage. If it is 1, it means there is leakage. 

For localization, if the output is 0, It means leakage is 

at node 1. Also, if the output is 1, it means leakage is 

at node 2. The number of hidden layer used is 5 to 

prevent overfitting; so that the neural network can 

learn from the training and give good prediction. A 

scaled conjugate algorithm was used as well so the 

number of neurons was determined by the 

architecture. The epoch (the number of iteration) after 

which the neural network was able to converge is 19. 

 

 
Fig 3: ANN Architecture 

 

RESULTS AND DISCUSSIONS 
Laboratory Hydraulic Modelling: In this study, data 

have been collected from the test-bench system with 

several conditions such as: (1) Three kinds of pipe 

diameters: 19mm, 25mm and 38mm; (2) 3 leak 

locations; and (3) Five leak sizes: 12.7mm, 10.2mm, 

7.6mm, 5.1mm, and 2.5mm. A total of 2000 sets of 

data has been collected including datasets with and 

without leaks. Data were stored in the cloud and then 

analyzed to separate leak data sets from non-leak data 

sets. Next, a total of 900 sets of leak data were 

analyzed to localize leak and predict leak size. In this 

chapter, the result of the data analysis is discussed. 

 

Separating Non-Leak and Leaks Dataset: The 

exponential curve fitting model was used to separate 

leak data sets from nonleak data sets. The accuracy of 

the separation of leak data sets from non-leak data sets 

is shown in Table 1. The above represent the mean 

pressure across different nodes after 11 iterations, for 

different pipe diameters both before and after leak, the 

graphs exhibit a stable pressure and consistent flow 

rate within the laboratory operating conditions. Upon 

analyzing the data for after leaks, it was observed that 

there was a consistent and significant reduction in 

pressure across the nodes during and after leaks. This 

observation justifies utilizing pressure as a key 

parameter for leak detection. 

 
Table 1: Accuracy to separate non- leak from leaks dataset 

Data sets Test 

datasets 

Correctly 

predicted 

Accuracy 

Leak data sets 100 98 98% 

Non-leak data sets 100 100 100% 
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Fig 4: Mean Pressure Profile for 19mm (0.75 inches) pipe for 

different nodes at each iteration (Before Leak) 

 

 
Fig 5: Mean Pressure Profile for 38mm (1.5 inches) pipe for 

different nodes at each iteration (Before Leak) 

 

 
Fig 6: Mean Pressure Profile for 25.4mm (1.0 inches) pipe for 

different nodes at each iteration (Before Leak) 

 

As data sets related to node-2 showed less efficiency 

because of the incorrect distance between sensors, so 

datasets associated with the node-1 and node-3 were 

considered only for accurate leak localization. The 

efficiency of leak location identification has been 

calculated. In this case, the accuracy of 85.6% is 

achieved. So, the distance between sensors plays a 

pivotal role in detecting leak location accurately. Thus, 

it can be concluded that distance between sensors 

should be 25cm or more to get an acceptable efficiency 

in identifying leak location. 

 
Fig 7: Mean Pressure Profile for 38mm (1.5 inches) pipe for 

different nodes at each iteration (After Leak) 

 

 
Fig 7: Mean Pressure Profile for 19mm (1.0 inches) pipe for 

different nodes at each iteration (After Leak) 

 

EPANET Simulation at different intervals 
Table 2: Node Results at 0.00 Hour 

NODE 
ID 

DEMAND 
(LPM) 

HEAD 
(M) 

PRESSURE (𝑁/𝑀2) 

1 0.00 213.36 0.00 

2 0.00 251.93  3.7 × 105𝑁/𝑀2 
3 100.00 251.93 3.4 × 105𝑁/𝑀2 
4 100.00 251.72 4.3 × 105𝑁/𝑀2   
5 75.00 250.49 4.8 × 105𝑁/𝑀2     
6 75.00 252.07 5.0 × 105𝑁/𝑀2       
7 100.00 252.07 3.7 × 105𝑁/𝑀2     
8 -325.00 254.12 9.1 × 103𝑁/𝑀2 

 

Table 3: Node Results at 1.00 Hour 

NODE 

ID 

DEMAND 

(LPM) 

HEAD 

(M) 
PRESSURE(𝑁/𝑀2) 

1 0.00 213.36  0.00 

2 0.00 251.93 3.41 × 105𝑁/𝑀2 

3 100.00 251.93 4.29 × 105𝑁/𝑀2   
4 100.00 251.72 4.81 × 105𝑁/𝑀2     
5 75.00 250.49 4.87 × 105𝑁/𝑀2       
6 75.00 252.07 3.9 × 105𝑁/𝑀2     
7 0.00 252.07 0.00 

8 -325.00 254.12 9.1 × 103𝑁/𝑀2 

 

The above tables exhibit the hydraulic characteristics 

of the network at the different nodes, such as pipe 

diameters and pressure conditions, were identified as 

a contributing factor to the detection performance. The 

findings of the EPANET simulation indicate that 

leakages in larger diameter pipes or under higher 

pressure conditions were detected with higher 
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precision in comparison to those in smaller diameter 

pipes or lower pressure zones. The aforementioned 

observation implies that the efficacy of the model 

could be impacted by the hydraulic behavior and 

attributes of the particular pipeline network under 

examination. 
 

Table 4: Node Results at 2.00 Hour 

NODE 

ID 

DEMAND 

(LPM) 

HEAD 

(M) 
PRESSURE(𝑁/𝑀2) 

1 0.00 250.83  0.00 

2 0.00 250.83 3.67 × 105𝑁/𝑀2 

3 75.00 250.72 3.37 × 105𝑁/𝑀2   
4 75.00 249.91 3.65 × 105𝑁/𝑀2     
5 100.00 250.93 5.07 × 105𝑁/𝑀2       
6 75.00 250.95 3.68 × 105𝑁/𝑀2     
7 0.00 213.36 3.65 × 105𝑁/𝑀2 
8 -325.00 253.64 6.4 × 103𝑁/𝑀2 

 

Table 5: Node Results at 3.00 Hour 

NODE 

ID 

DEMAND 

(LPM) 

HEAD 

(M) 
PRESSURE(𝑁/𝑀2) 

1 0.00 250.27  0.00 

2 0.00 250.27 3.62 × 105𝑁/𝑀2 

3 75.00 250.05 3.32 × 105𝑁/𝑀2   
4 75.00 249.35 3.60 × 105𝑁/𝑀2     
5 100.00 249.35 5.02 × 105𝑁/𝑀2       
6 75.00 250.37 3.62 × 105𝑁/𝑀2     
7 0.00 250.42 3.63 × 105𝑁/𝑀2 
8 -325.00 253.01 6.4 × 103𝑁/𝑀2 

 

Table 6: Node Results at 3.00 Hour 

NODE 

ID 

DEMAND 

(LPM) 

HEAD 

(M) 
PRESSURE (𝑁/𝑀2) 

1 0.00 250.07  0.00 

2 0.00 250.07 3.24 × 105𝑁/𝑀2 

3 75.00 249.85 3.24 × 105𝑁/𝑀2   
4 75.00 248.35 3.17 × 105𝑁/𝑀2     
5 100.00 248.35 5.13 × 105𝑁/𝑀2       
6 75.00 251.74 3.42 × 105𝑁/𝑀2     
7 0.00 251.45 3.23 × 105𝑁/𝑀2 
8 -325.00 252.88 5.9 × 103𝑁/𝑀2 

 

 
Fig 8: Times series plot showing the flow rate at different nodes. 

 

The time series plot graph presented a clear 

visualization of the pressure dynamics within our 

hydraulic system and provided valuable insights into 

leak detection. The graph allowed us to identify the 

occurrence and duration of leaks and also facilitate a 

qualitative understanding of their severity. With the 

information gotten from this graph, we can calibrate 

our leak detection algorithms to improve our leak 

detection systems. 

 

Model Training, Validation and Testing: The 

following table represent the no leak and leak dataset 

range used for training across the different nodes 

captured by the flow and pressure sensors. 

 
Table 7: Dataset range for no leakage at 0 

Node 1 Node 2 Node 3 

39.00 35.90 29.66 
38.00 35.85 29.55 

 

Table 8: Dataset range for no leakage at 1 

Node 1 Node 2 Node 3 

34.00 31.77 29.66 

33.00 35.85 29.53 

 

Table 9: Dataset range for no leakage at 2 

Node 1 Node 2 Node 3 

35.10 32.08 26.36 

35.00 31.93 25.94 

 

 
Fig 9: The Confusion Matrix of the Model 

 

 
Figure 10: The Performance Plot of the Model 
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Table 10: The Training Plot of the Model 

Unit    

Epoch 0 19 1000 

Elapsed Time - 00:00:00 - 

Performance 0.33 2.45e-07 0 

Gradient 0.689 5.8e-07 1e-06 

Validation checks 0 0 0 

 

 
Fig 11: The Training State of the Model 

 

The analysis of the constructed model's performance 

through ANN shows positive indicators in considering 

the research findings. High levels of accuracy and the 

ability to learn from training data are consistently 

displayed by the model, as evidenced by the ROC 

curves for the training, validation, and testing datasets. 

The ROC curves all pointing in the same way indicates 

that the model effectively generalizes to new data 

without being over- or under-fit. The performance plot 

has affirmed the validation of the model as the graph 

of the training, validation and testing datasets 

intertwined. These findings demonstrate that the 

trained neural network successfully extracted the 

necessary data patterns and features, resulting in 

accurate leak detection. The model's ability to classify 

leaks while reducing false alarms is supported by a 

number of additional performance indicators. These 

include confusion matrix, training plot, and training 

state. The results of this study show that the created 

model has potential for efficient leak detection, 

thereby advancing the state of the art in this vital area.  

 

The model's performance and usefulness could be 

confirmed and improved by more extensive testing on 

larger datasets and real-world circumstances. As 

presented in Table 9, for the nonleaks, the 

performance of the detection models varies 

considerably when tested on the training and testing 

data sets. It was generally degraded when evaluated 

against the testing data set compared to the training 

data set. The measured accuracy ranged from about 

87.7% to 90.2% and from about 85.3% to 88.7% when 

tested on the training and testing data sets, 

respectively. Also, the F-score of the model was 

around 88.7–91.3% and 80.7–86% when tested against 

the training and the testing data sets, respectively. 

However, the measured AUC was 0.97–1.00 and 

0.87–0.95 when tested on the training and the testing 

data sets, respectively. 

 

 
Table 11: Model Performance for Leak and Non Datasets 

Datasets   Training   Testing  

 Accuracy  F-Score (%) AUC Accuracy F-score (%) AUC 

Non Leak 90.2  91.3 1.00 87.7 88.7 0.97 

Leak 88.7  85.6 0.95 85.3 80.7 0.87 

 

Conclusions: This study has been able to present a 

clear and detailed procedure to set up the fluid network 

and leak simulation in EPANET, to generate the 

dataset, to apply artificial neural network to predict 

leakage and to apply the proposed system to a real-

world leak detection system. The results of this study 

show that the created model has potential for efficient 

leak detection, thereby advancing the state of the art in 

this vital area. The model's performance and 

usefulness could be confirmed and improved by more 

extensive testing on larger datasets and real-world 

circumstances.  
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